-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvision.py
103 lines (89 loc) · 3.3 KB
/
vision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import cv2
import numpy as np
from colorama import Fore, Back, Style
import socket
clientSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM);
# Load Yolo
net = cv2.dnn.readNet("yolov2-tiny.weights", "yolov2-tiny.cfg")
#net = cv2.dnn.readNet("yolov4-tiny.weights", "yolov4-tiny.cfg")
classes = []
print("RBPI IP ?")
u_ip = str(input())
clientSocket.connect((u_ip,9093));
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
label = ''
intopt = 0
print("press enter to start without args")
C_mod = (input())
if C_mod == "" or C_mod == "-b":
intopt = 0.54
elif C_mod == "-a":
intopt = 0.3
elif C_mod == "-m":
intopt = 0.01
# Loading video
fourcc = cv2.VideoWriter_fourcc(*"XVID")
out = cv2.VideoWriter("the_new_video_is.avi", fourcc , 5, (640, 360))
# repalce the test.mp4 with an video of your own
camera = cv2.VideoCapture(0)
while True:
_,img = camera.read()
height, width, channels = img.shape
# Detecting objects
blob = cv2.dnn.blobFromImage(img, 0.00392, (320, 320), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# Showing informations on the screen
class_ids = []
confidences = []
boxes = []
prct = 0
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > intopt:
ff = 0
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
#print(class_ids) #nombre d'objet écran bof
prct = round(confidence * 100,1)
if label == 'person':
print(Style.BRIGHT, Fore.GREEN + 'person', prct,"%", "| X:",x,"Y:",y)
data = str(x);
clientSocket.send(data.encode());
else:
print(label, prct,"%", "| X:",x,"Y:",y)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
if label == 'person':
color = (0, 255, 0)
else :
color = colors[i]
cv2.rectangle(img, (x, y), (x + w, y + h), color, 6)
cv2.putText(img, label, (x, y + 30), font, 3, color, 3)
cv2.putText(img, str(prct)+"%", (x, y + 70), font, 3, color, 3)
cv2.imshow("Vision", img)
key = cv2.waitKey(1)
if key == 27:
break
camera.release()
cv2.destroyAllWindows()