forked from uzh-rpg/agile_autonomy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_trajectories.py
445 lines (388 loc) · 18.3 KB
/
visualize_trajectories.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import matplotlib.cm as cm
import os
import matplotlib
import numpy as np
import open3d as o3d
import pandas as pd
import argparse
from scipy.spatial.transform import Rotation as R
########################################################
# Define data root directory, find subdirectories
########################################################
parser = argparse.ArgumentParser(description='Visualize Trajectory Labels')
parser.add_argument('--data_dir',
help='Path to data', required=True)
parser.add_argument('--data_dir_2',
help='Path to data 2. If given will plot them both', required=False)
parser.add_argument('--start_idx',
help='Start plotting at this trajectory', required=False)
parser.add_argument('--time_steps',
help='How many timesteps to plot', required=False)
parser.add_argument('--max_states',
help='For each plotted trajectory, how many states to plot', required=False)
parser.add_argument('--max_traj_to_plot',
help='How many trajectories to plot', required=False)
parser.add_argument('--pc_cutoff_z',
help='Crop pointcloud in z-axis', required=False)
args = parser.parse_args()
data_dir = args.data_dir
data_dir_2 = args.data_dir_2
start_idx = args.start_idx
num_timesteps = args.time_steps
max_states = args.max_states
if data_dir_2 is not None:
print("Two data directories specified, will compare rollouts.")
compare = True
else:
compare = False
########################################################
# Visualization Parameters
########################################################
default_folder = 0 # which rollout to visualize if root directory is specified
if start_idx is not None:
# within folder, where to start plotting
default_start_idx = int(start_idx)
else:
default_start_idx = 0 # within folder, where to start plotting
if num_timesteps is not None:
default_length = int(num_timesteps) # how many planning steps to plot
else:
default_length = 1 # how many planning steps to plot
if max_states is not None:
max_states = int(max_states) # how many planning steps to plot
else:
max_states = 100 # how many planning steps to plot
max_traj_to_plot = args.max_traj_to_plot
if max_traj_to_plot is not None:
max_traj_to_plot = int(max_traj_to_plot)
else:
max_traj_to_plot = 2
pc_cutoff_z = args.pc_cutoff_z
if pc_cutoff_z is not None:
pc_cutoff_z = float(pc_cutoff_z)
else:
pc_cutoff_z = 5.0
visualize_pointcloud = True
visualize_odometry = False
visualize_ideal_reference = False
visualize_trajectories = True
visualize_start_goal = True
crop_xy = False
step = 1
########################################################
# possible data_dir are either the root data directory or a specific rollout folder
if not os.path.isdir(data_dir):
print("Specified directory does not exist!")
exit(0)
subfolders = [f.path for f in os.scandir(data_dir) if f.is_dir()]
if any("rollout_" in os.path.basename(os.path.normpath(subfolder)) for subfolder in subfolders):
print("Root data directory specified, will visualize folder with index %d." %
default_folder)
rollout_dir = subfolders[default_folder]
else:
# "rollout_" in os.path.basename(os.path.normpath(data_dir)):
print("Specific rollout specified")
