forked from prideout/par
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpar_bluenoise.h
563 lines (509 loc) · 18.5 KB
/
par_bluenoise.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
// BLUENOISE :: https://github.com/prideout/par
// Generator for infinite 2D point sequences using Recursive Wang Tiles.
//
// In addition to this source code, you'll need to download one of the following
// tilesets, the first being 2 MB while the other is 257 KB. The latter cheats
// by referencing the point sequence from the first tile for all 8 tiles. This
// obviously produces poor results, but in many contexts, it isn't noticeable.
//
// https://prideout.net/assets/bluenoise.bin
// https://prideout.net/assets/bluenoise.trimmed.bin
//
// The code herein is an implementation of the algorithm described in:
//
// Recursive Wang Tiles for Real-Time Blue Noise
// Johannes Kopf, Daniel Cohen-Or, Oliver Deussen, Dani Lischinski
// ACM Transactions on Graphics 25, 3 (Proc. SIGGRAPH 2006)
//
// If you use this software for research purposes, please cite the above paper
// in any resulting publication.
//
// EXAMPLE
//
// Generate point samples whose density is guided by a 512x512 grayscale image:
//
// int npoints;
// float* points;
// int maxpoints = 1e6;
// float density = 30000;
// par_bluenoise_context* ctx;
// ctx = par_bluenoise_from_file("bluenoise.bin", maxpoints);
// par_bluenoise_density_from_gray(ctx, source_pixels, 512, 512, 1);
// points = par_bluenoise_generate(ctx, density, &npoints);
// ... Draw points here. Each point is a three-tuple of (X Y RANK).
// par_bluenoise_free(ctx);
//
// Distributed under the MIT License, see bottom of file.
#ifndef PAR_BLUENOISE_H
#define PAR_BLUENOISE_H
#ifdef __cplusplus
extern "C" {
#endif
// -----------------------------------------------------------------------------
// BEGIN PUBLIC API
// -----------------------------------------------------------------------------
typedef unsigned char par_byte;
// Encapsulates a tile set and an optional density function.
typedef struct par_bluenoise_context_s par_bluenoise_context;
// Creates a bluenoise context using the given tileset. The first argument is
// the file path the bin file. The second argument is the maximum number of
// points that you expect to ever be generated.
par_bluenoise_context* par_bluenoise_from_file(char const* path, int maxpts);
// Creates a bluenoise context using the given tileset. The first and second
// arguments describe a memory buffer containing the contents of the bin file.
// The third argument is the maximum number of points that you expect to ever
// be generated.
par_bluenoise_context* par_bluenoise_from_buffer(
par_byte const* buffer, int nbytes, int maxpts);
// Sets up a scissoring rectangle using the given lower-left and upper-right
// coordinates. By default the scissor encompasses [-0.5, -0.5] - [0.5, 0.5],
// which is the entire sampling domain for the two "generate" methods.
void par_bluenoise_set_viewport(
par_bluenoise_context*, float left, float bottom, float right, float top);
// Sets up a reference window size. The only purpose of this is to ensure
// that apparent density remains constant when the window gets resized.
// Clients should call this *before* calling par_bluenoise_set_viewport.
void par_bluenoise_set_window(par_bluenoise_context*, int width, int height);
// Frees all memory associated with the given bluenoise context.
void par_bluenoise_free(par_bluenoise_context* ctx);
// Copies a grayscale image into the bluenoise context to guide point density.
// Darker regions generate a higher number of points. The given bytes-per-pixel
// value is the stride between pixels.
void par_bluenoise_density_from_gray(par_bluenoise_context* ctx,
const unsigned char* pixels, int width, int height, int bpp);
// Creates a binary mask to guide point density. The given bytes-per-pixel
// value is the stride between pixels, which must be 4 or less.
void par_bluenoise_density_from_color(par_bluenoise_context* ctx,
const unsigned char* pixels, int width, int height, int bpp,
unsigned int background_color, int invert);
// Generates samples using Recursive Wang Tiles. This is really fast!
// The returned pointer is a list of three-tuples, where XY are in [-0.5, +0.5]
// and Z is a rank value that can be used to create a progressive ordering.
// The caller should not free the returned pointer.
float* par_bluenoise_generate(
par_bluenoise_context* ctx, float density, int* npts);
// Generates an ordered sequence of tuples with the specified sequence length.
