diff --git a/tests/weight_loading/models-large.txt b/tests/weight_loading/models-large.txt index 2f5c6c5a117f3..8ab7f05d7d1b2 100644 --- a/tests/weight_loading/models-large.txt +++ b/tests/weight_loading/models-large.txt @@ -2,3 +2,4 @@ compressed-tensors, nm-testing/Mixtral-8x7B-Instruct-v0.1-W4A16-quantized, main compressed-tensors, nm-testing/Mixtral-8x7B-Instruct-v0.1-W4A16-channel-quantized, main compressed-tensors, nm-testing/Mixtral-8x7B-Instruct-v0.1-W8A16-quantized, main gptq_marlin, TheBloke/Mixtral-8x7B-v0.1-GPTQ, main +awq_marlin, casperhansen/deepseek-coder-v2-instruct-awq, main \ No newline at end of file diff --git a/vllm/_custom_ops.py b/vllm/_custom_ops.py index a71bafc974adf..b0f20e4df3510 100644 --- a/vllm/_custom_ops.py +++ b/vllm/_custom_ops.py @@ -571,6 +571,20 @@ def gptq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor, return output +def awq_marlin_moe_repack(b_q_weight: torch.Tensor, perm: torch.Tensor, + size_k: int, size_n: int, + num_bits: int) -> torch.Tensor: + num_experts = b_q_weight.shape[0] + assert size_k % 16 == 0 + output = torch.empty((num_experts, size_k // 16, size_n * (num_bits // 2)), + device=b_q_weight.device, + dtype=b_q_weight.dtype) + for e in range(num_experts): + output[e] = torch.ops._C.awq_marlin_repack(b_q_weight[e], size_k, + size_n, num_bits) + return output + + def gptq_marlin_gemm(a: torch.Tensor, b_q_weight: torch.Tensor, b_scales: torch.Tensor, diff --git a/vllm/model_executor/layers/quantization/awq.py b/vllm/model_executor/layers/quantization/awq.py index 410b3cb5321cb..30380ec0407c5 100644 --- a/vllm/model_executor/layers/quantization/awq.py +++ b/vllm/model_executor/layers/quantization/awq.py @@ -169,4 +169,4 @@ def apply(self, pack_factor) if bias is not None: out.add_(bias) - return out.reshape(out_shape) + return out.reshape(out_shape) \ No newline at end of file diff --git a/vllm/model_executor/layers/quantization/awq_marlin.py b/vllm/model_executor/layers/quantization/awq_marlin.py index fe33b7341fd38..3725f2c3c3e87 100644 --- a/vllm/model_executor/layers/quantization/awq_marlin.py +++ b/vllm/model_executor/layers/quantization/awq_marlin.py @@ -1,12 +1,20 @@ -from typing import Any, Dict, List, Optional +from typing import Any, Callable, Dict, List, Optional import torch +from torch.nn import Parameter from vllm import _custom_ops as ops from vllm.logger import init_logger -from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase +from vllm.model_executor.layers.fused_moe.layer import ( + FusedMoE, FusedMoEMethodBase, FusedMoeWeightScaleSupported) +from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase, + set_weight_attrs) from vllm.model_executor.layers.quantization.base_config import ( - QuantizationConfig) + QuantizationConfig, QuantizeMethodBase) +from vllm.model_executor.layers.quantization.utils.marlin_utils import ( + apply_awq_marlin_linear, awq_to_marlin_zero_points, check_marlin_supported, + marlin_make_empty_g_idx, marlin_make_workspace, marlin_moe_permute_scales, + marlin_permute_scales, moe_awq_to_marlin_zero_points, replace_tensor) from vllm.model_executor.layers.quantization.utils import replace_parameter from vllm.model_executor.layers.quantization.utils.marlin_utils import ( apply_awq_marlin_linear, awq_to_marlin_zero_points, check_marlin_supported, @@ -35,12 +43,13 @@ def __init__(self, weight_bits: int, group_size: int, has_zp: bool, self.group_size = group_size self.has_zp = has_zp self.lm_head_quantized = lm_head_quantized + self.weight_bits = weight_bits - if weight_bits not in self.TYPE_MAP: - raise ValueError(f"Unsupported num_bits = {weight_bits}. " + if self.weight_bits not in self.TYPE_MAP: + raise ValueError(f"Unsupported num_bits = {self.weight_bits}. " f"Supported num_bits = {self.TYPE_MAP.keys()}") - self.quant_type = self.TYPE_MAP[weight_bits] + self.quant_type = self.TYPE_MAP[self.weight_bits] verify_marlin_supported(self.quant_type, group_size=self.group_size, @@ -98,10 +107,12 @@ def override_quantization_method(cls, hf_quant_cfg, return None def get_quant_method(self, layer: torch.nn.Module, - prefix: str) -> Optional["AWQMarlinLinearMethod"]: + prefix: str) -> Optional["QuantizeMethodBase"]: if (isinstance(layer, LinearBase) or (isinstance(layer, ParallelLMHead) and self.lm_head_quantized)): return AWQMarlinLinearMethod(self) + elif