rollout_dir = data_dir
if compare:
rollout_dir_2 = data_dir_2
print("Visualizing rollout: %s" % rollout_dir)
viz_list = []
if visualize_odometry:
odom_fname = rollout_dir + "/odometry.csv"
df_odometry = pd.read_csv(odom_fname)
edges = []
orig_time = df_odometry['time_from_start'].to_numpy()
new_time = np.linspace(0, orig_time[-1], 1000)
x_pos = df_odometry['pos_x']
y_pos = df_odometry['pos_y']
z_pos = df_odometry['pos_z']
q_w = df_odometry['q_w']
q_x = df_odometry['q_x']
q_y = df_odometry['q_y']
q_z = df_odometry['q_z']
odom_xyz = np.concatenate([x_pos, y_pos, z_pos], axis=1)
odom_att = np.concatenate([q_w, q_x, q_y, q_z], axis=1)
for odom_idx in range(odom_xyz.shape[0]):
hack_x = 0.0
hack_y = 0.0
odom_mesh = o3d.geometry.TriangleMesh.create_cylinder(0.1, 0.04)
rot_body = R.from_quat([odom_att[odom_idx, 1],
odom_att[odom_idx, 2],
odom_att[odom_idx, 3],
odom_att[odom_idx, 0]])
R_odom = rot_body.as_matrix()
odom_mesh_transform = np.asarray(
[[R_odom[0, 0], R_odom[0, 1], R_odom[0, 2], odom_xyz[odom_idx, 0] + hack_x],
[R_odom[1, 0], R_odom[1, 1], R_odom[1, 2], odom_xyz[odom_idx, 1] + hack_y],
[R_odom[2, 0], R_odom[2, 1], R_odom[2, 2], odom_xyz[odom_idx, 2]],
[0.0, 0.0, 0.0, 1.0]])
odom_mesh.transform(odom_mesh_transform)
odom_mesh.compute_vertex_normals()
odom_mesh.paint_uniform_color([0.0, 0.8, 0.0])
viz_list.append(odom_mesh)
if visualize_ideal_reference:
ref_fname = rollout_dir + "/reference_trajectory.csv"
df_reference = pd.read_csv(ref_fname)
edges = []
x_pos = df_reference['pos_x'].to_numpy()[:, np.newaxis]
y_pos = df_reference['pos_y'].to_numpy()[:, np.newaxis]
z_pos = df_reference['pos_z'].to_numpy()[:, np.newaxis]
q_w = df_reference['q_w'].to_numpy()[:, np.newaxis]
q_x = df_reference['q_x'].to_numpy()[:, np.newaxis]
q_y = df_reference['q_y'].to_numpy()[:, np.newaxis]
q_z = df_reference['q_z'].to_numpy()[:, np.newaxis]
ref_xyz = np.concatenate([x_pos, y_pos, z_pos], axis=1)
ref_att = np.concatenate([q_w, q_x, q_y, q_z], axis=1)
for ref_idx in range(ref_xyz.shape[0]):
if not ref_idx % 1 == 0:
continue
pole_mesh = o3d.geometry.TriangleMesh.create_cylinder(0.1, 0.04)
rot_body = R.from_quat([ref_att[ref_idx, 1],
ref_att[ref_idx, 2],
ref_att[ref_idx, 3],
ref_att[ref_idx, 0]])
R_ref = rot_body.as_matrix()
pole_mesh_transform = np.asarray(
[[R_ref[0, 0], R_ref[0, 1], R_ref[0, 2], ref_xyz[ref_idx, 0]],
[R_ref[1, 0], R_ref[1, 1], R_ref[1, 2], ref_xyz[ref_idx, 1]],
[R_ref[2, 0], R_ref[2, 1], R_ref[2, 2], ref_xyz[ref_idx, 2]],
[0.0, 0.0, 0.0, 1.0]])
pole_mesh.transform(pole_mesh_transform)
pole_mesh.compute_vertex_normals()
pole_mesh.paint_uniform_color([0.8, 0.0, 0.0])
viz_list.append(pole_mesh)
if visualize_start_goal:
ref_fname = rollout_dir + "/reference_trajectory.csv"
df_reference = pd.read_csv(ref_fname)
x_pos = df_reference['pos_x'].to_numpy()[:, np.newaxis]
y_pos = df_reference['pos_y'].to_numpy()[:, np.newaxis]
z_pos = df_reference['pos_z'].to_numpy()[:, np.newaxis]
z_offset = 5.0
start_pos = np.concatenate([x_pos[0, np.newaxis], y_pos[0, np.newaxis], z_offset + z_pos[0, np.newaxis]], axis=1)
goal_pos = np.concatenate([x_pos[-1, np.newaxis], y_pos[-1, np.newaxis], z_offset + z_pos[-1, np.newaxis]], axis=1)
start_pos = np.squeeze(start_pos)
goal_pos = np.squeeze(goal_pos)
start_mesh = o3d.geometry.TriangleMesh.create_arrow(cylinder_radius=0.5, cone_radius=0.75, cylinder_height=2.5,
