forked from sabirjana/Strategies
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsj_14_momentum_nifty200_riskp_db.py
281 lines (233 loc) · 11.5 KB
/
sj_14_momentum_nifty200_riskp_db.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# -*- coding: utf-8 -*-
"""
Created on Sat Jan 16 19:45:58 2021
@author: Sabir Jana
Momentum Strategy - Based on Andreas F. Clenow’s book Stocks on the Move:
Beating the Market with Hedge Fund Momentum Strategy
We will use nifty200 as univ. with 20 stocks and risk parity weights
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import datetime
import pandas as pd
import numpy as np
idx = pd.IndexSlice
import backtrader as bt
#import pyfolio as pf
import collections
from scipy.stats import linregress
import pymysql
np.random.seed(42)
bt.__version__
tickers = ['ACC', 'AUFI', 'ARTI', 'ABOT', 'ADEL', 'ADAG', 'ADNA', 'APSE', 'ADAI', 'ADTB', 'ADIA', 'AJPH', 'ALEM', 'ALKE',
'AMAR', 'ABUJ', 'APLH', 'APLO', 'ASOK', 'ASPN', 'ARBN', 'AVEU', 'AXBK', 'BAJA', 'BJFN', 'BJFS', 'BJAT', 'BLKI',
'BANH', 'BOB', 'BOI', 'BATA', 'BRGR', 'BAJE', 'BFRG', 'BHEL', 'BPCL', 'BRTI', 'BHRI', 'BION', 'BBRM', 'BOSH',
'BRIT', 'CESC', 'CADI', 'CNBK', 'CAST', 'CHLA', 'CIPL', 'CTBK', 'COAL', 'NITT', 'COLG', 'CCRI', 'CORF', 'CROP',
'CUMM', 'DLF', 'DABU', 'DALB', 'INDB', 'DIVI', 'DLPA', 'REDY', 'EDEL', 'EMAM', 'ENDU', 'ESCO', 'EXID', 'FED',
'FOHE',
'FRTL', 'GAIL', 'GMRI', 'GENA', 'GLEN', 'GODE', 'GOCP', 'GODI', 'GODR', 'GRAS', 'GGAS', 'GSPT', 'HCLT', 'HDFA',
'HDBK', 'HDFL', 'HVEL', 'HROM', 'HALC', 'HPCL', 'HLL', 'HZNC', 'HUDC', 'HDFC', 'ICBK', 'ICIL', 'ICIR', 'ICCI',
'IDFB', 'ITC', 'INBF', 'IHTL', 'IOC', 'INIR', 'IGAS', 'INBK', 'INED', 'INFY', 'INGL', 'IPCA', 'JSWE', 'JSTL',
'JNSP', 'JUBI', 'KTKM', 'LTFH', 'LTEH', 'LICH', 'LRTI', 'LART', 'LUPN', 'MRF', 'MGAS', 'MMFS', 'MAHM', 'MNFL',
'MRCO', 'MRTI', 'MAXI', 'MINT', 'MOSS', 'MBFL', 'MUTT', 'NATP', 'NMDC', 'NTPC', 'NALU', 'NAFL', 'NEST', 'RELL',
'OEBO', 'ONGC', 'OILI', 'ORCL', 'PIIL', 'PAGE', 'PLNG', 'PFIZ', 'PIDI', 'PIRA', 'POLC', 'PWFC', 'PGRD', 'PREG',
'PROC', 'PNBK', 'RATB', 'RECM', 'REXP', 'RELI', 'SBIL', 'SRFL', 'SANO', 'SHCM', 'SRTR', 'SIEM', 'SBI', 'SAIL',
'SUN', 'SUTV', 'SYNN', 'TVSM', 'TTCH', 'TCS', 'TAGL', 'TAMO', 'TTPW', 'TISC', 'TEML', 'TRCE', 'TITN', 'TORP',
'TOPO', 'TREN', 'UPLL', 'ULTC', 'UNBK', 'UBBW', 'UNSP', 'VGUA', 'VARB', 'VODA', 'VOLT', 'WHIR', 'WIPR', 'ZEE']
# Calculate momentum
def momentum_func(self, the_array):
r = np.log(the_array)
slope, _, rvalue, _, _ = linregress(np.arange(len(r)), r)
annualized = (1 + slope) ** 252
return annualized * (rvalue ** 2)
class Momentum(bt.ind.OperationN):
lines = ('trend',)
params = dict(period=126)
