forked from popbo/alphas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalphas101.py
739 lines (591 loc) · 39.6 KB
/
alphas101.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
# !/usr/bin/env python3
# We refer to https://github.com/yli188/WorldQuant_alpha101_code regarding the implementation of this module.
# We modify implementation of some functions, such as rank, alpha1, etc.
# DolphinDB Inc.
# @Author: DolphinDB
# @Last modification time: 2022.09.01
# @FileName: alpha101_adjusted.py
import numpy as np
import pandas as pd
from numpy import abs
from numpy import log
from numpy import sign
from alphas import Alphas
from datas import *
from scipy.stats import rankdata
# region Auxiliary functions
def returns(df):
return df.rolling(2).apply(lambda x: x.iloc[-1] / x.iloc[0]) - 1
def ts_sum(df, window=10):
"""
Wrapper function to estimate rolling sum.
:param df: a pandas DataFrame.
:param window: the rolling window.
:return: a pandas DataFrame with the time-series min over the past 'window' days.
"""
return df.rolling(window).sum()
def sma(df, window=10):
"""
Wrapper function to estimate SMA.
:param df: a pandas DataFrame.
:param window: the rolling window.
:return: a pandas DataFrame with the time-series min over the past 'window' days.
"""
return df.rolling(window).mean()
def stddev(df, window=10):
"""
Wrapper function to estimate rolling standard deviation.
:param df: a pandas DataFrame.
:param window: the rolling window.
:return: a pandas DataFrame with the time-series min over the past 'window' days.
"""
return df.rolling(window).std()
def correlation(x, y, window=10):
"""
Wrapper function to estimate rolling corelations.
:param df: a pandas DataFrame.
:param window: the rolling window.
:return: a pandas DataFrame with the time-series min over the past 'window' days.
"""
return x.rolling(window).corr(y).fillna(0).replace([np.inf, -np.inf], 0)
def covariance(x, y, window=10):
"""
Wrapper function to estimate rolling covariance.
:param df: a pandas DataFrame.
:param window: the rolling window.
:return: a pandas DataFrame with the time-series min over the past 'window' days.
"""
return x.rolling(window).cov(y)
def rolling_rank(na):
"""
Auxiliary function to be used in pd.rolling_apply
:param na: numpy array.
:return: The rank of the last value in the array.
"""
return rankdata(na,method='min')[-1]
def ts_rank(df, window=10):
"""
Wrapper function to estimate rolling rank.
:param df: a pandas DataFrame.
:param window: the rolling window.
:return: a pandas DataFrame with the time-series rank over the past window days.
"""
return df.rolling(window).apply(rolling_rank)
def rolling_prod(na):
"""
Auxiliary function to be used in pd.rolling_apply
:param na: numpy array.
:return: The product of the values in the array.
"""
return np.prod(na)
def product(df, window=10):
"""
Wrapper function to estimate rolling product.
:param df: a pandas DataFrame.
:param window: the rolling window.
:return: a pandas DataFrame with the time-series product over the past 'window' days.
"""
return df.rolling(window).apply(rolling_prod)
def ts_min(df, window=10):
"""
Wrapper function to estimate rolling min.
:param df: a pandas DataFrame.
:param window: the rolling window.
:return: a pandas DataFrame with the time-series min over the past 'window' days.
"""
return df.rolling(window).min()
def ts_max(df, window=10):
"""
Wrapper function to estimate rolling min.
:param df: a pandas DataFrame.
:param window: the rolling window.
:return: a pandas DataFrame with the time-series max over the past 'window' days.
"""
return df.rolling(window).max()
def delta(df, period=1):
"""
Wrapper function to estimate difference.
:param df: a pandas DataFrame.
:param period: the difference grade.
:return: a pandas DataFrame with today’s value minus the value 'period' days ago.
"""
return df.diff(period)
def delay(df, period=1):
"""
Wrapper function to estimate lag.
:param df: a pandas DataFrame.
:param period: the lag grade.
:return: a pandas DataFrame with lagged time series
"""
return df.shift(period)
def rank(df):
"""
Cross sectional rank
:param df: a pandas DataFrame.
:return: a pandas DataFrame with rank along columns.
"""
return df.rank(axis=1, method='min', pct=True)
# return df.rank(pct=True)
def scale(df, k=1):
"""
Scaling time serie.
:param df: a pandas DataFrame.
:param k: scaling factor.
:return: a pandas DataFrame rescaled df such that sum(abs(df)) = k
"""
return df.mul(k).div(np.abs(df).sum())
def ts_argmax(df, window=10):
"""
Wrapper function to estimate which day ts_max(df, window) occurred on
:param df: a pandas DataFrame.
:param window: the rolling window.
:return: well.. that :)
"""
return df.rolling(window).apply(np.argmax) + 1
def ts_argmin(df, window=10):
"""
Wrapper function to estimate which day ts_min(df, window) occurred on
:param df: a pandas DataFrame.
:param window: the rolling window.
:return: well.. that :)
"""
return df.rolling(window).apply(np.argmin) + 1
def decay_linear(df, period=10):
"""
Linear weighted moving average implementation.
:param df: a pandas DataFrame.
:param period: the LWMA period
:return: a pandas DataFrame with the LWMA.