cone_height=2.0, resolution=20, cylinder_split=4, cone_split=1)
rot_body = R.from_quat([1.0,
0.0,
0.0,
0.0])
R_ref = rot_body.as_matrix()
start_mesh_transform = np.asarray(
[[R_ref[0, 0], R_ref[0, 1], R_ref[0, 2], start_pos[0]],
[R_ref[1, 0], R_ref[1, 1], R_ref[1, 2], start_pos[1]],
[R_ref[2, 0], R_ref[2, 1], R_ref[2, 2], start_pos[2]],
[0.0, 0.0, 0.0, 1.0]])
start_mesh.transform(start_mesh_transform)
start_mesh.compute_vertex_normals()
start_mesh.paint_uniform_color([0.0, 1.0, 0.0])
viz_list.append(start_mesh)
goal_mesh = o3d.geometry.TriangleMesh.create_arrow(cylinder_radius=0.5, cone_radius=0.75, cylinder_height=2.5,
cone_height=2.0, resolution=20, cylinder_split=4, cone_split=1)
goal_mesh_transform = np.asarray(
[[R_ref[0, 0], R_ref[0, 1], R_ref[0, 2], goal_pos[0]],
[R_ref[1, 0], R_ref[1, 1], R_ref[1, 2], goal_pos[1]],
[R_ref[2, 0], R_ref[2, 1], R_ref[2, 2], goal_pos[2]],
[0.0, 0.0, 0.0, 1.0]])
goal_mesh.transform(goal_mesh_transform)
goal_mesh.compute_vertex_normals()
goal_mesh.paint_uniform_color([1.0, 0.0, 0.0])
viz_list.append(goal_mesh)
########################################################
# Load trajectories
########################################################
if visualize_trajectories:
print("Loading trajectories...")
# colormap for visualization
cmap = cm.get_cmap('jet')
cmap2 = cm.get_cmap('winter')
# keep track of the most extreme trajectories
min_x = 999
max_x = -999
min_y = 999
max_y = -999
min_z = 999
max_z = -999
for timestep in np.arange(default_start_idx, default_start_idx + default_length, step=step):
traj_fname = rollout_dir + "/trajectories/trajectories_wf_" + \
'{:08d}'.format(timestep) + ".csv"
if compare:
traj_fname_2 = rollout_dir_2 + "/trajectories/trajectories_wf_" + \
'{:08d}'.format(timestep) + ".csv"
print(traj_fname)
try:
df_trajectories = pd.read_csv(traj_fname)
if compare:
df_trajectories_2 = pd.read_csv(traj_fname_2)
except:
continue
# set rel cost if it does not exist
try:
rel_cost = df_trajectories['rel_cost'].values
except:
df_trajectories['rel_cost'] = np.zeros((df_trajectories.shape[0], 1))
# get trajectory with highest cost
highest_cost = 0.0
if (max_traj_to_plot < len(df_trajectories)):
lowest_cost = df_trajectories.iloc[0, -1]
highest_cost = df_trajectories.iloc[max_traj_to_plot, -1]
else:
lowest_cost = df_trajectories['rel_cost'].min()
highest_cost = df_trajectories['rel_cost'].max()
num_traj_to_plot = min(max_traj_to_plot, len(df_trajectories))
if compare:
num_traj_to_plot = min(num_traj_to_plot, len(df_trajectories_2))
print("Plotting %d trajectories..." % num_traj_to_plot)
for i in range(num_traj_to_plot):
# iterate over trajectories
rel_cost = df_trajectories['rel_cost'].values[i] - lowest_cost
x_pos = np.expand_dims(df_trajectories['pos_x_0'].values[i], axis=0)
y_pos = np.expand_dims(df_trajectories['pos_y_0'].values[i], axis=0)
z_pos = np.expand_dims(df_trajectories['pos_z_0'].values[i], axis=0)
edges = []
colors = []
max_thrust_exceeded = False
for j in range(1, max_states):
# iterate over states in trajectory
try:
curr_x_pos = np.expand_dims(
df_trajectories['pos_x_{}'.format(j)].values[i], axis=0)
curr_y_pos = np.expand_dims(
df_trajectories['pos_y_{}'.format(j)].values[i], axis=0)
curr_z_pos = np.expand_dims(
df_trajectories['pos_z_{}'.format(j)].values[i], axis=0)
if df_trajectories['thrust_{}'.format(j)].values[i] > 60.0:
