diff --git a/README.md b/README.md index bf7e0da..354fd71 100644 --- a/README.md +++ b/README.md @@ -23,13 +23,31 @@ We recommend starting out with the demo notebook ```notebooks/mcorr_cnmf.ipynb`` Documentation is available at: https://mesmerize-core.readthedocs.io/ \ User guide: https://mesmerize-core.readthedocs.io/en/latest/user_guide.html +# Overview + +![batch_management](https://user-images.githubusercontent.com/9403332/179145962-82317da6-0340-44e4-83ba-7dace0300f55.png) + # Visualization -For visualization we recommend [`mesmerize-viz`](https://github.com/kushalkolar/mesmerize-viz) which contains a standard set of visualizations (a WIP), or [`fastplotlib`](https://github.com/kushalkolar/fastplotlib). You can also use the [`mesmerize-napari`](https://github.com/nel-lab/mesmerize-napari) plugin for small datasets. +For visualization we recommend [`mesmerize-viz`](https://github.com/kushalkolar/mesmerize-viz) which contains a standard set of visualizations (a WIP), or [`fastplotlib`](https://github.com/kushalkolar/fastplotlib). Here are some examples of visualizations using `fastplotlib`, these visualizations are all performed within jupyter notebooks therefore they will also work on cloud computing intrastructure! -# Overview +View raw and motion corrected movie side by side: -![batch_management](https://user-images.githubusercontent.com/9403332/179145962-82317da6-0340-44e4-83ba-7dace0300f55.png) +https://user-images.githubusercontent.com/9403332/191207398-39a027d7-079e-475b-baec-381f2d271652.mp4 + +Contours from CNMF, good components in cyan and bad components in magenta: + +https://user-images.githubusercontent.com/9403332/191207461-9c5c4cad-867b-413a-b30b-ea61f010eed6.mp4 + +Input movie, constructed movie `(A * C)`, residuals `(Y - A * C - b * f)`, and reconstructed background (b * f): + +https://user-images.githubusercontent.com/9403332/191207782-566e24bc-7f0d-40a3-9442-37c86d0ebe48.mp4 + +Interactive Component evaluation after CNMF: + +https://user-images.githubusercontent.com/9403332/191207883-2393664d-b5e1-49a5-84d1-8ed7eadcf7a0.mp4 + +This is all possible within jupyter notebooks using `fastplotlib`! # Installation