"""
weights = np.array(range(1, period+1))
sum_weights = np.sum(weights)
return df.rolling(period).apply(lambda x: np.sum(weights*x) / sum_weights)
def max(sr1,sr2):
return np.maximum(sr1, sr2)
def min(sr1,sr2):
return np.minimum(sr1, sr2)
# endregion
class Alphas101(Alphas):
def __init__(self, df_data):
self.open = df_data['open'] # 开盘价
self.high = df_data['high'] # 最高价
self.low = df_data['low'] # 最低价
self.close = df_data['close'] # 收盘价
self.volume = df_data['volume'] # 成交量
self.returns = returns(df_data['close']) # 日收益
self.vwap = df_data['vwap'] # 成交均价
# Alpha#1 (rank(Ts_ArgMax(SignedPower(((returns < 0) ? stddev(returns, 20) : close), 2.), 5)) -0.5)
def alpha001(self):
inner = self.close.copy()
inner[self.returns < 0] = stddev(self.returns, 20)
return rank(ts_argmax(inner ** 2, 5)) - 0.5
# Alpha#2 (-1 * correlation(rank(delta(log(volume), 2)), rank(((close - open) / open)), 6))
def alpha002(self):
df = -1 * correlation(rank(delta(log(self.volume), 2)), rank((self.close - self.open) / self.open), 6)
return df.replace([-np.inf, np.inf], 0).fillna(value=0)
# Alpha#3 (-1 * correlation(rank(open), rank(volume), 10))
def alpha003(self):
df = -1 * correlation(rank(self.open), rank(self.volume), 10)
return df.replace([-np.inf, np.inf], 0).fillna(value=0)
# Alpha#4 (-1 * Ts_Rank(rank(low), 9))
def alpha004(self):
return -1 * ts_rank(rank(self.low), 9)
# Alpha#5 (rank((open - (sum(vwap, 10) / 10))) * (-1 * abs(rank((close - vwap)))))
def alpha005(self):
return (rank((self.open - (ts_sum(self.vwap, 10) / 10))) * (-1 * abs(rank((self.close - self.vwap)))))
# Alpha#6 (-1 * correlation(open, volume, 10))
def alpha006(self):
df = -1 * correlation(self.open, self.volume, 10)
return df.replace([-np.inf, np.inf], 0).fillna(value=0)
# Alpha#7 ((adv20 < volume) ? ((-1 * ts_rank(abs(delta(close, 7)), 60)) * sign(delta(close, 7))) : (-1* 1))
def alpha007(self):
adv20 = sma(self.volume, 20)
alpha = -1 * ts_rank(abs(delta(self.close, 7)), 60) * sign(delta(self.close, 7))
alpha[adv20 >= self.volume] = -1
return alpha
# Alpha#8 (-1 * rank(((sum(open, 5) * sum(returns, 5)) - delay((sum(open, 5) * sum(returns, 5)),10))))
def alpha008(self):
return -1 * (rank(((ts_sum(self.open, 5) * ts_sum(self.returns, 5)) -
delay((ts_sum(self.open, 5) * ts_sum(self.returns, 5)), 10))))
# Alpha#9 ((0 < ts_min(delta(close, 1), 5)) ? delta(close, 1) : ((ts_max(delta(close, 1), 5) < 0) ?delta(close, 1) : (-1 * delta(close, 1))))
def alpha009(self):
delta_close = delta(self.close, 1)
cond_1 = ts_min(delta_close, 5) > 0
cond_2 = ts_max(delta_close, 5) < 0
alpha = -1 * delta_close
alpha[cond_1 | cond_2] = delta_close
return alpha
# Alpha#10 rank(((0 < ts_min(delta(close, 1), 4)) ? delta(close, 1) : ((ts_max(delta(close, 1), 4) < 0)? delta(close, 1) : (-1 * delta(close, 1)))))
def alpha010(self):
delta_close = delta(self.close, 1)
cond_1 = ts_min(delta_close, 4) > 0
cond_2 = ts_max(delta_close, 4) < 0
alpha = -1 * delta_close
alpha[cond_1 | cond_2] = delta_close
return rank(alpha)
# Alpha#11 ((rank(ts_max((vwap - close), 3)) + rank(ts_min((vwap - close), 3))) *rank(delta(volume, 3)))
def alpha011(self):
return ((rank(ts_max((self.vwap - self.close), 3)) + rank(ts_min((self.vwap - self.close), 3))) *rank(delta(self.volume, 3)))
# Alpha#12 (sign(delta(volume, 1)) * (-1 * delta(close, 1)))
def alpha012(self):
return sign(delta(self.volume, 1)) * (-1 * delta(self.close, 1))
# Alpha#13 (-1 * rank(covariance(rank(close), rank(volume), 5)))
def alpha013(self):
return -1 * rank(covariance(rank(self.close), rank(self.volume), 5))
# Alpha#14 ((-1 * rank(delta(returns, 3))) * correlation(open, volume, 10))
def alpha014(self):
df = correlation(self.open, self.volume, 10)
df = df.replace([-np.inf, np.inf], 0).fillna(value=0)
return -1 * rank(delta(self.returns, 3)) * df
# Alpha#15 (-1 * sum(rank(correlation(rank(high), rank(volume), 3)), 3))
def alpha015(self):
df = correlation(rank(self.high), rank(self.volume), 3)
df = df.replace([-np.inf, np.inf], 0).fillna(value=0)
return -1 * ts_sum(rank(df), 3)
# Alpha#16 (-1 * rank(covariance(rank(high), rank(volume), 5)))
def alpha016(self):
return -1 * rank(covariance(rank(self.high), rank(self.volume), 5))
# Alpha#17 (((-1 * rank(ts_rank(close, 10))) * rank(delta(delta(close, 1), 1))) *rank(ts_rank((volume / adv20), 5)))
def alpha017(self):
adv20 = sma(self.volume, 20)
return -1 * (rank(ts_rank(self.close, 10)) *
rank(delta(delta(self.close, 1), 1)) *
rank(ts_rank((self.volume / adv20), 5)))
