-
Notifications
You must be signed in to change notification settings - Fork 1
/
acquisition_functions.py
71 lines (59 loc) · 2.49 KB
/
acquisition_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import numpy as np
import sys
# Different acquisition functions that can be used by BANANAS
def acq_fn(predictions, explore_type='its'):
predictions = np.array(predictions)
# Upper confidence bound (UCB) acquisition function
if explore_type == 'ucb':
explore_factor = 0.5
mean = np.mean(predictions, axis=0)
std = np.sqrt(np.var(predictions, axis=0))
ucb = mean - explore_factor * std
sorted_indices = np.argsort(ucb)
# Expected improvement (EI) acquisition function
elif explore_type == 'ei':
ei_calibration_factor = 5.
mean = list(np.mean(predictions, axis=0))
std = list(np.sqrt(np.var(predictions, axis=0)) /
ei_calibration_factor)
min_y = ytrain.min()
gam = [(min_y - mean[i]) / std[i] for i in range(len(mean))]
ei = [-1 * std[i] * (gam[i] * norm.cdf(gam[i]) + norm.pdf(gam[i]))
for i in range(len(mean))]
sorted_indices = np.argsort(ei)
# Probability of improvement (PI) acquisition function
elif explore_type == 'pi':
mean = list(np.mean(predictions, axis=0))
std = list(np.sqrt(np.var(predictions, axis=0)))
min_y = ytrain.min()
pi = [-1 * norm.cdf(min_y, loc=mean[i], scale=std[i]) for i in range(len(mean))]
sorted_indices = np.argsort(pi)
# Thompson sampling (TS) acquisition function
elif explore_type == 'ts':
rand_ind = np.random.randint(predictions.shape[0])
ts = predictions[rand_ind,:]
sorted_indices = np.argsort(ts)
# Top exploitation
elif explore_type == 'percentile':
min_prediction = np.min(predictions, axis=0)
sorted_indices = np.argsort(min_prediction)
# Top mean
elif explore_type == 'mean':
mean = np.mean(predictions, axis=0)
sorted_indices = np.argsort(mean)
elif explore_type == 'confidence':
confidence_factor = 2
mean = np.mean(predictions, axis=0)
std = np.sqrt(np.var(predictions, axis=0))
conf = mean + confidence_factor * std
sorted_indices = np.argsort(conf)
# Independent Thompson sampling (ITS) acquisition function
elif explore_type == 'its':
mean = np.mean(predictions, axis=0)
std = np.sqrt(np.var(predictions, axis=0))
samples = np.random.normal(mean, std)
sorted_indices = np.argsort(samples)
else:
print('Invalid exploration type in meta neuralnet search', explore_type)
sys.exit()
return sorted_indices