-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy pathOMR_Main.py
139 lines (116 loc) · 6.77 KB
/
OMR_Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import cv2
import numpy as np
import utlis
########################################################################
webCamFeed = True
pathImage = "5.jpg"
cap = cv2.VideoCapture(1)
cap.set(10,160)
heightImg = 700
widthImg = 700
questions=5
choices=5
ans= [1,2,0,2,4]
########################################################################
count=0
while True:
if webCamFeed:success, img = cap.read()
else:img = cv2.imread(pathImage)
img = cv2.resize(img, (widthImg, heightImg)) # RESIZE IMAGE
imgFinal = img.copy()
imgBlank = np.zeros((heightImg,widthImg, 3), np.uint8) # CREATE A BLANK IMAGE FOR TESTING DEBUGGING IF REQUIRED
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # CONVERT IMAGE TO GRAY SCALE
imgBlur = cv2.GaussianBlur(imgGray, (5, 5), 1) # ADD GAUSSIAN BLUR
imgCanny = cv2.Canny(imgBlur,10,70) # APPLY CANNY
try:
## FIND ALL COUNTOURS
imgContours = img.copy() # COPY IMAGE FOR DISPLAY PURPOSES
imgBigContour = img.copy() # COPY IMAGE FOR DISPLAY PURPOSES
contours, hierarchy = cv2.findContours(imgCanny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # FIND ALL CONTOURS
cv2.drawContours(imgContours, contours, -1, (0, 255, 0), 10) # DRAW ALL DETECTED CONTOURS
rectCon = utlis.rectContour(contours) # FILTER FOR RECTANGLE CONTOURS
biggestPoints= utlis.getCornerPoints(rectCon[0]) # GET CORNER POINTS OF THE BIGGEST RECTANGLE
gradePoints = utlis.getCornerPoints(rectCon[1]) # GET CORNER POINTS OF THE SECOND BIGGEST RECTANGLE
if biggestPoints.size != 0 and gradePoints.size != 0:
# BIGGEST RECTANGLE WARPING
biggestPoints=utlis.reorder(biggestPoints) # REORDER FOR WARPING
cv2.drawContours(imgBigContour, biggestPoints, -1, (0, 255, 0), 20) # DRAW THE BIGGEST CONTOUR
pts1 = np.float32(biggestPoints) # PREPARE POINTS FOR WARP
pts2 = np.float32([[0, 0],[widthImg, 0], [0, heightImg],[widthImg, heightImg]]) # PREPARE POINTS FOR WARP
matrix = cv2.getPerspectiveTransform(pts1, pts2) # GET TRANSFORMATION MATRIX
imgWarpColored = cv2.warpPerspective(img, matrix, (widthImg, heightImg)) # APPLY WARP PERSPECTIVE
# SECOND BIGGEST RECTANGLE WARPING
cv2.drawContours(imgBigContour, gradePoints, -1, (255, 0, 0), 20) # DRAW THE BIGGEST CONTOUR
gradePoints = utlis.reorder(gradePoints) # REORDER FOR WARPING
ptsG1 = np.float32(gradePoints) # PREPARE POINTS FOR WARP
ptsG2 = np.float32([[0, 0], [325, 0], [0, 150], [325, 150]]) # PREPARE POINTS FOR WARP
matrixG = cv2.getPerspectiveTransform(ptsG1, ptsG2)# GET TRANSFORMATION MATRIX
imgGradeDisplay = cv2.warpPerspective(img, matrixG, (325, 150)) # APPLY WARP PERSPECTIVE
# APPLY THRESHOLD
imgWarpGray = cv2.cvtColor(imgWarpColored,cv2.COLOR_BGR2GRAY) # CONVERT TO GRAYSCALE
imgThresh = cv2.threshold(imgWarpGray, 170, 255,cv2.THRESH_BINARY_INV )[1] # APPLY THRESHOLD AND INVERSE