# Alpha#18 (-1 * rank(((stddev(abs((close - open)), 5) + (close - open)) + correlation(close, open,10))))
def alpha018(self):
df = correlation(self.close, self.open, 10)
df = df.replace([-np.inf, np.inf], 0).fillna(value=0)
return -1 * (rank((stddev(abs((self.close - self.open)), 5) + (self.close - self.open)) +
df))
# Alpha#19 ((-1 * sign(((close - delay(close, 7)) + delta(close, 7)))) * (1 + rank((1 + sum(returns,250)))))
def alpha019(self):
return ((-1 * sign((self.close - delay(self.close, 7)) + delta(self.close, 7))) *
(1 + rank(1 + ts_sum(self.returns, 250))))
# Alpha#20 (((-1 * rank((open - delay(high, 1)))) * rank((open - delay(close, 1)))) * rank((open -delay(low, 1))))
def alpha020(self):
return -1 * (rank(self.open - delay(self.high, 1)) *
rank(self.open - delay(self.close, 1)) *
rank(self.open - delay(self.low, 1)))
# Alpha#21 ((((sum(close, 8) / 8) + stddev(close, 8)) < (sum(close, 2) / 2)) ? (-1 * 1) : (((sum(close,2) / 2) < ((sum(close, 8) / 8) - stddev(close, 8))) ? 1 : (((1 < (volume / adv20)) || ((volume /adv20) == 1)) ? 1 : (-1 * 1))))
def alpha021(self):
cond_1 = sma(self.close, 8) + stddev(self.close, 8) < sma(self.close, 2)
cond_2 = sma(self.close, 2) < sma(self.close, 8) - stddev(self.close, 8)
cond_3 = sma(self.volume, 20) / self.volume < 1
return (cond_1 | ((~cond_1) & (~cond_2) & (~cond_3))).astype('int')*(-2)+1
# Alpha#22 (-1 * (delta(correlation(high, volume, 5), 5) * rank(stddev(close, 20))))
def alpha022(self):
df = correlation(self.high, self.volume, 5)
df = df.replace([-np.inf, np.inf], 0).fillna(value=0)
return -1 * delta(df, 5) * rank(stddev(self.close, 20))
# Alpha#23 (((sum(high, 20) / 20) < high) ? (-1 * delta(high, 2)) : 0)
def alpha023(self):
cond = sma(self.high, 20) < self.high
alpha = self.close.copy(deep=True) # pd.DataFrame(np.zeros_like(self.close), index=self.close.index, columns=['close'])
alpha[cond] = -1 * delta(self.high, 2).fillna(value=0)
alpha[~cond] = 0
return alpha
# Alpha#24 ((((delta((sum(close, 100) / 100), 100) / delay(close, 100)) < 0.05) ||((delta((sum(close, 100) / 100), 100) / delay(close, 100)) == 0.05)) ? (-1 * (close - ts_min(close,100))) : (-1 * delta(close, 3)))
def alpha024(self):
cond = delta(sma(self.close, 100), 100) / delay(self.close, 100) <= 0.05
alpha = -1 * delta(self.close, 3)
alpha[cond] = -1 * (self.close - ts_min(self.close, 100))
return alpha
# Alpha#25 rank(((((-1 * returns) * adv20) * vwap) * (high - close)))
def alpha025(self):
adv20 = sma(self.volume, 20)
return rank(((((-1 * self.returns) * adv20) * self.vwap) * (self.high - self.close)))
# Alpha#26 (-1 * ts_max(correlation(ts_rank(volume, 5), ts_rank(high, 5), 5), 3))
def alpha026(self):
df = correlation(ts_rank(self.volume, 5), ts_rank(self.high, 5), 5)
df = df.replace([-np.inf, np.inf], 0).fillna(value=0)
return -1 * ts_max(df, 3)
# Alpha#27 ((0.5 < rank((sum(correlation(rank(volume), rank(vwap), 6), 2) / 2.0))) ? (-1 * 1) : 1)
def alpha027(self):
alpha = rank((sma(correlation(rank(self.volume), rank(self.vwap), 6), 2) / 2.0))
return sign((alpha -0.5) * (-2))
# Alpha#28 scale(((correlation(adv20, low, 5) + ((high + low) / 2)) - close))
def alpha028(self):
adv20 = sma(self.volume, 20)
df = correlation(adv20, self.low, 5)
df = df.replace([-np.inf, np.inf], 0).fillna(value=0)
return scale(((df + ((self.high + self.low) / 2)) - self.close))
# Alpha#29 (min(product(rank(rank(scale(log(sum(ts_min(rank(rank((-1 * rank(delta((close - 1),5))))), 2), 1))))), 1), 5) + ts_rank(delay((-1 * returns), 6), 5))
def alpha029(self):
return (ts_min(rank(rank(scale(log(ts_sum(rank(rank(-1 * rank(delta((self.close - 1), 5)))), 2))))), 5) +
ts_rank(delay((-1 * self.returns), 6), 5))
# Alpha#30 (((1.0 - rank(((sign((close - delay(close, 1))) + sign((delay(close, 1) - delay(close, 2)))) +sign((delay(close, 2) - delay(close, 3)))))) * sum(volume, 5)) / sum(volume, 20))
def alpha030(self):
delta_close = delta(self.close, 1)
inner = sign(delta_close) + sign(delay(delta_close, 1)) + sign(delay(delta_close, 2))
return ((1.0 - rank(inner)) * ts_sum(self.volume, 5)) / ts_sum(self.volume, 20)
# Alpha#31 ((rank(rank(rank(decay_linear((-1 * rank(rank(delta(close, 10)))), 10)))) + rank((-1 *delta(close, 3)))) + sign(scale(correlation(adv20, low, 12))))
def alpha031(self):
adv20 = sma(self.volume, 20)
df = correlation(adv20, self.low, 12).replace([-np.inf, np.inf], 0).fillna(value=0)
p1=rank(rank(rank(decay_linear((-1 * rank(rank(delta(self.close, 10)))), 10))))
p2=rank((-1 * delta(self.close, 3)))
p3=sign(scale(df))
return p1+p2+p3
