-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfft_sphere.jl
392 lines (300 loc) · 8.17 KB
/
fft_sphere.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
export fft_sphere, ifft_sphere, plan_fft_sphere!, plan_ifft_sphere!
function fft_sphere(U)
U = convert(Array{Complex128,2}, U)
Uf = similar(U)
Fs! = plan_fft_sphere!(U)
Fs!(Uf, U)
Uf
end
function ifft_sphere(Uf::Array{Complex128, 2})
Fs! = plan_ifft_sphere!(Uf)
U = similar(Uf)
Fs!(U, Uf)
U
end
function plan_fft_sphere!(U::Array{Complex128, 2})
Um = similar(U)
Fλ! = plan_fft_longitude!(U)
Fφ! = plan_fft_latitude!(Um)
function (Uf, U)
Fλ!(Um, U)
Fφ!(Uf, Um)
Uf
end
end
function plan_ifft_sphere!(Uf::Array{Complex128, 2})
Um = similar(Uf)
Fiφ! = plan_ifft_latitude!(Uf)
Fiλ! = plan_ifft_longitude!(Um)
function (U, Uf)
Fiφ!(Um, Uf)
Fiλ!(U, Um)
U
end
end
function plan_fft_longitude!(U::Array{Complex128,2})
F = plan_fft(U,1)
function (Um, U)
A_mul_B!(Um, F, U)
end
end
function plan_ifft_longitude!(Um::Array{Complex128,2})
Fi = plan_ifft(Um,1)
function (U, Um)
A_mul_B!(U, Fi, Um)
U
end
end
function plan_fft_latitude!(Um::Array{Complex128, 2})
M, Ms = zonal_modes(Um)
# we're offset by half a Δφ
# F(f(x-z))(k) = e^ikz F(f(x)), missing a 2 somewhere
Nφ = size(Um,2)
# two different sets of frequencies → different shifts
Ns0 = 0:Nφ-1
interior_grid_shift0 = exp( -1.0im * Ns0 * (π/Nφ/2))
Ns = 1:Nφ
interior_grid_shift = exp( -1.0im * Ns * (π/Nφ/2) + 1.0im*π/2)
pole_scale = 1./ sin(latitude_interior_grid(Um))
# FFts
v = [ Um[1, :] ; -Um[1, end:-1:1] ]
w = similar(v)
Fs = plan_fft(v)
return function (Uf, Um)
# m zero
# cosine transform
v[:] = [ Um[1, :] ; Um[1, end:-1:1] ] #even
A_mul_B!(w, Fs, v)
Uf[1, :] = w[1:Nφ]
Uf[1, :] .*= interior_grid_shift0
# sine transform
for mi in 2:size(Um, 1)
m = Ms[mi]
#pre multiply the m even modes
v[1:size(Um,2)] = Um[mi, :]
if iseven(m)
v[1:size(Um,2)] .*= pole_scale
end
v[size(Um,2)+1:end] = -v[size(Um,2):-1:1]
A_mul_B!(w, Fs, v)
Uf[mi, :] = w[2:Nφ+1] # drop the zeroth freq
Uf[mi, :] .*= interior_grid_shift
end
end
end
function plan_ifft_latitude!(Uf::Array{Complex128, 2})
M, Ms = zonal_modes(Uf)
Nφ = size(Uf, 2)
# unshifts: argument is -ve of shift
Ns0 = 0:Nφ-1
interior_grid_unshift0 = exp( 1.0im * Ns0 * (π/Nφ/2))
Ns = 1:Nφ
interior_grid_unshift = exp( +1.0im * Ns * (π/Nφ/2) - 1.0im*π/2)
#
pole_scale = sin(latitude_interior_grid(Uf))
# plan fts
v = [ 0.0 ; Uf[1, :]... ; conj(Uf[1, end:-1:2])... ]
w = similar(v)
u = view(w, 1:Nφ) # this is an undoubled view into w
u2 = view(w, Nφ+1:2*Nφ)
# INPLACE
Fsi = plan_ifft(v)
function (Um, Uf)
# start going backwards
# zero
u[:] = Uf[1,:]
u[:] .*= interior_grid_unshift0
v[:] = [ u[:] ; 0.0 ; conj(u[end:-1:2]) ] #even
A_mul_B!(w, Fsi, v)
Um[1, :] = u[:]
for mi in 2:size(Um, 1)
m = Ms[mi]
u[:] = Uf[mi,:]
u2[:] = Uf[mi,:]
u[:] .*= interior_grid_unshift
v[:] = [ 0.0 ; u[1:end] ; conj(u[end-1:-1:1]) ]
A_mul_B!(w, Fsi, v)
# undo change of variable
if iseven(m)
u[:] .*= pole_scale
end
Um[mi, :] = u[:]
end
Um
end
end
# just do the latitude transform
function ft_latitude(Um)
# full transform output
Nλ, Nφ = size(Um)
Uf = zeros(Complex128, Nλ, Nφ)
# interior grid for latitude
Φs = Complex128[ π*(j+0.5)/Nφ for j in 0:Nφ-1]
basis = zeros(Complex128, Nφ)
# m zero
m = 0
mi = m +1
for n in 0:Nφ-1
ni = n+1
basis = cos(n*Φs)
b = (n == 0 ? 1 : 2)
Uf[mi,ni] = b * sum(Um[mi, :] .* basis) / Nφ
end
# m odd
for m in 1:2:Nλ-1
mi = m+1
for n in 1:Nφ
ni = n # no offset, since n=0 is trivial
basis = sin(n*Φs)
c = (n == Nφ ? 1 : 2)
Uf[mi,ni] = c* sum(Um[mi, :] .* basis) / Nφ
end
end
# m even
for m in 2:2:Nλ-1
mi = m+1
for n in 1:Nφ
ni = n
basis = sin(n*Φs)
c = (n == Nφ ? 1 : 2)
Uf[mi,ni] = c* sum( (Um[mi, :] ./ sin(Φs)) .* basis) / Nφ
end
end
Uf
end
# Naive implementation of the transform
function ft_sphere(U)
