-
Notifications
You must be signed in to change notification settings - Fork 0
/
Maps_ts_plots_ANNPrecip.R
127 lines (106 loc) · 5.21 KB
/
Maps_ts_plots_ANNPrecip.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
library(tidyr)
library(dplyr)
library(stars)
library(raster)
library(here)
library(ggplot2)
library(ggthemes)
library(zoo)
library(viridis)
library(ggbreak)
library(lemon)
library(ggpubr);library(gridExtra);library(grid);library(gtable)
rm(list=ls())
data.dir <- here::here('data/Output/Data-files//')
plot.dir <- here::here('data/Output//Plots//')
#ANNPrecip -- load .rds files
CF1.rds <- readRDS(paste0(data.dir,"ANNPrecipDelta_rcp45")) %>% #change var name
mutate(pcp.in = Rainfall_mm /25.4)
CF1.rds <- CF1.rds["pcp.in"]
CF2.rds <- readRDS(paste0(data.dir,"ANNPrecipDelta_rcp85")) %>% #change var name
mutate(pcp.in = Rainfall_mm /25.4)
CF2.rds <- CF2.rds["pcp.in"]
boundary <-st_read('C:/Users/arunyon/OneDrive - DOI/Documents/GIS/HAVO_Kilauea_Summit_Wet_Dry_Zones/HAVO_Kilauea_Summit_Wet_Dry_Zones.shp')
boundary <- st_transform(boundary, st_crs(CF1.rds))
CF_GCM <- data.frame(CF=c("Climate Future 1", "Climate Future 2"), scen=c("rcp45","rcp85"))
cols <- c("#9A9EE5","#E10720")
var = "PrecipIn" #change to name of var in df
long.title = "total precipitation (in/year)" #change to be legend
delta.var = "PrecipIn"
scale="viridis"
# insert topo
topo <- stack('./data/data/natehii0100a.tif')
topo <- projectRaster(topo,crs = crs(boundary)); topo <- crop(topo, boundary)
topo_df <- as.data.frame(topo, xy = TRUE)
# Generate sample data for ts plot
df = read.csv(paste0(data.dir,"RF.monthly.csv")) %>% mutate(PrecipIn = Rainfall_mm/25.4)
df = merge(df, CF_GCM,by="scen",all=TRUE)
df$CF[which(is.na((df$CF)))] = "Recent"
# df$CF_col[which(is.na((df$CF_col)))] = "grey"
df$CF = factor(df$CF, levels=c("Recent",CF_GCM$CF))
df$Year = as.Date(format(as.Date(df$date,format="%Y-%m-%d"),"%Y"),format="%Y")
DF=aggregate(PrecipIn~Year+CF,df,sum)
DF$period = factor(ifelse(DF$Year<"2010-01-01","Past","Future"),levels=c("Past","Future"))
means <- DF %>% group_by(CF) %>%
dplyr::summarize(var = mean(eval(parse(text=var))))
scale.min = min(c(CF1.rds$pcp.in, CF2.rds$pcp.in),na.rm=TRUE)
scale.max = max(c(CF1.rds$pcp.in, CF2.rds$pcp.in),na.rm=TRUE)
# ggplot
map.plot <- function(data, title,xaxis,metric,col){
ggplot() +
geom_raster(data = topo_df ,aes(x = x, y = y,alpha=natehii0100a_1), show.legend=FALSE) +
geom_stars(data = data, alpha = 0.8) +
geom_sf(data = boundary, aes(), fill = NA) +
scale_fill_viridis(direction=-1, option = scale, limits = c(scale.min, scale.max),
guide = guide_colorbar(title.position = "top", title.hjust = 0.5),oob = scales::squish) + #mako for WB delta
labs(title = title) +
theme_map() +
theme(legend.position = "bottom",
legend.key.width = unit(6, "cm"),
legend.key.height = unit(.3, "cm"),
legend.justification = "center",
plot.title=element_text(size=12,face="bold",hjust=0.5),
plot.background = element_rect(colour = col, fill=NA, linewidth = 5)) +
labs(fill = metric)
}
cf1 <- map.plot(data=CF1.rds,title="Climate Future 1",metric=long.title,col=cols[1])
cf2 <- map.plot(data=CF2.rds,title="Climate Future 2",metric=long.title,col=cols[2])
ts<-ggplot(DF, aes(x=Year, y=(eval(parse(text=var))), group=CF, colour = CF)) +
geom_line(colour = "black",size=2.5, stat = "identity") +
geom_line(size = 2, stat = "identity") +
geom_point(colour= "black", size=4, aes(fill = factor(CF), shape = factor(CF))) +
theme(axis.text=element_text(size=14),
# axis.text.x=element_blank(),
axis.title.x=element_text(size=16,vjust=1.0),
axis.title.y=element_text(size=16,vjust=1.0),
plot.title=element_blank(),
legend.text=element_text(size=14), legend.title=element_text(size=14),
legend.position = "bottom") +
labs(title = paste0("Change in annual ",long.title),
x = "Year", y = long.title) +
scale_color_manual(name="",values = c("grey",cols)) +
scale_fill_manual(name="",values = c("grey",cols)) +
scale_shape_manual(name="",values = c(21,22,23)) +
facet_wrap(~period, nrow = 1, ncol=3,scales = "free_x")
# coord_fixed(ratio = .3)
ts
#### Just maps and ts plot
maps <- grid_arrange_shared_legend(cf1, cf2,ncol = 2, nrow = 1, position = "bottom",
top = textGrob(paste0("Change in ",long.title),
gp=gpar(fontface="bold", col="black", fontsize=16)))
# g <- ggarrange(maps,ts, nrow=2)
# g
#### Maps, ts, table
delta.var <- means
delta.var$var[2:3] <- delta.var$var[2:3] - delta.var$var[1]
delta.var$var <- signif(delta.var$var, digits = 1)
table <- tableGrob(delta.var, rows = NULL,cols=NULL)
# table <- gtable_add_grob(table, grobs = rectGrob(gp = gpar(fill=NA, lwd=2)), #library(gtable)
# t=4,b=nrow(table),l=1,r=ncol(table))
table <- annotate_figure(table,
top = text_grob("Recent = absolute value \n CFs = change values", color = "black",
face = "italic", size = 12))
tsplots <- grid.arrange(ts, table,ncol = 2, widths = c(4, 1), clip = FALSE)
g <- ggarrange(maps,tsplots, nrow=2)+bgcolor("white")
g
ggsave(paste0(var,"_ANN.png"), width = 20, height = 9, path = plot.dir)