boxes = utlis.splitBoxes(imgThresh) # GET INDIVIDUAL BOXES
cv2.imshow("Split Test ", boxes[3])
countR=0
countC=0
myPixelVal = np.zeros((questions,choices)) # TO STORE THE NON ZERO VALUES OF EACH BOX
for image in boxes:
#cv2.imshow(str(countR)+str(countC),image)
totalPixels = cv2.countNonZero(image)
myPixelVal[countR][countC]= totalPixels
countC += 1
if (countC==choices):countC=0;countR +=1
# FIND THE USER ANSWERS AND PUT THEM IN A LIST
myIndex=[]
for x in range (0,questions):
arr = myPixelVal[x]
myIndexVal = np.where(arr == np.amax(arr))
myIndex.append(myIndexVal[0][0])
#print("USER ANSWERS",myIndex)
# COMPARE THE VALUES TO FIND THE CORRECT ANSWERS
grading=[]
for x in range(0,questions):
if ans[x] == myIndex[x]:
grading.append(1)
else:grading.append(0)
#print("GRADING",grading)
score = (sum(grading)/questions)*100 # FINAL GRADE
#print("SCORE",score)
# DISPLAYING ANSWERS
utlis.showAnswers(imgWarpColored,myIndex,grading,ans) # DRAW DETECTED ANSWERS
utlis.drawGrid(imgWarpColored) # DRAW GRID
imgRawDrawings = np.zeros_like(imgWarpColored) # NEW BLANK IMAGE WITH WARP IMAGE SIZE
utlis.showAnswers(imgRawDrawings, myIndex, grading, ans) # DRAW ON NEW IMAGE
invMatrix = cv2.getPerspectiveTransform(pts2, pts1) # INVERSE TRANSFORMATION MATRIX
imgInvWarp = cv2.warpPerspective(imgRawDrawings, invMatrix, (widthImg, heightImg)) # INV IMAGE WARP
# DISPLAY GRADE
imgRawGrade = np.zeros_like(imgGradeDisplay,np.uint8) # NEW BLANK IMAGE WITH GRADE AREA SIZE
cv2.putText(imgRawGrade,str(int(score))+"%",(70,100)
,cv2.FONT_HERSHEY_COMPLEX,3,(0,255,255),3) # ADD THE GRADE TO NEW IMAGE
invMatrixG = cv2.getPerspectiveTransform(ptsG2, ptsG1) # INVERSE TRANSFORMATION MATRIX
imgInvGradeDisplay = cv2.warpPerspective(imgRawGrade, invMatrixG, (widthImg, heightImg)) # INV IMAGE WARP
# SHOW ANSWERS AND GRADE ON FINAL IMAGE
imgFinal = cv2.addWeighted(imgFinal, 1, imgInvWarp, 1,0)
imgFinal = cv2.addWeighted(imgFinal, 1, imgInvGradeDisplay, 1,0)
# IMAGE ARRAY FOR DISPLAY
imageArray = ([img,imgGray,imgCanny,imgContours],
[imgBigContour,imgThresh,imgWarpColored,imgFinal])
cv2.imshow("Final Result", imgFinal)
except:
imageArray = ([img,imgGray,imgCanny,imgContours],
[imgBlank, imgBlank, imgBlank, imgBlank])
# LABELS FOR DISPLAY
lables = [["Original","Gray","Edges","Contours"],
["Biggest Contour","Threshold","Warpped","Final"]]
stackedImage = utlis.stackImages(imageArray,0.5,lables)
cv2.imshow("Result",stackedImage)
# SAVE IMAGE WHEN 's' key is pressed
if cv2.waitKey(1) & 0xFF == ord('s'):
cv2.imwrite("Scanned/myImage"+str(count)+".jpg",imgFinal)
cv2.rectangle(stackedImage, ((int(stackedImage.shape[1] / 2) - 230), int(stackedImage.shape[0] / 2) + 50),
(1100, 350), (0, 255, 0), cv2.FILLED)
cv2.putText(stackedImage, "Scan Saved", (int(stackedImage.shape[1] / 2) - 200, int(stackedImage.shape[0] / 2)),
cv2.FONT_HERSHEY_DUPLEX, 3, (0, 0, 255), 5, cv2.LINE_AA)
cv2.imshow('Result', stackedImage)
cv2.waitKey(300)
count += 1