max_thrust_exceeded = True
break
x_pos = np.concatenate((x_pos, curr_x_pos), axis=0)
y_pos = np.concatenate((y_pos, curr_y_pos), axis=0)
z_pos = np.concatenate((z_pos, curr_z_pos), axis=0)
edges.append([j - 1, j])
except:
break
if max_thrust_exceeded:
continue
# [n_states, 3] array of positions
xyz = np.concatenate((np.expand_dims(np.reshape(x_pos, -1), axis=1), np.expand_dims(
np.reshape(y_pos, -1), axis=1), np.expand_dims(np.reshape(z_pos, -1), axis=1)), axis=1)
min_x = np.min([min_x, np.min(xyz[:, 0])])
max_x = np.max([max_x, np.max(xyz[:, 0])])
min_y = np.min([min_y, np.min(xyz[:, 1])])
max_y = np.max([max_y, np.max(xyz[:, 1])])
min_z = np.min([min_z, np.min(xyz[:, 2])])
max_z = np.max([max_z, np.max(xyz[:, 2])])
min_z = -0.5
o3d_traj = o3d.geometry.PointCloud()
o3d_traj.points = o3d.utility.Vector3dVector(xyz)
if compare:
x_pos = np.expand_dims(
df_trajectories_2['pos_x_0'].values[i], axis=0)
y_pos = np.expand_dims(
df_trajectories_2['pos_y_0'].values[i], axis=0)
z_pos = np.expand_dims(
df_trajectories_2['pos_z_0'].values[i], axis=0)
edges = []
colors = []
for j in range(1, max_states):
try:
x_pos = np.concatenate((x_pos, np.expand_dims(
df_trajectories_2['pos_x_{}'.format(j)].values[i], axis=0)), axis=0)
y_pos = np.concatenate((y_pos, np.expand_dims(
df_trajectories_2['pos_y_{}'.format(j)].values[i], axis=0)), axis=0)
z_pos = np.concatenate((z_pos, np.expand_dims(
df_trajectories_2['pos_z_{}'.format(j)].values[i], axis=0)), axis=0)
edges.append([j - 1, j])
except:
break
xyz_2 = np.concatenate((np.expand_dims(np.reshape(x_pos, -1), axis=1), np.expand_dims(
np.reshape(y_pos, -1), axis=1), np.expand_dims(np.reshape(z_pos, -1), axis=1)), axis=1)
o3d_traj_2 = o3d.geometry.PointCloud()
o3d_traj_2.points = o3d.utility.Vector3dVector(xyz_2)
# colorize trajectory according to cost. value passed to colormap is [0, 1]
rgba = (1.0, 0.0, 0.0, 1.0)
o3d_traj.paint_uniform_color([rgba[0], rgba[1], rgba[2]])
viz_list.append(o3d_traj)
colors = [[rgba[0], rgba[1], rgba[2]] for i in range(len(edges))]
line_set = o3d.geometry.LineSet(
points=o3d.utility.Vector3dVector(xyz),
lines=o3d.utility.Vector2iVector(edges),
)
line_set.colors = o3d.utility.Vector3dVector(colors)
viz_list.append(line_set)
rgba = (0.0, 0.0, 1.0, 1.0)
o3d_traj_2.paint_uniform_color([rgba[0], rgba[1], rgba[2]])
viz_list.append(o3d_traj_2)
# vis.add_geometry(o3d_traj)
colors = [[rgba[0], rgba[1], rgba[2]] for i in range(len(edges))]
line_set_2 = o3d.geometry.LineSet(
points=o3d.utility.Vector3dVector(xyz_2),
lines=o3d.utility.Vector2iVector(edges),
)
line_set_2.colors = o3d.utility.Vector3dVector(colors)
viz_list.append(line_set_2)
else:
# colorize trajectory according to cost. value passed to colormap is [0, 1]
rgba = cmap(1.0 - rel_cost / (highest_cost - lowest_cost))
o3d_traj.paint_uniform_color([rgba[0], rgba[1], rgba[2]])
viz_list.append(o3d_traj)
colors = [[rgba[0], rgba[1], rgba[2]] for i in range(len(edges))]
line_set = o3d.geometry.LineSet(
points=o3d.utility.Vector3dVector(xyz),
lines=o3d.utility.Vector2iVector(edges),
)
line_set.colors = o3d.utility.Vector3dVector(colors)
viz_list.append(line_set)
########################################################
# Load pointcloud
########################################################
if visualize_pointcloud:
print("Loading pointcloud...")