// This is slower than the other "generate" method because it uses a dumb
// backtracking method to determine a reasonable density value, and it
// automatically sorts the output by rank. The dims argument must be 2 or more;
// it represents the desired stride (in floats) between consecutive verts in the
// returned data buffer.
float* par_bluenoise_generate_exact(
par_bluenoise_context* ctx, int npts, int dims);
// Performs an in-place sort of 3-tuples, based on the 3rd component, then
// replaces the 3rd component with an index.
void par_bluenoise_sort_by_rank(float* pts, int npts);
#ifndef PAR_PI
#define PAR_PI (3.14159265359)
#define PAR_MIN(a, b) (a > b ? b : a)
#define PAR_MAX(a, b) (a > b ? a : b)
#define PAR_CLAMP(v, lo, hi) PAR_MAX(lo, PAR_MIN(hi, v))
#define PAR_SWAP(T, A, B) { T tmp = B; B = A; A = tmp; }
#define PAR_SQR(a) ((a) * (a))
#endif
#ifndef PAR_MALLOC
#define PAR_MALLOC(T, N) ((T*) malloc(N * sizeof(T)))
#define PAR_CALLOC(T, N) ((T*) calloc(N * sizeof(T), 1))
#define PAR_REALLOC(T, BUF, N) ((T*) realloc(BUF, sizeof(T) * (N)))
#define PAR_FREE(BUF) free(BUF)
#endif
#ifdef __cplusplus
}
#endif
// -----------------------------------------------------------------------------
// END PUBLIC API
// -----------------------------------------------------------------------------
#ifdef PAR_BLUENOISE_IMPLEMENTATION
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include <string.h>
#define PAR_MINI(a, b) ((a < b) ? a : b)
#define PAR_MAXI(a, b) ((a > b) ? a : b)
typedef struct {
float x;
float y;
} par_vec2;
typedef struct {
float x;
float y;
float rank;
} par_vec3;
typedef struct {
int n, e, s, w;
int nsubtiles, nsubdivs, npoints, nsubpts;
int** subdivs;
par_vec2* points;
par_vec2* subpts;
} par_tile;
struct par_bluenoise_context_s {
par_vec3* points;
par_tile* tiles;
float global_density;
float left, bottom, right, top;
int ntiles, nsubtiles, nsubdivs;
int npoints;
int maxpoints;
int density_width;
int density_height;
unsigned char* density;
float mag;
int window_width;
int window_height;
int abridged;
};
static float sample_density(par_bluenoise_context* ctx, float x, float y)
{
unsigned char* density = ctx->density;
if (!density) {
return 1;
}
int width = ctx->density_width;
int height = ctx->density_height;
y = 1 - y;
x -= 0.5;
y -= 0.5;
float tx = x * PAR_MAXI(width, height);
float ty = y * PAR_MAXI(width, height);
x += 0.5;
y += 0.5;
tx += width / 2;
ty += height / 2;
int ix = PAR_CLAMP((int) tx, 0, width - 2);
int iy = PAR_CLAMP((int) ty, 0, height - 2);
return density[iy * width + ix] / 255.0f;
}
static void recurse_tile(
par_bluenoise_context* ctx, par_tile* tile, float x, float y, int level)
{
float left = ctx->left, right = ctx->right;
float top = ctx->top, bottom = ctx->bottom;
float mag = ctx->mag;
float tileSize = 1.f / powf(ctx->nsubtiles, level);
if (x + tileSize < left || x > right || y + tileSize < bottom || y > top) {
return;
}
float depth = powf(ctx->nsubtiles, 2 * level);
float threshold = mag / depth * ctx->global_density - tile->npoints;
int ntests = PAR_MINI(tile->nsubpts, threshold);
float factor = 1.f / mag * depth / ctx->global_density;
for (int i = 0; i < ntests; i++) {
float px = x + tile->subpts[i].x * tileSize;
float py = y + tile->subpts[i].y * tileSize;
if (px < left || px > right || py < bottom || py > top) {
continue;
}
if (sample_density(ctx, px, py) < (i + tile->npoints) * factor) {
continue;
}
ctx->points[ctx->npoints].x = px - 0.5;
ctx->points[ctx->npoints].y = py - 0.5;
ctx->points[ctx->npoints].rank = (level + 1) + i * factor;
ctx->npoints++;
if (ctx->npoints >= ctx->maxpoints) {
return;
}
}
const float scale = tileSize / ctx->nsubtiles;
if (threshold <= tile->nsubpts) {
return;
}
level++;
for (int ty = 0; ty < ctx->nsubtiles; ty++) {
for (int tx = 0; tx < ctx->nsubtiles; tx++) {
int tileIndex = tile->subdivs[0][ty * ctx->nsubtiles + tx];
par_tile* subtile = &ctx->tiles[tileIndex];
recurse_tile(ctx, subtile, x + tx * scale, y + ty * scale, level);
}
}
}
void par_bluenoise_set_window(par_bluenoise_context* ctx, int width, int height)
{
ctx->window_width = width;
ctx->window_height = height;
}
void par_bluenoise_set_viewport(par_bluenoise_context* ctx, float left,
float bottom, float right, float top)
{
// Transform [-.5, +.5] to [0, 1]
left = ctx->left = left + 0.5;
right = ctx->right = right + 0.5;
bottom = ctx->bottom = bottom + 0.5;
top = ctx->top = top + 0.5;
// Determine magnification factor BEFORE clamping.
