io.github.anyzm.graph.ocean.annotation.GraphVertex:注解用来标识顶点Tag的实体
value是Tag名称,
keyPolicy是主键策略(io.github.anyzm.graph.ocean.enums.GraphKeyPolicy,uuid,hash,string类型),
idAsField顶点id是否作为图属性字段。
io.github.anyzm.graph.ocean.annotation.GraphEdge:注解用来标识边类型的实体
value是边名称,
srcVertex是边起点Tag实体,
dstVertex是边终点Tag实体,
srcIdAsField起点id是否作为图属性字段,
dstIdAsField终点id是否作为图属性字段。
io.github.anyzm.graph.ocean.annotation.GraphProperty:注解用来标识图属性字段
value是图里面的字段名称,
dataType是数据类型,io.github.anyzm.graph.ocean.enums.GraphDataTypeEnum是数据类型枚举,
required是否是必需字段,目前这个还没有真正限制,属于是预留字段,
propertyTypeEnum:图属性类型,用io.github.anyzm.graph.ocean.enums.GraphPropertyTypeEnum枚举来标识,
formatter:用来做字段值的格式转换,需要实现io.github.anyzm.graph.ocean.dao.GraphValueFormatter接口,其中format方法是将字段值到数据库值,reformat是将数据库值反转为字段值
io.github.anyzm.graph.ocean.annotation.GraphProperty:注解用来标识图属性
io.github.anyzm.graph.ocean.dao.GraphMapper:是操作数据库的基础接口
io.github.anyzm.graph.ocean.mapper.NebulaGraphMapper:是其主要实现接口
io.github.anyzm.graph.ocean.dao.GraphMapper.saveVertexEntities:批量保存顶点
io.github.anyzm.graph.ocean.dao.GraphMapper.saveEdgeEntitiesWithVertex:批量保存边和顶点,需要提供两个自定义的顶点生成方法,其中提供的参数是边里面的顶点值
io.github.anyzm.graph.ocean.dao.GraphMapper.saveEdgeEntities:批量保存边,不会保存顶点(假设图里面原来没有顶点的时候,直接查询边可能会出现BAD_DATA)
io.github.anyzm.graph.ocean.dao.GraphMapper.executeBatchUpdateSql:指定空间批量执行更新ngql
io.github.anyzm.graph.ocean.dao.GraphMapper.executeUpdateSql(java.lang.String, java.lang.String):指定空间单条执行更新ngql
io.github.anyzm.graph.ocean.dao.GraphMapper.executeUpdateSql(java.lang.String):使用默认图空间执行单条更新ngql
io.github.anyzm.graph.ocean.dao.GraphMapper.executeQuerySql(java.lang.String):使用默认图空间执行查询ngql
io.github.anyzm.graph.ocean.dao.GraphMapper.executeQuerySql(java.lang.String, java.lang.String):指定图空间执行查询ngql
io.github.anyzm.graph.ocean.dao.GraphMapper.executeQuerySql(java.lang.String, java.lang.Class):使用默认图空间执行查询ngql,并且返回指定的实体类
io.github.anyzm.graph.ocean.dao.GraphMapper.executeQuery(io.github.anyzm.graph.ocean.domain.GraphQuery):使用默认图空间执行查询API
io.github.anyzm.graph.ocean.dao.GraphMapper.executeQuery(java.lang.String, io.github.anyzm.graph.ocean.domain.GraphQuery):使用指定的图空间执行查询API
io.github.anyzm.graph.ocean.dao.GraphMapper.executeQuery(io.github.anyzm.graph.ocean.domain.GraphQuery, java.lang.Class):使用默认图空间执行查询API并返回相应的实体类
io.github.anyzm.graph.ocean.dao.GraphMapper.goOutEdge:使用默认图空间查询相应的实体类对应的出边,可以传入多个顶点id
io.github.anyzm.graph.ocean.dao.GraphMapper.goReverseEdge:使用默认图空间查询相应的实体类对应的出边,可以传入多个顶点id
io.github.anyzm.graph.ocean.dao.GraphMapper.fetchVertexTag:使用默认图空间查询相应的实体类对应的顶点,可以传入多个顶点id
GraphMapper这个接口有一个默认的实现类NebulaGraphMapper,它的构造方法如下,一般来说顶点、边的引擎以及类型管理我们用默认的即可。
但是我们还要传入NebulaPoolSessionManager(session管理)和space(图空间)
public NebulaGraphMapper(NebulaPoolSessionManager nebulaPoolSessionManager,
String space) {
this.graphTypeManager = new DefaultGraphTypeManager();
this.graphUpdateVertexEngineFactory = new NebulaUpdateVertexEngineFactory();
this.graphUpdateEdgeEngineFactory = new NebulaUpdateEdgeEngineFactory();
this.nebulaPoolSessionManager = nebulaPoolSessionManager;
this.space = space;
init();
}
public NebulaGraphMapper(NebulaPoolSessionManager nebulaPoolSessionManager,
String space,
GraphUpdateVertexEngineFactory graphUpdateVertexEngineFactory,
GraphUpdateEdgeEngineFactory graphUpdateEdgeEngineFactory) {
this.graphTypeManager = new DefaultGraphTypeManager();
this.graphUpdateVertexEngineFactory = graphUpdateVertexEngineFactory;
this.graphUpdateEdgeEngineFactory = graphUpdateEdgeEngineFactory;