pointcloud = o3d.io.read_point_cloud(
rollout_dir + "/pointcloud-unity.ply")
if compare and len(pointcloud.points) == 0:
pointcloud = o3d.io.read_point_cloud(
rollout_dir_2 + "/pointcloud-unity.ply")
# crop pointcloud
pts = np.asarray(pointcloud.points)
pc_cutoff_z_min = -1.5
pts_cropped = pts[pts[:, 2] < pc_cutoff_z][:]
pts_cropped = pts_cropped[pts_cropped[:, 2] > pc_cutoff_z_min][:]
if crop_xy:
padding = 5.0
min_x = min_x - padding
max_x = max_x + padding
min_y = min_y - padding
max_y = max_y + padding
pts_cropped = pts_cropped[np.logical_and(pts_cropped[:, 0] < max_x, pts_cropped[:, 0] > min_x)][:]
pts_cropped = pts_cropped[np.logical_and(pts_cropped[:, 1] < max_y, pts_cropped[:, 1] > min_y)][:]
pts_cropped = pts_cropped[np.logical_not(np.logical_and(np.logical_and(
np.logical_and(pts_cropped[:, 0] < -19.5, pts_cropped[:, 0] > -20.5),
np.logical_and(pts_cropped[:, 1] < 15.5, pts_cropped[:, 1] > 14.5)),
np.logical_and(pts_cropped[:, 2] < 5.0, pts_cropped[:, 2] > 2.0)))][:]
pointcloud.points = o3d.utility.Vector3dVector(pts_cropped)
point_colors = np.zeros_like(pts_cropped)
cmap = cm.get_cmap('inferno')
z_0_1 = (pts_cropped[:, 2] - np.min(pts_cropped[:, 2])) / (np.max(pts_cropped[:, 2]) - np.min(pts_cropped[:, 2]))
rgba = cmap(z_0_1)
print(rgba.shape)
pointcloud.colors = o3d.utility.Vector3dVector(rgba[:, :3])
obstacles_numpy = np.asarray(pointcloud.points)
viz_list.append(pointcloud)
########################################################
# View point stuff
########################################################
viewpoint_params = '/tmp/viewpoint.json'
viewpoint_params2 = 'plot_viewpoint.json'
# this one is used to illustrate global planning vs no global planning
vis = o3d.visualization.Visualizer()
vis.create_window()
ctr = vis.get_view_control()
param = o3d.io.read_pinhole_camera_parameters(viewpoint_params2)
for viz_item in range(len(viz_list)):
vis.add_geometry(viz_list[viz_item])
ctr.convert_from_pinhole_camera_parameters(param)
vis.run() # user changes the view and press "q" to terminate
param = vis.get_view_control().convert_to_pinhole_camera_parameters()
o3d.io.write_pinhole_camera_parameters(viewpoint_params, param)
vis.destroy_window()