-
Notifications
You must be signed in to change notification settings - Fork 0
/
explore_page.py
105 lines (82 loc) · 3.08 KB
/
explore_page.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
@st.cache_data
def load_data():
df = pd.read_csv("survey_results_public.csv")
print(df.shape)
df = df[["Country", "EdLevel", "YearsCodePro", "Employment", "ConvertedCompYearly"]]
df = df[df["ConvertedCompYearly"].notnull()]
df = df[df["Employment"] == "Employed, full-time"]
df = df.drop("Employment", axis=1)
country_map = shorten_categories(df.Country.value_counts(), 400)
df["Country"] = df["Country"].map(country_map)
df = df[df["ConvertedCompYearly"] <= 250000]
df = df[df["ConvertedCompYearly"] >= 10000]
df = df[df["Country"] != "Other"]
df["YearsCodePro"] = df["YearsCodePro"].apply(clean_experience)
df["EdLevel"] = df["EdLevel"].apply(clean_education)
df = df.rename({"ConvertedCompYearly": "Salary"}, axis=1)
print(df.shape)
return df
def shorten_categories(categories, cutoff): #this is to remove the extra countries, or the countries which doesnt have many developers
categorical_map={}
for i in range(len(categories)):
if categories.values[i]>=cutoff:
categorical_map[categories.index[i]]=categories.index[i]
else:
categorical_map[categories.index[i]]='Other'
return categorical_map
def clean_experience(x):
if x == 'More than 50 years':
return 50
if x == 'Less than 1 year':
return 0.5
return float(x)
def clean_education(x):
"""
This function cleans the 'EdLevel' column in a DataFrame.
Args:
df (pandas.DataFrame): The DataFrame containing the 'EdLevel' column.
Returns:
pandas.DataFrame: The DataFrame with the cleaned 'EdLevel' column.
"""
x = str(x) # Convert to string to handle possible NaN values
if 'Bachelor’s degree' in x:
return 'Bachelor’s degree'
elif 'Master’s degree' in x:
return 'Master’s degree'
elif 'Professional degree' in x or 'Other doctoral' in x:
return 'Post grad'
else:
return 'Less than a Bachelors'
def show_explore_page():
st.title("Explore Software Engineer Salaries")
st.write(
"""
### Stack Overflow Developer Survey 2023
"""
)
df=load_data()
data = df["Country"].value_counts()
fig1, ax1 = plt.subplots()
ax1.pie(data, labels=data.index, autopct="%1.1f%%", shadow=True, startangle=90, textprops={'fontsize': 5}, labeldistance=1.1)
ax1.axis("equal") # Equal aspect ratio ensures that pie is drawn as a circle.
st.write("""#### Number of Data from different countries""")
st.pyplot(fig1)
plt.close(fig1)
st.write(
"""
#### Mean Salary Based On Country
"""
)
data = df.groupby(["Country"])["Salary"].mean().sort_values(ascending=True)
st.bar_chart(data)
st.write(
"""
#### Mean Salary Based On Experience
"""
)
data = df.groupby(["YearsCodePro"])["Salary"].mean().sort_values(ascending=True)
st.line_chart(data)
show_explore_page()