isinstance(layer, FusedMoE): + return AWQMoEMethod(self) return None def get_scaled_act_names(self) -> List[str]: @@ -271,4 +282,182 @@ def apply( quant_type=self.quant_config.quant_type, output_size_per_partition=layer.output_size_per_partition, input_size_per_partition=layer.input_size_per_partition, - bias=bias) \ No newline at end of file + bias=bias) + + +class AWQMoEMethod(FusedMoEMethodBase): + + def __init__(self, quant_config: AWQMarlinConfig): + self.quant_config = quant_config + + def create_weights(self, layer: torch.nn.Module, num_experts: int, + hidden_size: int, intermediate_size: int, + params_dtype: torch.dtype, **extra_weight_attrs): + extra_weight_attrs.update({ + "is_transposed": + True, + "quant_method": + FusedMoeWeightScaleSupported.GROUP.value, + }) + + w13_qweight = Parameter(torch.empty(num_experts, + hidden_size, + 2 * intermediate_size // + self.quant_config.pack_factor, + dtype=torch.int32), + requires_grad=False) + layer.register_parameter("w13_qweight", w13_qweight) + set_weight_attrs(w13_qweight, extra_weight_attrs) + + w2_qweight = Parameter(torch.empty(num_experts, + intermediate_size, + hidden_size // + self.quant_config.pack_factor, + dtype=torch.int32), + requires_grad=False) + layer.register_parameter("w2_qweight", w2_qweight) + set_weight_attrs(w2_qweight, extra_weight_attrs) + + num_groups_w13 = hidden_size // self.quant_config.group_size + num_groups_w2 = intermediate_size // self.quant_config.group_size + + # WEIGHT_SCALES + # Allocate 2 scales for w1 and w3 respectively. + w13_scales = Parameter(torch.empty(num_experts, + num_groups_w13, + intermediate_size * 2, + dtype=params_dtype), + requires_grad=False) + layer.register_parameter("w13_scales", w13_scales) + set_weight_attrs(w13_scales, extra_weight_attrs) + + w2_scales = Parameter(torch.empty(num_experts, + num_groups_w2, + hidden_size, + dtype=params_dtype), + requires_grad=False) + layer.register_parameter("w2_scales", w2_scales) + set_weight_attrs(w2_scales, extra_weight_attrs) + + # WEIGHT_ZERO_POINT + # Allocate 2 zero points for w1 and w3 respectively. + w13_qzeros = Parameter(torch.empty(num_experts, + num_groups_w13, + 2 * intermediate_size // + self.quant_config.pack_factor, + dtype=torch.int32), + requires_grad=False) + layer.register_parameter("w13_qzeros", w13_qzeros) + set_weight_attrs(w13_qzeros, extra_weight_attrs) + + w2_qzeros = Parameter(torch.empty(num_experts, + num_groups_w2, + hidden_size // + self.quant_config.pack_factor, + dtype=torch.int32), + requires_grad=False) + layer.register_parameter("w2_qzeros", w2_qzeros) + set_weight_attrs(w2_qzeros, extra_weight_attrs) + + def process_weights_after_loading(self, layer: torch.nn.Module) -> None: + num_experts = layer.w13_qweight.shape[0] + device = layer.w13_qweight.device + + layer.w13_g_idx_sort_indices = torch.nn.Parameter( + torch.empty((num_experts, 0), dtype=torch.int32, device=device), + requires_grad=False, + ) + layer.w2_g_idx_sort_indices = torch.nn.Parameter( + torch.empty((num_experts, 0), dtype=torch.int32, device=device), + requires_grad=False, + ) + + marlin_w13_qweight = ops.awq_marlin_moe_repack( + layer.w13_qweight, + layer.w13_g_idx_sort_indices, + size_k=layer.w13_qweight.shape[1], + size_n=layer.w13_qweight.shape[2] * self.quant_config.pack_factor, + num_bits=self.quant_config.weight_bits, + ) + replace_tensor(layer, "w13_qweight", marlin_w13_qweight) + + marlin_w2_qweight = ops.awq_marlin_moe_repack( + layer.w2_qweight, + layer.w2_g_idx_sort_indices, + size_k=layer.w2_qweight.shape[1], + size_n=layer.w2_qweight.shape[2] * self.quant_config.pack_factor, + num_bits=self.quant_config.weight_bits, + ) + replace_tensor(layer, "w2_qweight", marlin_w2_qweight) + + # Why does this take the intermediate size for size_k? + marlin_w13_scales = marlin_moe_permute_scales( + s=layer.w13_scales, + size_k=layer.intermediate_size_per_partition, + size_n=layer.w13_scales.shape[2], + group_size=self.quant_config.group_size, + ) + + replace_tensor(layer, "w13_scales", marlin_w13_scales) + + marlin_w2_scales = marlin_moe_permute_scales( + s=layer.w2_scales, + size_k=layer.intermediate_size_per_partition, + size_n=layer.w2_scales.shape[2], + group_size=self.quant_config.group_size, + ) + replace_tensor(layer, "w2_scales", marlin_w2_scales) + + marlin_w13_zp = moe_awq_to_marlin_zero_points( + layer.w13_qzeros, + size_k=layer.w13_qzeros.shape[1], + size_n=layer.w13_qzeros.shape[2] * self.quant_config.pack_factor, + num_bits=self.quant_config.weight_bits) + replace_tensor(layer, "w13_qzeros", marlin_w13_zp) + + marlin_w2_zp = moe_awq_to_marlin_zero_points( + layer.w2_qzeros, + size_k=layer.w2_qzeros.shape[1], + size_n=layer.w2_qzeros.shape[2] * self.quant_config.pack_factor, + num_bits=self.quant_config.weight_bits) + replace_tensor(layer, "w2_qzeros", marlin_w2_zp) + + def apply( + self, + layer: torch.nn.Module, + x: torch.Tensor, + router_logits: torch.Tensor, + top_k: int, + renormalize: bool = True, + use_grouped_topk: bool = False, + num_expert_group: Optional[int] = None, + topk_group: Optional[int] = None, + custom_routing_function: Optional[Callable] = None, + ) -> torch.Tensor: + + from vllm.model_executor.layers.fused_moe.fused_marlin_moe import ( + fused_marlin_moe) + + topk_weights, topk_ids = FusedMoE.select_experts( + hidden_states=x, + router_logits=router_logits, + use_grouped_topk=use_grouped_topk, + top_k=top_k, + renormalize=renormalize, + topk_group=topk_group, + num_expert_group=num_expert_group, + custom_routing_function=custom_routing_function) + + return fused_marlin_moe( + x, + layer.w13_qweight, + layer.w2_qweight, + layer.w13_scales, + layer.w2_scales, + router_logits, + topk_weights, + topk_ids, + w1_zeros=layer.w13_qzeros, + w2_zeros=layer.w2_qzeros, + num_bits=self.quant_config.weight_bits, + ) diff --git a/vllm/model_executor/layers/quantization/gptq_marlin.py b/vllm/model_executor/layers/quantization/gptq_marlin.py index e77191796bd7e..b9b43413b35db 100644 --- a/vllm/model_executor/layers/quantization/gptq_marlin.py +++ b/vllm/model_executor/layers/quantization/gptq_marlin.py @@ -509,6 +509,7 @@ def process_weights_after_loading(self, layer: torch.nn.Module) -> None: ) replace_parameter(layer, "w2_qweight", marlin_w2_qweight) # Repack scales + # Why does this take the intermediate size for size_k? marlin_w13_scales = marlin_moe_permute_scales( s=layer.w13_scales, size_k=layer.intermediate_size_per_partition, diff --git a/vllm/model_executor/layers/quantization/utils/marlin_utils.py b/vllm/model_executor/layers/quantization/utils/marlin_utils.py index 53762965732ce..1a495bcacece0 100644 --- a/vllm/model_executor/layers/quantization/utils/marlin_utils.py +++ b/vllm/model_executor/layers/quantization/utils/marlin_utils.py @@ -208,6 +208,7 @@ def marlin_moe_permute_scales( device=s.device, dtype=s.dtype, ) + for e in range(num_experts): output[e] = marlin_permute_scales(s[e], size_k, size_n, group_size) return output @@ -257,6 +258,30 @@ def awq_to_marlin_zero_points(q_zp_packed: torch.Tensor, size_k: int, marlin_zp = marlin_zero_points(q_zp, size_k, size_n, num_bits) return marlin_zp +def moe_awq_to_marlin_zero_points(q_zp_packed: torch.Tensor, size_k: int, + size_n: int, num_bits: int): + num_experts = q_zp_packed.shape[0] + output = torch.empty( + (num_experts, q_zp_packed.shape[1], q_zp_packed.shape[2]), + device=q_zp_packed.device, + dtype=q_zp_packed.dtype, + ) + for e in range(num_experts): + output[e] = awq_to_marlin_zero_points(q_zp_packed[e], size_k, size_n, + num_bits) + return output + + +# Newly generated tensors need to replace existing tensors that are +# already registered as parameters by vLLM (and won't be freed) +def replace_tensor(layer: torch.nn.Module, name: str, + new_t: torch.Tensor) -> None: + # It is important to use resize_() here since it ensures + # the same buffer is reused + getattr(layer, name).resize_(new_t.shape) + getattr(layer, name).copy_(new_t) + del new_t + def apply_gptq_marlin_linear( input: torch.Tensor, diff --git a/vllm/model_executor/model_loader/utils.py b/vllm/model_executor/model_loader/utils.py index 2bfe6ea09bd62..792c359a559a9 100644 --- a/vllm/model_executor/model_loader/utils.py +++ b/vllm/model_executor/model_loader/utils.py @@ -23,7 +23,9 @@ def get_model_architecture( architectures = getattr(model_config.hf_config, "architectures", []) # Special handling for quantized Mixtral. # FIXME(woosuk): This is a temporary hack. - mixtral_supported = ["fp8", "compressed-tensors", "gptq_marlin"] + mixtral_supported = [ + "fp8", "compressed-tensors", "gptq_marlin", "awq", "awq_marlin" + ] if (model_config.quantization is not None and model_config.quantization not in mixtral_supported