float scale = 1000 * (top - bottom) / ctx->window_height;
ctx->mag = powf(scale, -2);
// The density function is only sampled in [0, +1].
ctx->left = PAR_CLAMP(left, 0, 1);
ctx->right = PAR_CLAMP(right, 0, 1);
ctx->bottom = PAR_CLAMP(bottom, 0, 1);
ctx->top = PAR_CLAMP(top, 0, 1);
}
float* par_bluenoise_generate(
par_bluenoise_context* ctx, float density, int* npts)
{
ctx->global_density = density;
ctx->npoints = 0;
float left = ctx->left;
float right = ctx->right;
float bottom = ctx->bottom;
float top = ctx->top;
float mag = ctx->mag;
int ntests = PAR_MINI(ctx->tiles[0].npoints, mag * ctx->global_density);
float factor = 1.f / mag / ctx->global_density;
for (int i = 0; i < ntests; i++) {
float px = ctx->tiles[0].points[i].x;
float py = ctx->tiles[0].points[i].y;
if (px < left || px > right || py < bottom || py > top) {
continue;
}
if (sample_density(ctx, px, py) < (i + 1) * factor) {
continue;
}
ctx->points[ctx->npoints].x = px - 0.5;
ctx->points[ctx->npoints].y = py - 0.5;
ctx->points[ctx->npoints].rank = i * factor;
ctx->npoints++;
if (ctx->npoints >= ctx->maxpoints) {
break;
}
}
recurse_tile(ctx, &ctx->tiles[0], 0, 0, 0);
*npts = ctx->npoints;
return &ctx->points->x;
}
#define freadi() \
*((int*) ptr); \
ptr += sizeof(int)
#define freadf() \
*((float*) ptr); \
ptr += sizeof(float)
static par_bluenoise_context* par_bluenoise_create(
char const* filepath, int nbytes, int maxpts)
{
par_bluenoise_context* ctx = PAR_MALLOC(par_bluenoise_context, 1);
ctx->maxpoints = maxpts;
ctx->points = PAR_MALLOC(par_vec3, maxpts);
ctx->density = 0;
ctx->abridged = 0;
par_bluenoise_set_window(ctx, 1024, 768);
par_bluenoise_set_viewport(ctx, -.5, -.5, .5, .5);
char* buf = 0;
if (nbytes == 0) {
FILE* fin = fopen(filepath, "rb");
assert(fin);
fseek(fin, 0, SEEK_END);
nbytes = (int) ftell(fin);
fseek(fin, 0, SEEK_SET);
buf = PAR_MALLOC(char, nbytes);
int consumed = (int) fread(buf, nbytes, 1, fin);
assert(consumed == 1);
fclose(fin);
}
char const* ptr = buf ? buf : filepath;
int ntiles = ctx->ntiles = freadi();
int nsubtiles = ctx->nsubtiles = freadi();
int nsubdivs = ctx->nsubdivs = freadi();
par_tile* tiles = ctx->tiles = PAR_MALLOC(par_tile, ntiles);
for (int i = 0; i < ntiles; i++) {
tiles[i].n = freadi();
tiles[i].e = freadi();
tiles[i].s = freadi();
tiles[i].w = freadi();
tiles[i].subdivs = PAR_MALLOC(int*, nsubdivs);
for (int j = 0; j < nsubdivs; j++) {
int* subdiv = PAR_MALLOC(int, PAR_SQR(nsubtiles));
for (int k = 0; k < PAR_SQR(nsubtiles); k++) {
subdiv[k] = freadi();
}
tiles[i].subdivs[j] = subdiv;
}
tiles[i].npoints = freadi();
tiles[i].points = PAR_MALLOC(par_vec2, tiles[i].npoints);
for (int j = 0; j < tiles[i].npoints; j++) {
tiles[i].points[j].x = freadf();
tiles[i].points[j].y = freadf();
}
tiles[i].nsubpts = freadi();
tiles[i].subpts = PAR_MALLOC(par_vec2, tiles[i].nsubpts);
for (int j = 0; j < tiles[i].nsubpts; j++) {
tiles[i].subpts[j].x = freadf();
tiles[i].subpts[j].y = freadf();
}
// The following hack allows for an optimization whereby
// the first tile's point set is re-used for every other tile.