func = momentum_func
vola_window = 21
# we take a 126-day time series of closing prices,
# calculate the daily returns, and take a mean of 21 days rolling window of standards deviation.
def volatility(ts):
std = ts.pct_change().dropna().rolling(vola_window).std().iloc[-1]
return std
class StrategyRiskparity(bt.Strategy):
params = dict(
# parametrize the Momentum and its period
momentum=Momentum,
momentum_period=126,
num_positions=30,
rebalance_days = [1,4],
printlog=True,
reserve=0.00 # 5% reserve capital
)
def log(self, txt, dt=None, doprint=False):
''' Logging function '''
if self.params.printlog or doprint:
dt = dt or self.data.datetime[0]
if isinstance(dt, float):
dt = bt.num2date(dt)
print("%s, %s" % (dt.isoformat(), txt))
def __init__(self):
self.securities = self.datas
self.inds = collections.defaultdict(dict)
for d in self.securities:
self.inds[d]['mom'] = self.p.momentum(d, period=self.p.momentum_period)
# To keep track of pending orders and buy price/commission
self.order = None
self.buyprice = None
self.buycomm = None
def rebalance(self):
rankings = list(self.securities)
rankings.sort(key=lambda s: self.inds[s]['mom'][0], reverse=True)
# Sell stocks no longer meeting ranking filter and create list of kept positions
kept_positions = []
for i, d in enumerate(rankings):
if self.getposition(d).size:
if i > self.p.num_positions:
self.close(d)
self.log('Leave {} - Rank {:.2f}'.format(d._name, i))
elif i < self.p.num_positions:
kept_positions.append(d._name)
self.log('kept_positions - %s'% kept_positions)
# Based on kept position and new ranking identify new long positions to add
new_positions = []
for i, d in enumerate(rankings[:self.p.num_positions]):
if d._name not in (kept_positions):
new_positions.append(d._name)
self.log('new_positions - %s'% new_positions)
# Calculate volatility table
hist = pd.DataFrame()
for d in self.securities:
if d._name in (new_positions):
hist[d._name] = d.close.get(size=self.p.momentum_period)
vola_table = hist.apply(volatility)
self.log('vola_table - %s'% vola_table)
# Calculate weights based on volatility
inv_vola_table = 1 / vola_table
sum_inv_vola = np.sum(inv_vola_table)
vola_target_weights = inv_vola_table / sum_inv_vola
self.log('vola_target_weights - %s'% vola_target_weights)
# Buy and rebalance stocks with remaining cash
for i, d in enumerate(rankings[:self.p.num_positions]):
cash = self.broker.get_cash()
value = self.broker.get_value()
if cash <= 0:
break
if not self.getposition(d).size:
weight = vola_target_weights[d._name]
self.order_target_percent(d, target=weight)
self.log('Buy {} - Rank {:.2f}'.format(d._name, i))
def next_open(self):
dt = self.data.datetime.datetime()
if dt.weekday() in self.p.rebalance_days:
self.rebalance()
def notify_order(self, order):
if order.status in [order.Submitted, order.Accepted]:
# Buy/Sell order submitted/accepted to/by broker - Nothing to do
return
# Check if an order has been completed
# Attention: broker could reject order if not enough cash
if order.status in [order.Completed]:
if order.isbuy():
self.log(
'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
(order.executed.price,order.executed.value,order.executed.comm))
self.buyprice = order.executed.price
self.buycomm = order.executed.comm
else: # Sell
self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
(order.executed.price, order.executed.value, order.executed.comm))
elif order.status in [order.Canceled, order.Margin, order.Rejected]:
self.log('Order Canceled/Margin/Rejected')
self.order = None
def stop(self):
self.log('| %2d | %2d | %.2f |' %
(self.p.momentum_period, self.p.num_positions, self.broker.getvalue()),doprint=True)
