-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
69 lines (63 loc) · 2.18 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import torch
import torch.nn as nn
import math
import numpy as np
_str_to_activation = {
'relu': nn.ReLU(),
'tanh': nn.Tanh(),
'leaky_relu': nn.LeakyReLU(),
'sigmoid': nn.Sigmoid(),
'selu': nn.SELU(),
'softplus': nn.Softplus(),
'identity': nn.Identity(),
}
def build_mlp(
input_size: int,
output_size: int,
n_layers: int,
size: int,
activation = 'tanh',
output_activation = 'identity',
):
"""
Builds a feedforward neural network
arguments:
input_placeholder: placeholder variable for the state (batch_size, input_size)
scope: variable scope of the network
n_layers: number of hidden layers
size: dimension of each hidden layer
activation: activation of each hidden layer
input_size: size of the input layer
output_size: size of the output layer
output_activation: activation of the output layer
returns:
output_placeholder: the result of a forward pass through the hidden layers + the output layer
"""
if isinstance(activation, str):
activation = _str_to_activation[activation]
if isinstance(output_activation, str):
output_activation = _str_to_activation[output_activation]
layers = []
in_size = input_size
for _ in range(n_layers):
layers.append(nn.Linear(in_size, size))
layers.append(activation)
in_size = size
layers.append(nn.Linear(in_size, output_size))
layers.append(output_activation)
return nn.Sequential(*layers)
def uniform(output_size, input_size, lower_bound = None, upper_bound = None):
if input_size == 0 or output_size == 0:
return torch.zeros((output_size, input_size))
if lower_bound is None:
lower_bound = -1/math.sqrt(input_size)
upper_bound = -lower_bound
return (upper_bound - lower_bound)*torch.rand(output_size, input_size) + lower_bound
def from_numpy(array, device=None):
out = torch.tensor(array.astype(np.float32))
if device is not None:
return out.to(device)
else:
return out
def to_numpy(tensor):
return tensor.to('cpu').detach().numpy()