# Alpha#32 (scale(((sum(close, 7) / 7) - close)) + (20 * scale(correlation(vwap, delay(close, 5),230))))
def alpha032(self):
return scale(((sma(self.close, 7) / 7) - self.close)) + (20 * scale(correlation(self.vwap, delay(self.close, 5),230)))
# Alpha#33 rank((-1 * ((1 - (open / close))^1)))
def alpha033(self):
return rank(-1 + (self.open / self.close))
# Alpha#34 rank(((1 - rank((stddev(returns, 2) / stddev(returns, 5)))) + (1 - rank(delta(close, 1)))))
def alpha034(self):
inner = stddev(self.returns, 2) / stddev(self.returns, 5)
inner = inner.replace([-np.inf, np.inf], 1).fillna(value=1)
return rank(2 - rank(inner) - rank(delta(self.close, 1)))
# Alpha#35 ((Ts_Rank(volume, 32) * (1 - Ts_Rank(((close + high) - low), 16))) * (1 -Ts_Rank(returns, 32)))
def alpha035(self):
return ((ts_rank(self.volume, 32) *
(1 - ts_rank(self.close + self.high - self.low, 16))) *
(1 - ts_rank(self.returns, 32)))
# Alpha#36 (((((2.21 * rank(correlation((close - open), delay(volume, 1), 15))) + (0.7 * rank((open- close)))) + (0.73 * rank(Ts_Rank(delay((-1 * returns), 6), 5)))) + rank(abs(correlation(vwap,adv20, 6)))) + (0.6 * rank((((sum(close, 200) / 200) - open) * (close - open)))))
def alpha036(self):
adv20 = sma(self.volume, 20)
return (((((2.21 * rank(correlation((self.close - self.open), delay(self.volume, 1), 15))) + (0.7 * rank((self.open- self.close)))) + (0.73 * rank(ts_rank(delay((-1 * self.returns), 6), 5)))) + rank(abs(correlation(self.vwap,adv20, 6)))) + (0.6 * rank((((sma(self.close, 200) / 200) - self.open) * (self.close - self.open)))))
# Alpha#37 (rank(correlation(delay((open - close), 1), close, 200)) + rank((open - close)))
def alpha037(self):
return rank(correlation(delay(self.open - self.close, 1), self.close, 200)) + rank(self.open - self.close)
# Alpha#38 ((-1 * rank(Ts_Rank(close, 10))) * rank((close / open)))
def alpha038(self):
inner = self.close / self.open
inner = inner.replace([-np.inf, np.inf], 1).fillna(value=1)
return -1 * rank(ts_rank(self.open, 10)) * rank(inner)
# Alpha#39 ((-1 * rank((delta(close, 7) * (1 - rank(decay_linear((volume / adv20), 9)))))) * (1 +rank(sum(returns, 250))))
def alpha039(self):
adv20 = sma(self.volume, 20)
return ((-1 * rank(delta(self.close, 7) * (1 - rank(decay_linear((self.volume / adv20), 9))))) *
(1 + rank(sma(self.returns, 250))))
# Alpha#40 ((-1 * rank(stddev(high, 10))) * correlation(high, volume, 10))
def alpha040(self):
return -1 * rank(stddev(self.high, 10)) * correlation(self.high, self.volume, 10)
# Alpha#41 (((high * low)^0.5) - vwap)
def alpha041(self):
return pow((self.high * self.low),0.5) - self.vwap
# Alpha#42 (rank((vwap - close)) / rank((vwap + close)))
def alpha042(self):
return rank((self.vwap - self.close)) / rank((self.vwap + self.close))
# Alpha#43 (ts_rank((volume / adv20), 20) * ts_rank((-1 * delta(close, 7)), 8))
def alpha043(self):
adv20 = sma(self.volume, 20)
return ts_rank(self.volume / adv20, 20) * ts_rank((-1 * delta(self.close, 7)), 8)
# Alpha#44 (-1 * correlation(high, rank(volume), 5))
def alpha044(self):
df = correlation(self.high, rank(self.volume), 5)
df = df.replace([-np.inf, np.inf], 0).fillna(value=0)
return -1 * df
# Alpha#45 (-1 * ((rank((sum(delay(close, 5), 20) / 20)) * correlation(close, volume, 2)) *rank(correlation(sum(close, 5), sum(close, 20), 2))))
def alpha045(self):
df = correlation(self.close, self.volume, 2)
df = df.replace([-np.inf, np.inf], 0).fillna(value=0)
return -1 * (rank(sma(delay(self.close, 5), 20)) * df *
rank(correlation(ts_sum(self.close, 5), ts_sum(self.close, 20), 2)))
# Alpha#46 ((0.25 < (((delay(close, 20) - delay(close, 10)) / 10) - ((delay(close, 10) - close) / 10))) ?(-1 * 1) : (((((delay(close, 20) - delay(close, 10)) / 10) - ((delay(close, 10) - close) / 10)) < 0) ? 1 :((-1 * 1) * (close - delay(close, 1)))))
def alpha046(self):
inner = ((delay(self.close, 20) - delay(self.close, 10)) / 10) - ((delay(self.close, 10) - self.close) / 10)
alpha = (-1 * delta(self.close))
alpha[inner < 0] = 1
alpha[inner > 0.25] = -1
return alpha
# Alpha#47 ((((rank((1 / close)) * volume) / adv20) * ((high * rank((high - close))) / (sum(high, 5) /5))) - rank((vwap - delay(vwap, 5))))
def alpha047(self):
adv20 = sma(self.volume, 20)
return ((((rank((1 / self.close)) * self.volume) / adv20) * ((self.high * rank((self.high - self.close))) / (sma(self.high, 5) /5))) - rank((self.vwap - delay(self.vwap, 5))))