this.nebulaPoolSessionManager = nebulaPoolSessionManager;
this.space = space;
init();
}
NebulaPoolSessionManager的构造方法如下,其中NebulaPool是nebula-java池化类,剩下的就是用户名、密码和是否重连了。
public NebulaPoolSessionManager(NebulaPool nebulaPool, String userName, String password, boolean reconnect) {
this.nebulaPool = nebulaPool;
this.userName = userName;
this.password = password;
this.reconnect = reconnect;
}
讲了这么多,我们不如来看一个生产在使用的例子吧。
下面就是一个我们生产正在使用的初始化的方法,这样初始化之后我们可以在任意的spring容器管理的类里面用注解注入NebulaGraphMapper实例了
这样也就能愉快的使用上面的一些方法了
@Configuration
public class NebulaPoolInit {
@Value("${nebula.pool.max.connect.size:1000}")
private int nebulaPoolMaxConnSize;
@Value("${nebula.pool.min.connect.size:50}")
private int nebulaPoolMinConnSize;
@Value("${nebula.pool.idle.time:180000}")
private int nebulaPoolIdleTime;
@Value("${nebula.pool.timeout:300000}")
private int nebulaPoolTimeout;
@Value("${nebula.cluster.address:}")
private String nebulaCluster;
@Value("${nebula.userName:}")
private String userName;
@Value("${nebula.password:}")
private String password;
@Value("${socialBook.nebula.space:}")
private String space;
@Bean
public NebulaPoolConfig nebulaPoolConfig() {
NebulaPoolConfig nebulaPoolConfig = new NebulaPoolConfig();
nebulaPoolConfig.setMaxConnSize(nebulaPoolMaxConnSize);
nebulaPoolConfig.setMinConnSize(nebulaPoolMinConnSize);
nebulaPoolConfig.setIdleTime(nebulaPoolIdleTime);
nebulaPoolConfig.setTimeout(nebulaPoolTimeout);
return nebulaPoolConfig;
}
@Bean
public NebulaPool nebulaPool(NebulaPoolConfig nebulaPoolConfig) throws UnknownHostException {
List<HostAddress> addresses = null;
try {
String[] hostPorts = StringUtils.split(nebulaCluster, ",");
addresses = Lists.newArrayListWithExpectedSize(hostPorts.length);
for (String hostPort : hostPorts) {
String[] linkElements = StringUtils.split(hostPort, ":");
HostAddress hostAddress = new HostAddress(linkElements[0], Integer.valueOf(linkElements[1]));
addresses.add(hostAddress);
}
} catch (Exception e) {
throw new RuntimeException("nebula数据库连接信息配置有误,正确格式:ip1:port1,ip2:port2");
}
NebulaPool pool = new NebulaPool();
pool.init(addresses, nebulaPoolConfig);
return pool;
}
@Bean
public NebulaPoolSessionManager nebulaPoolSessionManager(NebulaPool nebulaPool) {
return new NebulaPoolSessionManager(nebulaPool, userName, password, true);
}
@Bean
public NebulaGraphMapper nebulaGraphMapper(NebulaPoolSessionManager nebulaPoolSessionManager) {
return new NebulaGraphMapper(nebulaPoolSessionManager, space);
}
}
下面是一个通讯类边关系的注解使用示例
@GraphEdge(value = "e_address_book", srcVertex = VertexEntity.class, dstVertex = VertexEntity.class)
@Setter
@Getter
public class EAddressBookEntity {
@GraphProperty(value = "user_no1", required = true, propertyTypeEnum = GraphPropertyTypeEnum.GRAPH_EDGE_SRC_ID)
private String userNo1;
@GraphProperty(value = "user_no2", required = true, propertyTypeEnum = GraphPropertyTypeEnum.GRAPH_EDGE_DST_ID)
private String userNo2;
/**
* userNo1对userNo2的姓名备注
*/
@GraphProperty(value = "contact_name", formatter = ContractNameGraphValueFormatter.class)
private String contactName = "";
/**
* 回溯时可以使用userNo1的授信申请时间
*/
@GraphProperty(value = "create_time", dataType = GraphDataTypeEnum.TIMESTAMP, formatter = DateGraphValueFormatter.class)
private Date createTime;
@GraphProperty(value = "update_time", dataType = GraphDataTypeEnum.TIMESTAMP, formatter = DateGraphValueFormatter.class)
private Date updateTime;
}
上面的DateGraphValueFormatter类主要作用是时间的转换,代码如下:
@Slf4j
