-
Notifications
You must be signed in to change notification settings - Fork 1
/
damex.html~
61 lines (56 loc) · 3 KB
/
damex.html~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html>
<html>
<head>
<!-- <meta name="generator" content="jemdoc, see http://jemdoc.jaboc.net/" /> -->
<!-- <meta http-equiv="Content-Type" content="text/html;charset=UTF-8" /> -->
<link rel="stylesheet" href="jemdoc.css" type="text/css" />
<title>Nicolas Goix</title>
</head>
<body>
<script type="text/javascript">
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
</script>
<script type="text/javascript">
try {
var pageTracker = _gat._getTracker("UA-23998109-2");
pageTracker._trackPageview();
} catch(err) {}
</script>
<table summary="Table for page layout." id="tlayout">
<tr valign="top">
<td id="layout-menu">
<div class="menu-category">Nicolas Goix</div>
<div class="menu-item"><a href="index.html" class="current">Home</a></div>
<div class="menu-item"><a href="biography.html">Biography</a></div>
<div class="menu-category">Research</div>
<div class="menu-item"><a href="papers.html">Papers</a></div>
<div class="menu-category">Code </div>
<div class="menu-item"><a href="sklearn.html">Scikit-Learn</a></div>
<div class="menu-item"><a href="damex.html">Damex Algorithm</a></div>
<!-- <div class="menu-category">Miscellaneous</div> -->
<!-- <div class="menu-item"><a href="links.html">Links</a></div> -->
</td>
<td id="layout-content">
<div id="toptitle">
<h1>Nicolas Goix – DAMEX Algorithm</h1>
</div>
<!-- <h2>2011 – 2012</h2> -->
<ul>
<p>
<div class="infoblock">
DAMEX (Detecting Anomaly with Multivariate Extremes) is an algorithm introduced in a <a href="http://arxiv.org/abs/1507.05899" target="_blank"> working paper</a>. It builds on multivariate Extreme Value Theory to learn how to rank observations in a high dimensional space, wrt their supposed degree of abnormality. The procedure relies on an original dimension reduction technique in the extremal domain that possibly produces a sparse representation of multivariate extremes and permits to gain insight into their dependence structure, escaping the curse of dimensionality. The representation output by the unsupervised methodology can be actually combined with any Anomaly Detection technique tailored to non-extreme data. The approach is novel in the sense that Extreme Value Theory has never been used in its multivariate version in the field of Anomaly Detection.
</div>
<li><p>The implementation of DAMEX is available on my local scikit-learn branch: [<a href="https://github.com/ngoix/scikit-learn/tree/damex" target="_blank">Code</a>].</p></li>
</ul>
<!-- <div id="footer"> -->
<!-- <div id="footer-text"> -->
<!-- Page generated by <a href="http://jemdoc.jaboc.net/">jemdoc</a>. -->
<!-- </div> -->
<!-- </div> -->
</td>
</tr>
</table>
</body>
</html>