# Alpha#48 (indneutralize(((correlation(delta(close, 1), delta(delay(close, 1), 1), 250) *delta(close, 1)) / close), IndClass.subindustry) / sum(((delta(close, 1) / delay(close, 1))^2), 250))
# Alpha#49 (((((delay(close, 20) - delay(close, 10)) / 10) - ((delay(close, 10) - close) / 10)) < (-1 *0.1)) ? 1 : ((-1 * 1) * (close - delay(close, 1))))
def alpha049(self):
inner = (((delay(self.close, 20) - delay(self.close, 10)) / 10) - ((delay(self.close, 10) - self.close) / 10))
alpha = (-1 * delta(self.close))
alpha[inner < -0.1] = 1
return alpha
# Alpha#50 (-1 * ts_max(rank(correlation(rank(volume), rank(vwap), 5)), 5))
def alpha050(self):
return (-1 * ts_max(rank(correlation(rank(self.volume), rank(self.vwap), 5)), 5))
# Alpha#51 (((((delay(close, 20) - delay(close, 10)) / 10) - ((delay(close, 10) - close) / 10)) < (-1 *0.05)) ? 1 : ((-1 * 1) * (close - delay(close, 1))))
def alpha051(self):
inner = (((delay(self.close, 20) - delay(self.close, 10)) / 10) - ((delay(self.close, 10) - self.close) / 10))
alpha = (-1 * delta(self.close))
alpha[inner < -0.05] = 1
return alpha
# Alpha#52 ((((-1 * ts_min(low, 5)) + delay(ts_min(low, 5), 5)) * rank(((sum(returns, 240) -sum(returns, 20)) / 220))) * ts_rank(volume, 5))
def alpha052(self):
return (((-1 * delta(ts_min(self.low, 5), 5)) *
rank(((ts_sum(self.returns, 240) - ts_sum(self.returns, 20)) / 220))) * ts_rank(self.volume, 5))
# Alpha#53 (-1 * delta((((close - low) - (high - close)) / (close - low)), 9))
def alpha053(self):
inner = (self.close - self.low).replace(0, 0.0001)
return -1 * delta((((self.close - self.low) - (self.high - self.close)) / inner), 9)
# Alpha#54 ((-1 * ((low - close) * (open^5))) / ((low - high) * (close^5)))
def alpha054(self):
inner = (self.low - self.high).replace(0, -0.0001)
return -1 * (self.low - self.close) * (self.open ** 5) / (inner * (self.close ** 5))
# Alpha#55 (-1 * correlation(rank(((close - ts_min(low, 12)) / (ts_max(high, 12) - ts_min(low,12)))), rank(volume), 6))
def alpha055(self):
divisor = (ts_max(self.high, 12) - ts_min(self.low, 12)).replace(0, 0.0001)
inner = (self.close - ts_min(self.low, 12)) / (divisor)
df = correlation(rank(inner), rank(self.volume), 6)
return -1 * df.replace([-np.inf, np.inf], 0).fillna(value=0)
# Alpha#56 (0 - (1 * (rank((sum(returns, 10) / sum(sum(returns, 2), 3))) * rank((returns * cap)))))
#本Alpha使用了cap|市值,暂未取到该值
# def alpha056(self):
# return (0 - (1 * (rank((sma(self.returns, 10) / sma(sma(self.returns, 2), 3))) * rank((self.returns * self.cap)))))
# Alpha#57 (0 - (1 * ((close - vwap) / decay_linear(rank(ts_argmax(close, 30)), 2))))
def alpha057(self):
return (0 - (1 * ((self.close - self.vwap) / decay_linear(rank(ts_argmax(self.close, 30)), 2))))
# Alpha#58 (-1 * Ts_Rank(decay_linear(correlation(IndNeutralize(vwap, IndClass.sector), volume,3.92795), 7.89291), 5.50322))
# Alpha#59 (-1 * Ts_Rank(decay_linear(correlation(IndNeutralize(((vwap * 0.728317) + (vwap *(1 - 0.728317))), IndClass.industry), volume, 4.25197), 16.2289), 8.19648))
# Alpha#60 (0 - (1 * ((2 * scale(rank(((((close - low) - (high - close)) / (high - low)) * volume)))) -scale(rank(ts_argmax(close, 10))))))
def alpha060(self):
divisor = (self.high - self.low).replace(0, 0.0001)
inner = ((self.close - self.low) - (self.high - self.close)) * self.volume / divisor
return - ((2 * scale(rank(inner))) - scale(rank(ts_argmax(self.close, 10))))
# Alpha#61 (rank((vwap - ts_min(vwap, 16.1219))) < rank(correlation(vwap, adv180, 17.9282)))
def alpha061(self):
adv180 = sma(self.volume, 180)
return (rank((self.vwap - ts_min(self.vwap, 16))) < rank(correlation(self.vwap, adv180, 18))).astype('int')
# Alpha#62 ((rank(correlation(vwap, sum(adv20, 22.4101), 9.91009)) < rank(((rank(open) +rank(open)) < (rank(((high + low) / 2)) + rank(high))))) * -1)
def alpha062(self):
adv20 = sma(self.volume, 20)
return ((rank(correlation(self.vwap, sma(adv20, 22), 10)) < rank(((rank(self.open) +rank(self.open)) < (rank(((self.high + self.low) / 2)) + rank(self.high))))) * -1)
# Alpha#63 ((rank(decay_linear(delta(IndNeutralize(close, IndClass.industry), 2.25164), 8.22237))- rank(decay_linear(correlation(((vwap * 0.318108) + (open * (1 - 0.318108))), sum(adv180,37.2467), 13.557), 12.2883))) * -1)
# Alpha#64 ((rank(correlation(sum(((open * 0.178404) + (low * (1 - 0.178404))), 12.7054),sum(adv120, 12.7054), 16.6208)) < rank(delta(((((high + low) / 2) * 0.178404) + (vwap * (1 -0.178404))), 3.69741))) * -1)
def alpha064(self):
adv120 = sma(self.volume, 120)
return ((rank(correlation(sma(((self.open * 0.178404) + (self.low * (1 - 0.178404))), 13),sma(adv120, 13), 17)) < rank(delta(((((self.high + self.low) / 2) * 0.178404) + (self.vwap * (1 -0.178404))), 4))) * -1)
