-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathgen_summary_stats.py
129 lines (106 loc) · 5.52 KB
/
gen_summary_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import numpy
import os
import sys
# This script depends on a SJSON parsing package:
# https://pypi.python.org/pypi/SJSON/1.1.0
# https://shelter13.net/projects/SJSON/
# https://bitbucket.org/Anteru/sjson/src
import sjson
if __name__ == "__main__":
if sys.version_info < (3, 4):
print('Python 3.4 or higher needed to run this script')
sys.exit(1)
if len(sys.argv) != 2:
print('Usage: python gen_summary_stats.py <path/to/input_file.sjson>')
sys.exit(1)
input_sjson_file = sys.argv[1]
if not input_sjson_file.endswith('.sjson'):
print('Expected SJSON input file, found: {}'.format(input_sjson_file))
sys.exit(1)
if not os.path.exists(input_sjson_file):
print('Input file not found: {}'.format(input_sjson_file))
sys.exit(1)
with open(input_sjson_file, 'r') as file:
input_sjson_data = sjson.loads(file.read())
input_data_type_def = {
'names': ('algorithm_names', 'raw_sizes', 'compression_ratios', 'durations', 'max_errors'),
'formats': ('S128', 'f4', 'f4', 'f4', 'f4')
}
columns_to_extract_acl_pre_v06 = (0, 1, 3, 5, 7)
columns_to_extract_acl_post_v06 = (1, 2, 4, 6, 8)
columns_to_extract_ue4 = (0, 1, 3, 4, 5)
output_csv_dir = os.getcwd()
output_csv_file_path_ratios = os.path.join(output_csv_dir, 'compression_ratios.csv')
output_csv_file_path_ratios_by_raw_size = os.path.join(output_csv_dir, 'compression_ratios_by_raw_size.csv')
output_csv_file_path_max_errors = os.path.join(output_csv_dir, 'max_errors.csv')
output_csv_file_path_max_errors_by_raw_size = os.path.join(output_csv_dir, 'max_errors_by_raw_size.csv')
output_csv_file_path_ratio_vs_max_error = os.path.join(output_csv_dir, 'ratio_vs_max_error.csv')
output_csv_file_path_durations = os.path.join(output_csv_dir, 'durations.csv')
output_csv_data_ratios = []
output_csv_data_ratios_by_raw_size = []
output_csv_data_max_errors = []
output_csv_data_max_errors_by_raw_size = []
output_csv_data_ratio_vs_max_error = []
output_csv_data_durations = []
output_csv_headers = []
for entry in input_sjson_data['inputs']:
if entry['version'] >= 0.6:
if entry['source'] == 'acl':
columns_to_extract = columns_to_extract_acl_post_v06
else:
columns_to_extract = columns_to_extract_ue4
else:
if entry['source'] == 'acl':
columns_to_extract = columns_to_extract_acl_pre_v06
else:
columns_to_extract = columns_to_extract_ue4
print('Parsing {} ...'.format(entry['header']))
csv_data = numpy.loadtxt(entry['file'], delimiter=',', dtype=input_data_type_def, skiprows=1, usecols=columns_to_extract)
filter = entry.get('filter', None)
if filter != None:
best_variable_data_mask = csv_data['algorithm_names'] == bytes(entry['filter'], encoding = 'utf-8')
csv_data = csv_data[best_variable_data_mask]
csv_data_ratios = numpy.sort(csv_data, order='compression_ratios')['compression_ratios']
csv_data_ratios_by_raw_size = numpy.sort(csv_data, order='raw_sizes')['compression_ratios']
csv_data_max_errors = numpy.sort(csv_data, order='max_errors')['max_errors']
csv_data_max_errors_by_raw_size = numpy.sort(csv_data, order='raw_sizes')['max_errors']
csv_data_ratio_by_max_error = numpy.sort(csv_data, order='max_errors')['compression_ratios']
csv_data_durations = numpy.sort(csv_data, order='durations')['durations']
output_csv_data_ratios.append(csv_data_ratios)
output_csv_data_ratios_by_raw_size.append(csv_data_ratios_by_raw_size)
output_csv_data_max_errors.append(csv_data_max_errors)
output_csv_data_max_errors_by_raw_size.append(csv_data_max_errors_by_raw_size)
output_csv_data_ratio_vs_max_error.append(csv_data_max_errors)
output_csv_data_ratio_vs_max_error.append(csv_data_ratio_by_max_error)
output_csv_data_durations.append(csv_data_durations)
output_csv_headers.append(entry['header'])
output_csv_data_ratios = numpy.column_stack(output_csv_data_ratios)
output_csv_data_ratios_by_raw_size = numpy.column_stack(output_csv_data_ratios_by_raw_size)
output_csv_data_max_errors = numpy.column_stack(output_csv_data_max_errors)
output_csv_data_max_errors_by_raw_size = numpy.column_stack(output_csv_data_max_errors_by_raw_size)
output_csv_data_ratio_vs_max_error = numpy.column_stack(output_csv_data_ratio_vs_max_error)
output_csv_data_durations = numpy.column_stack(output_csv_data_durations)
with open(output_csv_file_path_ratios, 'wb') as f:
header = bytes('{}\n'.format(','.join(output_csv_headers)), 'utf-8')
f.write(header)
numpy.savetxt(f, output_csv_data_ratios, delimiter=',', fmt=('%f'))
with open(output_csv_file_path_ratios_by_raw_size, 'wb') as f:
header = bytes('{}\n'.format(','.join(output_csv_headers)), 'utf-8')
f.write(header)
numpy.savetxt(f, output_csv_data_ratios_by_raw_size, delimiter=',', fmt=('%f'))
with open(output_csv_file_path_max_errors, 'wb') as f:
header = bytes('{}\n'.format(','.join(output_csv_headers)), 'utf-8')
f.write(header)
numpy.savetxt(f, output_csv_data_max_errors, delimiter=',', fmt=('%f'))
with open(output_csv_file_path_max_errors_by_raw_size, 'wb') as f:
header = bytes('{}\n'.format(','.join(output_csv_headers)), 'utf-8')
f.write(header)
numpy.savetxt(f, output_csv_data_max_errors_by_raw_size, delimiter=',', fmt=('%f'))
with open(output_csv_file_path_ratio_vs_max_error, 'wb') as f:
header = bytes('{}\n'.format(','.join(output_csv_headers)), 'utf-8')
f.write(header)
numpy.savetxt(f, output_csv_data_ratio_vs_max_error, delimiter=',', fmt=('%f'))
with open(output_csv_file_path_durations, 'wb') as f:
header = bytes('{}\n'.format(','.join(output_csv_headers)), 'utf-8')
f.write(header)
numpy.savetxt(f, output_csv_data_durations, delimiter=',', fmt=('%f'))