-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathtrain.py
139 lines (117 loc) · 4.68 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import time
import shutil
import click
import numpy as np
from keras import callbacks, optimizers
from IPython import embed
from model import get_frontend, add_softmax
from utils.image_reader import (
RandomTransformer,
SegmentationDataGenerator)
def load_weights(model, weights_path):
weights_data = np.load(weights_path, encoding='latin1').item()
for layer in model.layers:
if layer.name in weights_data.keys():
layer_weights = weights_data[layer.name]
layer.set_weights((layer_weights['weights'],
layer_weights['biases']))
@click.command()
@click.option('--train-list-fname', type=click.Path(exists=True),
default='benchmark_RELEASE/dataset/train.txt')
@click.option('--val-list-fname', type=click.Path(exists=True),
default='benchmark_RELEASE/dataset/val.txt')
@click.option('--img-root', type=click.Path(exists=True),
default='benchmark_RELEASE/dataset/img')
@click.option('--mask-root', type=click.Path(exists=True),
default='benchmark_RELEASE/dataset/pngs')
@click.option('--weights-path', type=click.Path(exists=True),
default='conversion/converted/vgg_conv.npy')
@click.option('--batch-size', type=int, default=1)
@click.option('--learning-rate', type=float, default=1e-4)
def train(train_list_fname,
val_list_fname,
img_root,
mask_root,
weights_path,
batch_size,
learning_rate):
# Create image generators for the training and validation sets. Validation has
# no data augmentation.
transformer_train = RandomTransformer(horizontal_flip=True, vertical_flip=True)
datagen_train = SegmentationDataGenerator(transformer_train)
transformer_val = RandomTransformer(horizontal_flip=False, vertical_flip=False)
datagen_val = SegmentationDataGenerator(transformer_val)
train_desc = '{}-lr{:.0e}-bs{:03d}'.format(
time.strftime("%Y-%m-%d %H:%M"),
learning_rate,
batch_size)
checkpoints_folder = 'trained/' + train_desc
try:
os.makedirs(checkpoints_folder)
except OSError:
shutil.rmtree(checkpoints_folder, ignore_errors=True)
os.makedirs(checkpoints_folder)
model_checkpoint = callbacks.ModelCheckpoint(
checkpoints_folder + '/ep{epoch:02d}-vl{val_loss:.4f}.hdf5',
monitor='loss')
tensorboard_cback = callbacks.TensorBoard(
log_dir='{}/tboard'.format(checkpoints_folder),
histogram_freq=0,
write_graph=False,
write_images=False)
csv_log_cback = callbacks.CSVLogger(
'{}/history.log'.format(checkpoints_folder))
reduce_lr_cback = callbacks.ReduceLROnPlateau(
monitor='val_loss',
factor=0.2,
patience=5,
verbose=1,
min_lr=0.05 * learning_rate)
model = add_softmax(
get_frontend(500, 500))
load_weights(model, weights_path)
model.compile(loss='sparse_categorical_crossentropy',
optimizer=optimizers.SGD(lr=learning_rate, momentum=0.9),
metrics=['accuracy'])
# Build absolute image paths
def build_abs_paths(basenames):
img_fnames = [os.path.join(img_root, f) + '.jpg' for f in basenames]
mask_fnames = [os.path.join(mask_root, f) + '.png' for f in basenames]
return img_fnames, mask_fnames
train_basenames = [l.strip() for l in open(train_list_fname).readlines()]
val_basenames = [l.strip() for l in open(val_list_fname).readlines()][:500]
train_img_fnames, train_mask_fnames = build_abs_paths(train_basenames)
val_img_fnames, val_mask_fnames = build_abs_paths(val_basenames)
skipped_report_cback = callbacks.LambdaCallback(
on_epoch_end=lambda a, b: open(
'{}/skipped.txt'.format(checkpoints_folder), 'a').write(
'{}\n'.format(datagen_train.skipped_count)))
model.fit_generator(
datagen_train.flow_from_list(
train_img_fnames,
train_mask_fnames,
shuffle=True,
batch_size=batch_size,
img_target_size=(500, 500),
mask_target_size=(16, 16)),
samples_per_epoch=len(train_basenames),
nb_epoch=20,
validation_data=datagen_val.flow_from_list(
val_img_fnames,
val_mask_fnames,
batch_size=8,
img_target_size=(500, 500),
mask_target_size=(16, 16)),
nb_val_samples=len(val_basenames),
callbacks=[
model_checkpoint,
tensorboard_cback,
csv_log_cback,
reduce_lr_cback,
skipped_report_cback,
])
if __name__ == '__main__':
train()