# Alpha#65 ((rank(correlation(((open * 0.00817205) + (vwap * (1 - 0.00817205))), sum(adv60,8.6911), 6.40374)) < rank((open - ts_min(open, 13.635)))) * -1)
def alpha065(self):
adv60 = sma(self.volume, 60)
return ((rank(correlation(((self.open * 0.00817205) + (self.vwap * (1 - 0.00817205))), sma(adv60,9), 6)) < rank((self.open - ts_min(self.open, 14)))) * -1)
# Alpha#66 ((rank(decay_linear(delta(vwap, 3.51013), 7.23052)) + Ts_Rank(decay_linear(((((low* 0.96633) + (low * (1 - 0.96633))) - vwap) / (open - ((high + low) / 2))), 11.4157), 6.72611)) * -1)
def alpha066(self):
return ((rank(decay_linear(delta(self.vwap, 4), 7)) + ts_rank(decay_linear(((((self.low* 0.96633) + (self.low * (1 - 0.96633))) - self.vwap) / (self.open - ((self.high + self.low) / 2))), 11), 7)) * -1)
# Alpha#67 ((rank((high - ts_min(high, 2.14593)))^rank(correlation(IndNeutralize(vwap,IndClass.sector), IndNeutralize(adv20, IndClass.subindustry), 6.02936))) * -1)
# Alpha#68 ((Ts_Rank(correlation(rank(high), rank(adv15), 8.91644), 13.9333) <rank(delta(((close * 0.518371) + (low * (1 - 0.518371))), 1.06157))) * -1)
def alpha068(self):
adv15 = sma(self.volume, 15)
# 后者乘14,使比较双方处于同一水平
return ((ts_rank(correlation(rank(self.high), rank(adv15), 9), 14) <rank(delta(((self.close * 0.518371) + (self.low * (1 - 0.518371))), 2))*14) * -1)
# Alpha#69 ((rank(ts_max(delta(IndNeutralize(vwap, IndClass.industry), 2.72412),4.79344))^Ts_Rank(correlation(((close * 0.490655) + (vwap * (1 - 0.490655))), adv20, 4.92416),9.0615)) * -1)
# Alpha#70 ((rank(delta(vwap, 1.29456))^Ts_Rank(correlation(IndNeutralize(close,IndClass.industry), adv50, 17.8256), 17.9171)) * -1)
# Alpha#71 max(Ts_Rank(decay_linear(correlation(Ts_Rank(close, 3.43976), Ts_Rank(adv180,12.0647), 18.0175), 4.20501), 15.6948), Ts_Rank(decay_linear((rank(((low + open) - (vwap +vwap)))^2), 16.4662), 4.4388))
def alpha071(self):
adv180 = sma(self.volume, 180)
p1=ts_rank(decay_linear(correlation(ts_rank(self.close, 3), ts_rank(adv180,12), 18), 4), 16)
p2=ts_rank(decay_linear((rank(((self.low + self.open) - (self.vwap +self.vwap))).pow(2)), 16), 4)
return max(p1,p2)
#return max(ts_rank(decay_linear(correlation(ts_rank(self.close, 3), ts_rank(adv180,12), 18).to_frame(), 4).CLOSE, 16), ts_rank(decay_linear((rank(((self.low + self.open) - (self.vwap +self.vwap))).pow(2)).to_frame(), 16).CLOSE, 4))
# Alpha#72 (rank(decay_linear(correlation(((high + low) / 2), adv40, 8.93345), 10.1519)) /rank(decay_linear(correlation(Ts_Rank(vwap, 3.72469), Ts_Rank(volume, 18.5188), 6.86671),2.95011)))
def alpha072(self):
adv40 = sma(self.volume, 40)
return (rank(decay_linear(correlation(((self.high + self.low) / 2), adv40, 9), 10)) /rank(decay_linear(correlation(ts_rank(self.vwap, 4), ts_rank(self.volume, 19), 7),3)))
# Alpha#73 (max(rank(decay_linear(delta(vwap, 4.72775), 2.91864)),Ts_Rank(decay_linear(((delta(((open * 0.147155) + (low * (1 - 0.147155))), 2.03608) / ((open *0.147155) + (low * (1 - 0.147155)))) * -1), 3.33829), 16.7411)) * -1)
def alpha073(self):
p1=rank(decay_linear(delta(self.vwap, 5), 3))
p2=ts_rank(decay_linear(((delta(((self.open * 0.147155) + (self.low * (1 - 0.147155))), 2) / ((self.open *0.147155) + (self.low * (1 - 0.147155)))) * -1), 3), 17)
return -1*max(p1,p2)
#return (max(rank(decay_linear(delta(self.vwap, 5).to_frame(), 3).CLOSE),ts_rank(decay_linear(((delta(((self.open * 0.147155) + (self.low * (1 - 0.147155))), 2) / ((self.open *0.147155) + (self.low * (1 - 0.147155)))) * -1).to_frame(), 3).CLOSE, 17)) * -1)
# Alpha#74 ((rank(correlation(close, sum(adv30, 37.4843), 15.1365)) <rank(correlation(rank(((high * 0.0261661) + (vwap * (1 - 0.0261661)))), rank(volume), 11.4791)))* -1)
def alpha074(self):
adv30 = sma(self.volume, 30)
return ((rank(correlation(self.close, sma(adv30, 37), 15)) <rank(correlation(rank(((self.high * 0.0261661) + (self.vwap * (1 - 0.0261661)))), rank(self.volume), 11)))* -1)
# Alpha#75 (rank(correlation(vwap, volume, 4.24304)) < rank(correlation(rank(low), rank(adv50),12.4413)))
def alpha075(self):
adv50 = sma(self.volume, 50)
return (rank(correlation(self.vwap, self.volume, 4)) < rank(correlation(rank(self.low), rank(adv50),12))).astype('int')
# Alpha#76 (max(rank(decay_linear(delta(vwap, 1.24383), 11.8259)),Ts_Rank(decay_linear(Ts_Rank(correlation(IndNeutralize(low, IndClass.sector), adv81,8.14941), 19.569), 17.1543), 19.383)) * -1)
# Alpha#77 min(rank(decay_linear(((((high + low) / 2) + high) - (vwap + high)), 20.0451)),rank(decay_linear(correlation(((high + low) / 2), adv40, 3.1614), 5.64125)))
def alpha077(self):