# quantities?
Nλ, Nφ = size(U)
# fft out the longitude; Um(φ)
Um = fft(U, 1)
# full transform output
Uf = zeros(Complex128, Nλ, Nφ)
# interior grid for latitude
Φs = Complex128[ π*(j+0.5)/Nφ for j in 0:Nφ-1]
basis = zeros(Complex128, Nφ)
# m zero
m = 0
mi = m +1
for n in 0:Nφ-1
ni = n+1
basis = cos(n*Φs)
b = (n == 0 ? 1 : 2)
Uf[mi,ni] = b * sum(Um[mi, :] .* basis) / Nφ
end
# m odd
for m in 1:2:Nλ-1
mi = m+1
for n in 1:Nφ
ni = n # no offset, since n=0 is trivial
basis = sin(n*Φs)
c = (n == Nφ ? 1 : 2)
Uf[mi,ni] = c* sum(Um[mi, :] .* basis) / Nφ
end
end
# m even
for m in 2:2:Nλ-1
mi = m+1
for n in 1:Nφ
ni = n
basis = sin(n*Φs)
c = (n == Nφ ? 1 : 2)
Uf[mi,ni] = c* sum( (Um[mi, :] ./ sin(Φs)) .* basis) / Nφ
end
end
Uf
end
function ift_sphere(Uf)
Nλ, Nφ = size(Uf)
Um = zeros(Uf)
Ns = 1:Nφ
Ns0 = 0:(Nφ-1)
Φs = Complex128[ π*(j+0.5)/Nφ for j in 0:Nφ-1]
# cheong basis
M, Ms = zonal_modes(Uf)
# literally the worst way of grouping this
for mi in 1:size(Uf,1)
m = Ms[mi]
for φi in 1:Nφ
φ = Φs[φi]
if m == 0
Um[mi, φi] = sum( Uf[mi, :] .* cos( Ns0 * φ ) )
elseif isodd(m)
Um[mi, φi] = sum( Uf[mi, :] .* sin( Ns * φ ) )
else
Um[mi, φi] = sum( Uf[mi, :] .* sin( Ns * φ ) )
end
end
if iseven(m) && m != 0
Um[mi, :] .*= sin(Φs) # undo the CoV
end
end
Um ./= size(Um, 2) # gootta normal
# ifft meriodonal
U = ifft(Um, 1)
end
function plan_ift_sphere!(Uf)
Fiφ! = plan_ift_latitude!(Uf)
Fiλ! = plan_ifft_longitude!(Uf)
Um = similar(Uf)
function (U, Uf)
Fiφ!(Um, Uf)
Fiλ!(U, Um)
U
end
end
function plan_ift_latitude!(Uf)
Nλ, Nφ = size(Uf)
Ns = 1:Nφ
Ns0 = 0:(Nφ-1)
Φs = latitude_interior_grid(Uf)
pole_scale = sin(Φs)
M, Ms = zonal_modes(Uf)
C = [ cos(Ns0 * φ) for φ in Φs]
S = [ sin(Ns * φ) for φ in Φs]
function (Um, Uf)
for mi in 1:size(Uf,1)
m = Ms[mi]
for φi in 1:Nφ
φ = Φs[φi]
if m == 0
Um[mi, φi] = sum( Uf[mi, :] .* C[φi] )
elseif isodd(m)
Um[mi, φi] = sum( Uf[mi, :] .* S[φi] )
else
Um[mi, φi] = sum( Uf[mi, :] .* S[φi] )
end
end
if iseven(m) && m != 0
Um[mi, :] .*= sin(Φs) # undo the CoV
end
end
Um ./= Nφ
end
end
function ift_latitude!(Um, Uf)
Nλ, Nφ = size(Uf)
Ns = 1:Nφ
Ns0 = 0:(Nφ-1)
Φs = Complex128[ π*(j+0.5)/Nφ for j in 0:Nφ-1]
# cheong basis
M, Ms = zonal_modes(Uf)
# literally the worst way of grouping this
for mi in 1:size(Uf,1)
m = Ms[mi]
for φi in 1:Nφ
φ = Φs[φi]
if m == 0
Um[mi, φi] = sum( Uf[mi, :] .* cos( Ns0 * φ ) )
elseif isodd(m)
Um[mi, φi] = sum( Uf[mi, :] .* sin( Ns * φ ) )
else
Um[mi, φi] = sum( Uf[mi, :] .* sin( Ns * φ ) )
end
end
if iseven(m) && m != 0
Um[mi, :] .*= sin(Φs) # undo the CoV
end
end
Um ./= Nφ
end