public class DateGraphValueFormatter implements GraphValueFormatter {
@Override
public Object format(Object oldValue) {
if (oldValue instanceof Date) {
Date date = (Date) oldValue;
long value = date.getTime() / 1000;
log.debug("格式化oldValue={},value={}", oldValue, value);
return value;
}
return null;
}
/**
* nebula属性值反转为javaBean值
*
* @param nebulaValue
* @return
*/
@Override
public Object reformat(Object nebulaValue) {
if (nebulaValue instanceof Long) {
return (Long)nebulaValue * 1000L;
}
return nebulaValue;
}
}
下面是顶点TAG注解的使用示例
@GraphVertex(value = "user", keyPolicy = GraphKeyPolicy.string_key)
@Setter
@Getter
public class VertexEntity {
@GraphProperty(value = "user_no", required = true, propertyTypeEnum = GraphPropertyTypeEnum.GRAPH_VERTEX_ID)
private String userNo;
@GraphProperty(value = "mobile_no_encryptx")
private String mobileNoEncryptx;
@GraphProperty(value = "mobile_no_md5x")
private String mobileNoMd5x;
@GraphProperty(value = "birth_date")
private String birthDate;
@GraphProperty(value = "gender")
private String gender;
@GraphProperty(value = "credit_amt", dataType = GraphDataTypeEnum.DOUBLE)
private Double creditAmt;
@GraphProperty(value = "credit_datetime", dataType = GraphDataTypeEnum.TIMESTAMP, formatter = DateGraphValueFormatter.class)
private Date creditDatetime;
@GraphProperty(value = "register_time", dataType = GraphDataTypeEnum.TIMESTAMP, formatter = DateGraphValueFormatter.class)
private Date registerTime;
}
public GraphQuery getGraphQuery(Class labelClazz, LocalDate backtraceDate, int steps, int limitSize, String userNo, String... userNos) {
//go from 指定实体类(也就是指定边),指定方向,指定步数,指定顶点id(用户号)
EdgeQuery edgeQuery = NebulaEdgeQuery.build().goFromSteps(labelClazz, EdgeDirectionEnum.BIDIRECT, 1, steps, userNos);
if (backtraceDate != null) {
//设置时间范围
backtraceDate = backtraceDate.plusDays(1);
Date date = Date.from(backtraceDate.atStartOfDay(ZoneId.systemDefault()).toInstant());
GraphCondition createTimeCondition = NebulaCondition.build().andLessEqualsWithOriginalValue(labelClazz, "createTime", date);
if (defaultCondition != null) {
createTimeCondition.and(defaultCondition);
}
graphQuery.where(createTimeCondition);
}
//返回边对应的顶点的属性并且limit限制条数,最后管道符号再指定相应的返回内容
//其中getYieldShortQuery()是抽象类的方法,有不同的实现,比如有求平均值的,有求最大值的等等
return edgeQuery.yieldDistinct("$$.", VertexEntity.class, fieldArray()).limit(limitSize).pipe().yield().connectAdd(getYieldShortQuery());
}
下面是其中一个getShortQuery() 的实现,类似这样,你可以根据自己的业务需求制定自己的写法
@Override
public Pair<String, GraphExpression> getAliasExpression() {
NebulaExpression nebulaExpression = NebulaExpression.build().caseWhenThenEnd(getGraphCondition(), "(date()-date($-.birthDate))/365");
return new Pair<>("AvgAge", nebulaExpression);
}
@Override
public GraphQuery getShortQuery() {
Pair<String, GraphExpression> pair = getAliasExpression();
return NebulaEdgeQuery.build().avgComma(pair.getValue(), pair.getKey());
}
/**
* 获取过滤条件
*
* @return
*/
@Override
public GraphCondition getGraphCondition() {
GraphCondition graphCondition = super.getGraphCondition();
return graphCondition.andSymbol("$-.birthDate", " is not ", null)
.andSymbol("$-.birthDate", "!=", "");
}
其实API查询有各种各样的实现方式,也有不同的API,建议直接去看源码和javadoc注解,结合不同的设计模式可以玩出不同的花样,实现的本质就是ngql的顺序拼接,所以学好ngql才能更好的使用API查询。
有人会疑惑,既然学好了ngql,我还用API查询干啥,直接写语句不行吗?直接写ngql,不用API有以下不方便:
1、不方便移植,每次ngql编写都是一次性的;
2、ngql比较长的时候,可读性很低;
3、到处都是ngql,代码不够优雅,也不能很好的结合设计模式实现多变而又复杂的业务需求。
总之,学好ngql是使用nebula graph必须的也是最关键的一步,学好了之后再配合ORM框架才能快速地开发并且快速的解决问题,最后无往不利。