def get_db_conn(p_uid='', p_pwd='', p_host='', p_database='tradesoft', p_port=3306):
pconn = pymysql.connect( user=p_uid, password=p_pwd, host=p_host, database=p_database, port=p_port )
pconn.autocommit = False
return pconn
def historical_price(scripts, db_conn):
columns = ['close','high','low','open','volume']
fmt='%Y%m%d %H:%M:%S'
def data(ticker):
print(f'Processing...{ticker}')
v_sql_stmt = f"SELECT * FROM t_quotes_eod WHERE ticker = '{ticker}'"
df_quotes = pd.read_sql(v_sql_stmt, db_conn, parse_dates={'trade_date':fmt})
df_quotes = df_quotes.set_index('trade_date')
df_quotes.index.name = 'date'
df_quotes = df_quotes[columns]
df_quotes = df_quotes.sort_values(by='date', ascending=True)
df_quotes = df_quotes[~df_quotes.index.duplicated()]
return df_quotes
datas = map(data, scripts)
return(pd.concat(datas, keys=tickers, names=['ticker', 'date']))
def main():
# Model Settings
startcash = 500000
momentum_period = 126 #days
num_positions = 20
reserve = 0.05
printlog=False
# Commission and Slippage Settings
commission = 0.0025
db_conn = get_db_conn(p_uid='freedbtech_tradesoft', p_pwd='tradesoft', p_host='freedb.tech',
p_database='freedbtech_tradesoft', p_port=3306)
prices = historical_price(tickers, db_conn)
db_conn.close()
# remove tickers where we have less than 10 years of data.
min_obs = 2520
nobs = prices.groupby(level='ticker').size()
keep = nobs[nobs>min_obs].index
prices = prices.loc[idx[keep,:], :]
# prices.info()
print('Number of tickers with min 10 years history= ', prices.index.unique(level='ticker'))
print('latest Date: ', prices.loc['ACC'].index[-1])
print('latest Date - 126 Trading days: ', prices.loc['ACC'].index[-126])
from_date=input('start date in format yyyy-mm-dd:')
to_date=input('end date in format yyyy-mm-dd:')
fromdate=datetime.datetime.strptime(from_date, '%Y-%m-%d')
todate=datetime.datetime.strptime(to_date, '%Y-%m-%d')
cerebro = bt.Cerebro(stdstats=False, cheat_on_open=True)
# cerebro.broker.set_coc(True)
cerebro.broker.setcash(startcash)
cerebro.broker.setcommission(commission=commission)
# Add securities as datas1:
for ticker, data in prices.groupby(level=0):
if ticker in tickers:
print(f"Adding ticker: {ticker}")
data = bt.feeds.PandasData(dataname=data.droplevel(level=0),
name=str(ticker),
fromdate=fromdate,
todate=todate,
plot=False)
cerebro.adddata(data)
cerebro.addanalyzer(bt.analyzers.Returns, _name='pfreturn')
cerebro.addanalyzer(bt.analyzers.DrawDown, _name='pfdrawdown')
cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='pfsharpe')
cerebro.addanalyzer(bt.analyzers.PyFolio, _name='pyfolio')
cerebro.addstrategy(StrategyRiskparity,
momentum_period = momentum_period,
num_positions = num_positions,
printlog = printlog,
reserve = reserve
)
print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())
# Run the strategy. Results will be output from stop.
results_eq_wts = cerebro.run()
results_eq_wt = results_eq_wts[0]
pyfoliozer = results_eq_wt.analyzers.getbyname('pyfolio')
returns, positions, transactions, gross_lev = pyfoliozer.get_pf_items()
transactions.to_csv('data/transactions.csv')
positions.to_csv('data/positions.csv')
returns.to_csv('data/returns.csv')
# Print out the return
print('\nPortfolio Return:', results_eq_wt.analyzers.pfreturn.get_analysis())
# Print out the drawdown
print('\nPortfolio Drawdown:', results_eq_wt.analyzers.pfdrawdown.get_analysis())
# Print out the sharpe
print('\nPortfolio Sharpe ratio:', results_eq_wt.analyzers.pfsharpe.get_analysis())
# Print out the final result
print('\nFinal Portfolio Value: %.2f' % cerebro.broker.getvalue())
if __name__ == '__main__':
main()