-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
144 lines (123 loc) · 5.32 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import config
import numpy as np
import os
import torch
from PIL import Image, ImageFile
from torch.utils.data import Dataset, DataLoader
from utils import (
cells_to_bboxes,
iou_width_height as iou,
non_max_suppression as nms,
plot_image
)
ImageFile.LOAD_TRUNCATED_IMAGES = True
class YOLODataset(Dataset):
def __init__(
self,
img_dir,
label_dir,
anchors,
image_size=640,
S=[13, 26, 52],
C=20,
transform=None,
):
self.annotations = os.listdir(img_dir)
self.img_dir = img_dir
self.label_dir = label_dir
self.image_size = image_size
self.transform = transform
self.S = S
self.anchors = torch.tensor(anchors[0] + anchors[1] + anchors[2]) # for all 3 scales
self.num_anchors = self.anchors.shape[0]
self.num_anchors_per_scale = self.num_anchors // 3
self.C = C
self.ignore_iou_thresh = 0.5
def __len__(self):
return len(self.annotations)
def __getitem__(self, index):
label_path = os.path.join(self.label_dir, self.annotations[index][:-4] + ".txt")
bboxes = self._convert_polygon_to_yolo_bbox(file_path=label_path)
img_path = os.path.join(self.img_dir, self.annotations[index])
image = np.array(Image.open(img_path).convert("RGB"))
if self.transform:
augmentations = self.transform(image=image, bboxes=bboxes)
image = augmentations["image"]
bboxes = augmentations["bboxes"]
# Below assumes 3 scale predictions (as paper) and same num of anchors per scale
targets = [torch.zeros((self.num_anchors // 3, S, S, 6)) for S in self.S]
for box in bboxes:
iou_anchors = iou(torch.tensor(box[2:4]), self.anchors)
anchor_indices = iou_anchors.argsort(descending=True, dim=0)
x, y, width, height, class_label = box
has_anchor = [False] * 3 # each scale should have one anchor
for anchor_idx in anchor_indices:
scale_idx = anchor_idx // self.num_anchors_per_scale
anchor_on_scale = anchor_idx % self.num_anchors_per_scale
S = self.S[scale_idx]
i, j = int(S * y), int(S * x) # which cell
anchor_taken = targets[scale_idx][anchor_on_scale, i, j, 0]
if not anchor_taken and not has_anchor[scale_idx]:
targets[scale_idx][anchor_on_scale, i, j, 0] = 1
x_cell, y_cell = S * x - j, S * y - i # both between [0,1]
width_cell, height_cell = (
width * S,
height * S,
) # can be greater than 1 since it's relative to cell
box_coordinates = torch.tensor(
[x_cell, y_cell, width_cell, height_cell]
)
targets[scale_idx][anchor_on_scale, i, j, 1:5] = box_coordinates
targets[scale_idx][anchor_on_scale, i, j, 5] = int(class_label)
has_anchor[scale_idx] = True
elif not anchor_taken and iou_anchors[anchor_idx] > self.ignore_iou_thresh:
targets[scale_idx][anchor_on_scale, i, j, 0] = -1 # ignore prediction
return image, tuple(targets)
def _convert_polygon_to_yolo_bbox(self,file_path):
data = []
# Step 1: Read the text file line by line
with open(file_path, 'r') as file:
for line in file:
# Step 2: Split each line into individual elements
elements = line.strip().split()
# Step 3: Convert the elements into numerical values (if needed)
numerical_elements = [float(element) for element in elements] # Convert to float, change data type if needed
className,polygon_vertices = numerical_elements[0],numerical_elements[1:]
min_x, min_y = min(polygon_vertices[::2]), min(polygon_vertices[1::2])
max_x, max_y = max(polygon_vertices[::2]), max(polygon_vertices[1::2])
# Calculate bounding box parameters
x_center = (min_x + max_x) / 2.0
y_center = (min_y + max_y) / 2.0
width = max_x - min_x
height = max_y - min_y
data.append([x_center,y_center,width,height,int(className)])
return data
def test():
anchors = config.ANCHORS
transform = config.test_transforms
dataset = YOLODataset(
"dataset/images/",
"dataset/label/",
S=[13, 26, 52],
anchors=anchors,
transform=transform,
)
S = [13, 26, 52]
scaled_anchors = torch.tensor(anchors) / (
1 / torch.tensor(S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
)
loader = DataLoader(dataset=dataset, batch_size=1, shuffle=True)
for x, y in loader:
boxes = []
for i in range(y[0].shape[1]):
anchor = scaled_anchors[i]
print(anchor.shape)
print(y[i].shape)
boxes += cells_to_bboxes(
y[i], is_preds=False, S=y[i].shape[2], anchors=anchor
)[0]
boxes = nms(boxes, iou_threshold=1, threshold=0.7, box_format="midpoint")
print(boxes)
plot_image(x[0].permute(1, 2, 0).to("cpu"), boxes)
if __name__ == "__main__":
test()