diff --git a/pydfc/data_loader.py b/pydfc/data_loader.py index 98f9cdf..1d8fe89 100644 --- a/pydfc/data_loader.py +++ b/pydfc/data_loader.py @@ -361,9 +361,9 @@ def nifti2array( return time_series, labels, locs - def nifti2timeseries( nifti_file, + n_rois, Fs, subj_id, confound_strategy="none", diff --git a/pydfc/dfc_methods/cap.py b/pydfc/dfc_methods/cap.py index ed0b21c..f3dfeb8 100644 --- a/pydfc/dfc_methods/cap.py +++ b/pydfc/dfc_methods/cap.py @@ -10,6 +10,7 @@ import numpy as np from scipy.special import softmax from sklearn.cluster import KMeans +from sklearn.metrics import silhouette_samples from ..dfc import DFC from ..time_series import TIME_SERIES @@ -38,6 +39,7 @@ class CAP(BaseDFCMethod): def __init__(self, **params): self.logs_ = "" self.FCS_ = [] + self.silhouette_sc_ = [] self.mean_act = [] self.FCS_fit_time_ = None self.dFC_assess_time_ = None @@ -126,6 +128,9 @@ def estimate_FCS(self, time_series): self.FCS_ = self.act_vec2FCS(group_act_centroids) self.Z = self.kmeans_.predict(time_series.data.T.astype(np.float32)) + # silhouette coefficient + self.silhouette_sc_ = silhouette_samples(time_series.data.T.astype(np.float32),self.Z) + # mean activation of states self.set_mean_activity(time_series)