// This goes against the entire purpose of Recursive Wang Tiles,
// but in many applications the qualatitive loss is not
// observable, and the footprint savings are huge (10x).
if (tiles[i].npoints == 0) {
ctx->abridged = 1;
tiles[i].npoints = tiles[0].npoints;
tiles[i].points = tiles[0].points;
tiles[i].nsubpts = tiles[0].nsubpts;
tiles[i].subpts = tiles[0].subpts;
}
}
free(buf);
return ctx;
}
par_bluenoise_context* par_bluenoise_from_file(char const* path, int maxpts)
{
return par_bluenoise_create(path, 0, maxpts);
}
par_bluenoise_context* par_bluenoise_from_buffer(
par_byte const* buffer, int nbytes, int maxpts)
{
return par_bluenoise_create((char const*) buffer, nbytes, maxpts);
}
void par_bluenoise_density_from_gray(par_bluenoise_context* ctx,
const unsigned char* pixels, int width, int height, int bpp)
{
ctx->density_width = width;
ctx->density_height = height;
ctx->density = PAR_MALLOC(unsigned char, width * height);
unsigned char* dst = ctx->density;
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
*dst++ = 255 - (*pixels);
pixels += bpp;
}
}
}
void par_bluenoise_density_from_color(par_bluenoise_context* ctx,
const unsigned char* pixels, int width, int height, int bpp,
unsigned int background_color, int invert)
{
unsigned int bkgd = background_color;
ctx->density_width = width;
ctx->density_height = height;
ctx->density = PAR_MALLOC(unsigned char, width * height);
unsigned char* dst = ctx->density;
unsigned int mask = 0x000000ffu;
if (bpp > 1) {
mask |= 0x0000ff00u;
}
if (bpp > 2) {
mask |= 0x00ff0000u;
}
if (bpp > 3) {
mask |= 0xff000000u;
}
assert(bpp <= 4);
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
unsigned int val = (*((unsigned int*) pixels)) & mask;
val = invert ? (val == bkgd) : (val != bkgd);
*dst++ = val ? 255 : 0;
pixels += bpp;
}
}
}
void par_bluenoise_free(par_bluenoise_context* ctx)
{
free(ctx->points);
for (int t = 0; t < ctx->ntiles; t++) {
for (int s = 0; s < ctx->nsubdivs; s++) {
free(ctx->tiles[t].subdivs[s]);
}
free(ctx->tiles[t].subdivs);
if (t == 0 || !ctx->abridged) {
free(ctx->tiles[t].points);
free(ctx->tiles[t].subpts);
}
}
free(ctx->tiles);
free(ctx->density);
}
int cmp(const void* a, const void* b)
{
const par_vec3* v1 = (const par_vec3*) a;
const par_vec3* v2 = (const par_vec3*) b;
if (v1->rank < v2->rank) {
return -1;
}
if (v1->rank > v2->rank) {
return 1;
}
return 0;
}
void par_bluenoise_sort_by_rank(float* floats, int npts)
{
par_vec3* vecs = (par_vec3*) floats;
qsort(vecs, npts, sizeof(vecs[0]), cmp);
for (int i = 0; i < npts; i++) {
vecs[i].rank = i;
}
}
float* par_bluenoise_generate_exact(
par_bluenoise_context* ctx, int npts, int stride)
{
assert(stride >= 2);
int maxpoints = npts * 2;
if (ctx->maxpoints < maxpoints) {
free(ctx->points);
ctx->maxpoints = maxpoints;
ctx->points = PAR_MALLOC(par_vec3, maxpoints);
}
int ngenerated = 0;
int nprevious = 0;
int ndesired = npts;
float density = 2048;
while (ngenerated < ndesired) {
par_bluenoise_generate(ctx, density, &ngenerated);
// Might be paranoid, but break if something fishy is going on:
if (ngenerated == nprevious) {
return 0;
}
// Perform crazy heuristic to approach a nice density:
if (ndesired / ngenerated >= 2) {
density *= 2;
} else {
density += density / 10;
}
nprevious = ngenerated;
}
par_bluenoise_sort_by_rank(&ctx->points->x, ngenerated);
if (stride != 3) {
int nbytes = sizeof(float) * stride * ndesired;
float* pts = PAR_MALLOC(float, stride * ndesired);
float* dst = pts;
const float* src = &ctx->points->x;
for (int i = 0; i < ndesired; i++, src++) {
*dst++ = *src++;
*dst++ = *src++;
if (stride > 3) {
*dst++ = *src;
dst += stride - 3;
}
}
memcpy(ctx->points, pts, nbytes);
free(pts);
}
return &ctx->points->x;
}
#undef PAR_MINI
#undef PAR_MAXI
#endif // PAR_BLUENOISE_IMPLEMENTATION
#endif // PAR_BLUENOISE_H
// par_bluenoise is distributed under the MIT license:
//
// Copyright (c) 2019 Philip Rideout
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.