diff --git a/content/03_oscillation.html b/content/03_oscillation.html index 2c8d5506..7812e148 100644 --- a/content/03_oscillation.html +++ b/content/03_oscillation.html @@ -889,13 +889,13 @@
You might have noticed that in Example 3.10’s spring code, I never once used sine or cosine. Before you write off all this trigonometry stuff as a tangent, however, allow me to show an example of how it all fits together. Imagine a bob hanging from an anchor connected by a spring with a fully rigid connection that can be neither compressed nor extended. This idealized scenario describes a pendulum and provides an excellent opportunity to practice combining all that you’ve learned about forces and trigonometry.
A pendulum is a bob suspended by an arm from a pivot (previously called the anchor in the spring). When the pendulum is at rest, it hangs straight down, as in Figure 3.18. If you lift up the pendulum at an angle from its resting state and then release it, however, it starts to swing back and forth, tracing the shape of an arc. A real-world pendulum would live in a 3D space, but I’m going to look at a simpler scenario: a pendulum in the 2D space of a p5.js canvas. Figure 3.19 shows the pendulum in a nonresting position and adds the forces at play: gravity and tension.
+When the pendulum swings, its arm and bob are essentially rotating around the fixed point of the pivot. If no arm connected the bob and the pivot, the bob would simply fall to the ground under the influence of gravity. Obviously, that isn’t what happens. Instead, the fixed length of the arm creates the second force—tension. However, I’m not going to work with this scenario according to these forces, at least not in the way I approached the spring scenario.
When the pendulum swings, its arm and bob are essentially rotating around the fixed point of the pivot. If no arm connected the bob and the pivot, the bob would simply fall to the ground under the influence of gravity. Obviously, that isn’t what happens. Instead, the fixed length of the arm creates the second force—tension. However, I’m not going to work with this scenario according to these forces, at least not in the way I approached the spring scenario.
Instead of using linear acceleration and velocity, I’m going to describe the motion of the pendulum in terms of angular acceleration and angular velocity, which refer to the change of the arm’s angle \theta relative to the pendulum’s resting position. I should first warn you, especially if you’re a seasoned physicist, that I’m going to conveniently ignore several important concepts here: conservation of energy, momentum, centripetal force, and more. This isn’t intended to be a comprehensive description of pendulum physics. My goal is to offer you an opportunity to practice your new skills in trigonometry and further explore the relationship between forces and angles through a concrete example.
To calculate the pendulum’s angular acceleration, I’m going to use Newton’s second law of motion but with a little trigonometric twist. Take a look at Figure 3.19 and tilt your head so that the pendulum’s arm becomes the vertical axis. The force of gravity suddenly points askew, a little to the left—it’s at an angle with respect to your tilted head. If this is starting to hurt your neck, don’t worry. I’ll redraw the tilted figure and relabel the forces F_g for gravity and T for tension (Figure 3.20, left).