adv40 = sma(self.volume, 40)
p1=rank(decay_linear(((((self.high + self.low) / 2) + self.high) - (self.vwap + self.high)), 20))
p2=rank(decay_linear(correlation(((self.high + self.low) / 2), adv40, 3), 6))
return min(p1,p2)
#return min(rank(decay_linear(((((self.high + self.low) / 2) + self.high) - (self.vwap + self.high)).to_frame(), 20).CLOSE),rank(decay_linear(correlation(((self.high + self.low) / 2), adv40, 3).to_frame(), 6).CLOSE))
# Alpha#78 (rank(correlation(sum(((low * 0.352233) + (vwap * (1 - 0.352233))), 19.7428),sum(adv40, 19.7428), 6.83313))^rank(correlation(rank(vwap), rank(volume), 5.77492)))
def alpha078(self):
adv40 = sma(self.volume, 40)
return (rank(correlation(ts_sum(((self.low * 0.352233) + (self.vwap * (1 - 0.352233))), 20),ts_sum(adv40,20), 7)).pow(rank(correlation(rank(self.vwap), rank(self.volume), 6))))
# Alpha#79 (rank(delta(IndNeutralize(((close * 0.60733) + (open * (1 - 0.60733))),IndClass.sector), 1.23438)) < rank(correlation(Ts_Rank(vwap, 3.60973), Ts_Rank(adv150,9.18637), 14.6644)))
# Alpha#80 ((rank(Sign(delta(IndNeutralize(((open * 0.868128) + (high * (1 - 0.868128))),IndClass.industry), 4.04545)))^Ts_Rank(correlation(high, adv10, 5.11456), 5.53756)) * -1)
# Alpha#81 ((rank(Log(product(rank((rank(correlation(vwap, sum(adv10, 49.6054),8.47743))^4)), 14.9655))) < rank(correlation(rank(vwap), rank(volume), 5.07914))) * -1)
def alpha081(self):
adv10 = sma(self.volume, 10)
return ((rank(log(product(rank((rank(correlation(self.vwap, ts_sum(adv10, 50),8)).pow(4))), 15))) < rank(correlation(rank(self.vwap), rank(self.volume), 5))) * -1)
# Alpha#82 (min(rank(decay_linear(delta(open, 1.46063), 14.8717)),Ts_Rank(decay_linear(correlation(IndNeutralize(volume, IndClass.sector), ((open * 0.634196) +(open * (1 - 0.634196))), 17.4842), 6.92131), 13.4283)) * -1)
# Alpha#83 ((rank(delay(((high - low) / (sum(close, 5) / 5)), 2)) * rank(rank(volume))) / (((high -low) / (sum(close, 5) / 5)) / (vwap - close)))
def alpha083(self):
return ((rank(delay(((self.high - self.low) / (ts_sum(self.close, 5) / 5)), 2)) * rank(rank(self.volume))) / (((self.high -self.low) / (ts_sum(self.close, 5) / 5)) / (self.vwap - self.close)))
# Alpha#84 SignedPower(Ts_Rank((vwap - ts_max(vwap, 15.3217)), 20.7127), delta(close,4.96796))
def alpha084(self):
return pow(ts_rank((self.vwap - ts_max(self.vwap, 15)), 21), delta(self.close,5))
# Alpha#85 (rank(correlation(((high * 0.876703) + (close * (1 - 0.876703))), adv30,9.61331))^rank(correlation(Ts_Rank(((high + low) / 2), 3.70596), Ts_Rank(volume, 10.1595),7.11408)))
def alpha085(self):
adv30 = sma(self.volume, 30)
return (rank(correlation(((self.high * 0.876703) + (self.close * (1 - 0.876703))), adv30,10)).pow(rank(correlation(ts_rank(((self.high + self.low) / 2), 4), ts_rank(self.volume, 10),7))))
# Alpha#86 ((Ts_Rank(correlation(close, sum(adv20, 14.7444), 6.00049), 20.4195) < rank(((open+ close) - (vwap + open)))) * -1)
def alpha086(self):
adv20 = sma(self.volume, 20)
# 后者乘以20,使比较双方处于同一水平
return ((ts_rank(correlation(self.close, sma(adv20, 15), 6), 20) < rank(((self.open+ self.close) - (self.vwap +self.open)))*20) * -1)
# Alpha#87 (max(rank(decay_linear(delta(((close * 0.369701) + (vwap * (1 - 0.369701))),1.91233), 2.65461)), Ts_Rank(decay_linear(abs(correlation(IndNeutralize(adv81,IndClass.industry), close, 13.4132)), 4.89768), 14.4535)) * -1)
# Alpha#88 min(rank(decay_linear(((rank(open) + rank(low)) - (rank(high) + rank(close))),8.06882)), Ts_Rank(decay_linear(correlation(Ts_Rank(close, 8.44728), Ts_Rank(adv60,20.6966), 8.01266), 6.65053), 2.61957))
def alpha088(self):
adv60 = sma(self.volume, 60)
p1=rank(decay_linear(((rank(self.open) + rank(self.low)) - (rank(self.high) + rank(self.close))),8))
p2=ts_rank(decay_linear(correlation(ts_rank(self.close, 8), ts_rank(adv60,21), 8), 7), 3)
return min(p1,p2)
#return min(rank(decay_linear(((rank(self.open) + rank(self.low)) - (rank(self.high) + rank(self.close))).to_frame(),8).CLOSE), ts_rank(decay_linear(correlation(ts_rank(self.close, 8), ts_rank(adv60,20.6966), 8).to_frame(), 7).CLOSE, 3))
