|
| 1 | +from neurolib.utils.stimulus import ZeroInput |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import scipy |
| 5 | + |
| 6 | +import gymnasium as gym |
| 7 | +from gymnasium import spaces |
| 8 | + |
| 9 | +from neurolib.models.wc import WCModel |
| 10 | + |
| 11 | + |
| 12 | +class PhaseShiftingEnv(gym.Env): |
| 13 | + |
| 14 | + def __init__( |
| 15 | + self, |
| 16 | + duration=300, |
| 17 | + dt=0.1, |
| 18 | + target_shift=1 * np.pi, |
| 19 | + exc_ext_baseline=2.8, |
| 20 | + inh_ext_baseline=1.2, |
| 21 | + x_init=0.04201540010391125, |
| 22 | + y_init=0.1354067401509556, |
| 23 | + sigma_ou=0.0, |
| 24 | + c_inhexc=16, |
| 25 | + c_excinh=10, |
| 26 | + c_inhinh=1, |
| 27 | + control_strength_loss_scale=0.005, |
| 28 | + ): |
| 29 | + self.exc_ext_baseline = exc_ext_baseline |
| 30 | + self.inh_ext_baseline = inh_ext_baseline |
| 31 | + |
| 32 | + self.duration = duration |
| 33 | + self.dt = dt |
| 34 | + self.target_shift = target_shift |
| 35 | + self.x_init = x_init |
| 36 | + self.y_init = y_init |
| 37 | + self.control_strength_loss_scale = control_strength_loss_scale |
| 38 | + |
| 39 | + assert 0 < self.target_shift < 2 * np.pi |
| 40 | + |
| 41 | + self.model = WCModel() |
| 42 | + self.model.params["dt"] = self.dt |
| 43 | + self.model.params["sigma_ou"] = sigma_ou |
| 44 | + self.model.params["duration"] = self.dt # one step at a time |
| 45 | + self.model.params["exc_init"] = np.array([[x_init]]) |
| 46 | + self.model.params["inh_init"] = np.array([[y_init]]) |
| 47 | + self.model.params["exc_ext_baseline"] = self.exc_ext_baseline |
| 48 | + self.model.params["inh_ext_baseline"] = self.inh_ext_baseline |
| 49 | + |
| 50 | + self.model.params["c_inhexc"] = c_inhexc |
| 51 | + self.model.params["c_excinh"] = c_excinh |
| 52 | + self.model.params["c_inhinh"] = c_inhinh |
| 53 | + self.params = self.model.params.copy() |
| 54 | + |
| 55 | + self.n_steps = round(self.duration / self.dt) |
| 56 | + |
| 57 | + self.target = self.get_target() |
| 58 | + |
| 59 | + self.observation_space = spaces.Dict( |
| 60 | + { |
| 61 | + "exc": spaces.Box(0, 1, shape=(1,), dtype=float), |
| 62 | + "inh": spaces.Box(0, 1, shape=(1,), dtype=float), |
| 63 | + } |
| 64 | + ) |
| 65 | + |
| 66 | + self.action_space = spaces.Tuple( |
| 67 | + ( |
| 68 | + spaces.Box(-5, 5, shape=(1,), dtype=float), # exc |
| 69 | + spaces.Box(-5, 5, shape=(1,), dtype=float), # inh |
| 70 | + ) |
| 71 | + ) |
| 72 | + |
| 73 | + def get_target(self): |
| 74 | + wc = WCModel() |
| 75 | + wc.params = self.model.params.copy() |
| 76 | + wc.params["duration"] = self.duration + 100.0 |
| 77 | + wc.run() |
| 78 | + |
| 79 | + peaks = scipy.signal.find_peaks(wc.exc[0, :])[0] |
| 80 | + p_list = [] |
| 81 | + for i in range(3, len(peaks)): |
| 82 | + p_list.append(peaks[i] - peaks[i - 1]) |
| 83 | + period = np.mean(p_list) * self.dt |
| 84 | + self.period = period |
| 85 | + |
| 86 | + raw = np.stack((wc.exc, wc.inh), axis=1)[0] |
| 87 | + index = np.round(self.target_shift * period / (2.0 * np.pi) / self.dt).astype(int) |
| 88 | + target = raw[:, index : index + np.round(1 + self.duration / self.dt, 1).astype(int)] |
| 89 | + |
| 90 | + return target |
| 91 | + |
| 92 | + def _get_obs(self): |
| 93 | + return {"exc": self.model.exc[0], "inh": self.model.inh[0]} |
| 94 | + |
| 95 | + def _get_info(self): |
| 96 | + return {"t": self.t_i * self.dt} |
| 97 | + |
| 98 | + def reset(self, seed=None, options=None): |
| 99 | + super().reset(seed=seed, options=options) |
| 100 | + self.t_i = 0 |
| 101 | + self.model.clearModelState() |
| 102 | + |
| 103 | + self.model.params = self.params.copy() |
| 104 | + self.model.exc = np.array([[self.x_init]]) |
| 105 | + self.model.inh = np.array([[self.y_init]]) |
| 106 | + |
| 107 | + observation = self._get_obs() |
| 108 | + info = self._get_info() |
| 109 | + return observation, info |
| 110 | + |
| 111 | + def _loss(self, obs, action): |
| 112 | + control_loss = np.sqrt( |
| 113 | + (self.target[0, self.t_i] - obs["exc"].item()) ** 2 + (self.target[1, self.t_i] - obs["inh"].item()) ** 2 |
| 114 | + ) |
| 115 | + control_strength_loss = np.abs(action).sum() * self.control_strength_loss_scale |
| 116 | + return control_loss + control_strength_loss |
| 117 | + |
| 118 | + def step(self, action): |
| 119 | + assert self.action_space.contains(action) |
| 120 | + exc, inh = action |
| 121 | + self.model.params["exc_ext"] = np.array([exc]) |
| 122 | + self.model.params["inh_ext"] = np.array([inh]) |
| 123 | + self.model.run(continue_run=True) |
| 124 | + |
| 125 | + observation = self._get_obs() |
| 126 | + |
| 127 | + reward = -self._loss(observation, action) |
| 128 | + |
| 129 | + self.t_i += 1 |
| 130 | + terminated = self.t_i >= self.n_steps |
| 131 | + info = self._get_info() |
| 132 | + |
| 133 | + return observation, reward, terminated, False, info |
0 commit comments