|
13 | 13 | from nimare.meta.kernel import ALEKernel
|
14 | 14 | from nimare.stats import null_to_p, nullhist_to_p
|
15 | 15 | from nimare.transforms import p_to_z
|
16 |
| -from nimare.utils import _check_ncores, tqdm_joblib, use_memmap |
| 16 | +from nimare.utils import _check_ncores, use_memmap |
17 | 17 |
|
18 | 18 | LGR = logging.getLogger(__name__)
|
19 | 19 | __version__ = _version.get_versions()["version"]
|
@@ -520,26 +520,34 @@ def _fit(self, dataset1, dataset2):
|
520 | 520 | shape=(self.n_iters, n_voxels),
|
521 | 521 | )
|
522 | 522 |
|
523 |
| - with tqdm_joblib(tqdm(total=self.n_iters)): |
524 |
| - Parallel(n_jobs=self.n_cores)( |
525 |
| - delayed(self._run_permutation)(i_iter, n_grp1, ma_arr, iter_diff_values) |
526 |
| - for i_iter in range(self.n_iters) |
| 523 | + _ = [ |
| 524 | + r |
| 525 | + for r in tqdm( |
| 526 | + Parallel(return_as="generator", n_jobs=self.n_cores)( |
| 527 | + delayed(self._run_permutation)(i_iter, n_grp1, ma_arr, iter_diff_values) |
| 528 | + for i_iter in range(self.n_iters) |
| 529 | + ), |
| 530 | + total=self.n_iters, |
527 | 531 | )
|
| 532 | + ] |
528 | 533 |
|
529 | 534 | # Determine p-values based on voxel-wise null distributions
|
530 | 535 | # I know that joblib probably preserves order of outputs, but I'm paranoid, so we track
|
531 | 536 | # the iteration as well and sort the resulting p-value array based on that.
|
532 |
| - with tqdm_joblib(tqdm(total=n_voxels)): |
533 |
| - p_values, voxel_idx = zip( |
534 |
| - *Parallel(n_jobs=self.n_cores)( |
| 537 | + p_values, voxel_idx = tqdm( |
| 538 | + zip( |
| 539 | + *Parallel(return_as="generator", n_jobs=self.n_cores)( |
535 | 540 | delayed(self._alediff_to_p_voxel)(
|
536 | 541 | i_voxel,
|
537 | 542 | diff_ale_values[i_voxel],
|
538 | 543 | iter_diff_values[:, i_voxel],
|
539 | 544 | )
|
540 | 545 | for i_voxel in range(n_voxels)
|
541 |
| - ) |
542 |
| - ) |
| 546 | + ), |
| 547 | + ), |
| 548 | + total=n_voxels, |
| 549 | + ) |
| 550 | + |
543 | 551 | # Convert to an array and sort the p-values array based on the voxel index.
|
544 | 552 | p_values = np.array(p_values)[np.array(voxel_idx)]
|
545 | 553 |
|
@@ -801,13 +809,18 @@ def _fit(self, dataset):
|
801 | 809 | mode="w+",
|
802 | 810 | shape=(self.n_iters, stat_values.shape[0]),
|
803 | 811 | )
|
804 |
| - with tqdm_joblib(tqdm(total=self.n_iters)): |
805 |
| - Parallel(n_jobs=self.n_cores)( |
806 |
| - delayed(self._run_permutation)( |
807 |
| - i_iter, iter_xyzs[i_iter], iter_df, perm_scale_values |
808 |
| - ) |
809 |
| - for i_iter in range(self.n_iters) |
| 812 | + _ = [ |
| 813 | + r |
| 814 | + for r in tqdm( |
| 815 | + Parallel(return_as="generator", n_jobs=self.n_cores)( |
| 816 | + delayed(self._run_permutation)( |
| 817 | + i_iter, iter_xyzs[i_iter], iter_df, perm_scale_values |
| 818 | + ) |
| 819 | + for i_iter in range(self.n_iters) |
| 820 | + ), |
| 821 | + total=self.n_iters, |
810 | 822 | )
|
| 823 | + ] |
811 | 824 |
|
812 | 825 | p_values, z_values = self._scale_to_p(stat_values, perm_scale_values)
|
813 | 826 |
|
@@ -876,15 +889,18 @@ def _scale_to_p(self, stat_values, scale_values):
|
876 | 889 |
|
877 | 890 | # I know that joblib probably preserves order of outputs, but I'm paranoid, so we track
|
878 | 891 | # the iteration as well and sort the resulting p-value array based on that.
|
879 |
| - with tqdm_joblib(tqdm(total=n_voxels)): |
880 |
| - p_values, voxel_idx = zip( |
881 |
| - *Parallel(n_jobs=self.n_cores)( |
| 892 | + p_values, voxel_idx = tqdm( |
| 893 | + zip( |
| 894 | + *Parallel(return_as="generator", n_jobs=self.n_cores)( |
882 | 895 | delayed(self._scale_to_p_voxel)(
|
883 | 896 | i_voxel, stat_values[i_voxel], scale_values[:, i_voxel]
|
884 | 897 | )
|
885 | 898 | for i_voxel in range(n_voxels)
|
886 | 899 | )
|
887 |
| - ) |
| 900 | + ), |
| 901 | + total=n_voxels, |
| 902 | + ) |
| 903 | + |
888 | 904 | # Convert to an array and sort the p-values array based on the voxel index.
|
889 | 905 | p_values = np.array(p_values)[np.array(voxel_idx)]
|
890 | 906 |
|
|
0 commit comments