# Alpha#89 (Ts_Rank(decay_linear(correlation(((low * 0.967285) + (low * (1 - 0.967285))), adv10,6.94279), 5.51607), 3.79744) - Ts_Rank(decay_linear(delta(IndNeutralize(vwap,IndClass.industry), 3.48158), 10.1466), 15.3012))
# Alpha#90 ((rank((close - ts_max(close, 4.66719)))^Ts_Rank(correlation(IndNeutralize(adv40,IndClass.subindustry), low, 5.38375), 3.21856)) * -1)
# Alpha#91 ((Ts_Rank(decay_linear(decay_linear(correlation(IndNeutralize(close,IndClass.industry), volume, 9.74928), 16.398), 3.83219), 4.8667) -rank(decay_linear(correlation(vwap, adv30, 4.01303), 2.6809))) * -1)
# Alpha#92 min(Ts_Rank(decay_linear(((((high + low) / 2) + close) < (low + open)), 14.7221),18.8683), Ts_Rank(decay_linear(correlation(rank(low), rank(adv30), 7.58555), 6.94024),6.80584))
def alpha092(self):
adv30 = sma(self.volume, 30)
p1=ts_rank(decay_linear(((((self.high + self.low) / 2) + self.close) < (self.low + self.open)), 15),19)
p2=ts_rank(decay_linear(correlation(rank(self.low), rank(adv30), 8), 7),7)
return min(p1,p2)
#return min(ts_rank(decay_linear(((((self.high + self.low) / 2) + self.close) < (self.low + self.open)).to_frame(), 15).CLOSE,19), ts_rank(decay_linear(correlation(rank(self.low), rank(adv30), 8).to_frame(), 7).CLOSE,7))
# Alpha#93 (Ts_Rank(decay_linear(correlation(IndNeutralize(vwap, IndClass.industry), adv81,17.4193), 19.848), 7.54455) / rank(decay_linear(delta(((close * 0.524434) + (vwap * (1 -0.524434))), 2.77377), 16.2664)))
# Alpha#94 ((rank((vwap - ts_min(vwap, 11.5783)))^Ts_Rank(correlation(Ts_Rank(vwap,19.6462), Ts_Rank(adv60, 4.02992), 18.0926), 2.70756)) * -1)
def alpha094(self):
adv60 = sma(self.volume, 60)
return ((rank((self.vwap - ts_min(self.vwap, 12))).pow(ts_rank(correlation(ts_rank(self.vwap,20), ts_rank(adv60, 4), 18), 3)) * -1))
# Alpha#95 (rank((open - ts_min(open, 12.4105))) < Ts_Rank((rank(correlation(sum(((high + low)/ 2), 19.1351), sum(adv40, 19.1351), 12.8742))^5), 11.7584))
def alpha095(self):
adv40 = sma(self.volume, 40)
# 前者乘以12,使比较双方处于同一水平
return (rank((self.open - ts_min(self.open, 12)))*12 < ts_rank((rank(correlation(sma(((self.high + self.low)/ 2), 19), sma(adv40, 19), 13)).pow(5)), 12)).astype('int')
# Alpha#96 (max(Ts_Rank(decay_linear(correlation(rank(vwap), rank(volume), 3.83878),4.16783), 8.38151), Ts_Rank(decay_linear(Ts_ArgMax(correlation(Ts_Rank(close, 7.45404),Ts_Rank(adv60, 4.13242), 3.65459), 12.6556), 14.0365), 13.4143)) * -1)
def alpha096(self):
adv60 = sma(self.volume, 60)
p1=ts_rank(decay_linear(correlation(rank(self.vwap), rank(self.volume), 4),4), 8)
p2=ts_rank(decay_linear(ts_argmax(correlation(ts_rank(self.close, 7),ts_rank(adv60, 4), 4), 13), 14), 13)
r1 = rank(self.vwap)
r2 = rank(self.volume)
print(correlation(rank(self.vwap), rank(self.volume), 4))
return -1*max(p1,p2)
#return (max(ts_rank(decay_linear(correlation(rank(self.vwap), rank(self.volume).to_frame(), 4),4).CLOSE, 8), ts_rank(decay_linear(ts_argmax(correlation(ts_rank(self.close, 7),ts_rank(adv60, 4), 4), 13).to_frame(), 14).CLOSE, 13)) * -1)
# Alpha#97 ((rank(decay_linear(delta(IndNeutralize(((low * 0.721001) + (vwap * (1 - 0.721001))),IndClass.industry), 3.3705), 20.4523)) - Ts_Rank(decay_linear(Ts_Rank(correlation(Ts_Rank(low,7.87871), Ts_Rank(adv60, 17.255), 4.97547), 18.5925), 15.7152), 6.71659)) * -1)
# Alpha#98 (rank(decay_linear(correlation(vwap, sum(adv5, 26.4719), 4.58418), 7.18088)) -rank(decay_linear(Ts_Rank(Ts_ArgMin(correlation(rank(open), rank(adv15), 20.8187), 8.62571),6.95668), 8.07206)))
def alpha098(self):
adv5 = sma(self.volume, 5)
adv15 = sma(self.volume, 15)
return (rank(decay_linear(correlation(self.vwap, sma(adv5, 26), 5), 7)) -rank(decay_linear(ts_rank(ts_argmin(correlation(rank(self.open), rank(adv15), 21), 9),7), 8)))
# Alpha#99 ((rank(correlation(sum(((high + low) / 2), 19.8975), sum(adv60, 19.8975), 8.8136)) <rank(correlation(low, volume, 6.28259))) * -1)
def alpha099(self):
adv60 = sma(self.volume, 60)
return ((rank(correlation(ts_sum(((self.high + self.low) / 2), 20), ts_sum(adv60, 20), 9)) <rank(correlation(self.low, self.volume, 6))) * -1)
# Alpha#100 (0 - (1 * (((1.5 * scale(indneutralize(indneutralize(rank(((((close - low) - (high -close)) / (high - low)) * volume)), IndClass.subindustry), IndClass.subindustry))) -scale(indneutralize((correlation(close, rank(adv20), 5) - rank(ts_argmin(close, 30))),IndClass.subindustry))) * (volume / adv20))))
# Alpha#101 ((close - open) / ((high - low) + .001))
def alpha101(self):
return (self.close - self.open) / ((self.high - self.low) + 0.001)
if __name__ == '__main__':
year = '2013'
list_assets,df_asserts = get_hs300_stocks(f'{year}-01-01')
################ 计算所有 #################
Alphas101.generate_alphas(year, list_assets,"sh000300")
################ 计算单个 #################
# ret = Alphas101.generate_alpha_single('alpha096', year, list_assets, "sh000300", True)
# print(ret)