-
Notifications
You must be signed in to change notification settings - Fork 4
/
vocabulary.py
95 lines (83 loc) · 3.51 KB
/
vocabulary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import nltk
import pickle
import os.path
from pycocotools.coco import COCO
from collections import Counter
class Vocabulary(object):
def __init__(self,
vocab_threshold,
vocab_file='./vocab.pkl',
start_word="<start>",
end_word="<end>",
unk_word="<unk>",
annotations_file='../cocoapi/annotations/captions_train2014.json',
vocab_from_file=False):
"""Initialize the vocabulary.
Args:
vocab_threshold: Minimum word count threshold.
vocab_file: File containing the vocabulary.
start_word: Special word denoting sentence start.
end_word: Special word denoting sentence end.
unk_word: Special word denoting unknown words.
annotations_file: Path for train annotation file.
vocab_from_file: If False, create vocab from scratch & override any existing vocab_file
If True, load vocab from from existing vocab_file, if it exists
"""
self.vocab_threshold = vocab_threshold
self.vocab_file = vocab_file
self.start_word = start_word
self.end_word = end_word
self.unk_word = unk_word
self.annotations_file = annotations_file
self.vocab_from_file = vocab_from_file
self.get_vocab()
def get_vocab(self):
"""Load the vocabulary from file OR build the vocabulary from scratch."""
if os.path.exists(self.vocab_file) & self.vocab_from_file:
with open(self.vocab_file, 'rb') as f:
vocab = pickle.load(f)
self.word2idx = vocab.word2idx
self.idx2word = vocab.idx2word
print('Vocabulary successfully loaded from vocab.pkl file!')
else:
self.build_vocab()
with open(self.vocab_file, 'wb') as f:
pickle.dump(self, f)
def build_vocab(self):
"""Populate the dictionaries for converting tokens to integers (and vice-versa)."""
self.init_vocab()
self.add_word(self.start_word)
self.add_word(self.end_word)
self.add_word(self.unk_word)
self.add_captions()
def init_vocab(self):
"""Initialize the dictionaries for converting tokens to integers (and vice-versa)."""
self.word2idx = {}
self.idx2word = {}
self.idx = 0
def add_word(self, word):
"""Add a token to the vocabulary."""
if not word in self.word2idx:
self.word2idx[word] = self.idx
self.idx2word[self.idx] = word
self.idx += 1
def add_captions(self):
"""Loop over training captions and add all tokens to the vocabulary that meet or exceed the threshold."""
coco = COCO(self.annotations_file)
counter = Counter()
ids = coco.anns.keys()
for i, id in enumerate(ids):
caption = str(coco.anns[id]['caption'])
tokens = nltk.tokenize.word_tokenize(caption.lower())
counter.update(tokens)
if i % 100000 == 0:
print("[%d/%d] Tokenizing captions..." % (i, len(ids)))
words = [word for word, cnt in counter.items() if cnt >= self.vocab_threshold]
for i, word in enumerate(words):
self.add_word(word)
def __call__(self, word):
if not word in self.word2idx:
return self.word2idx[self.unk_word]
return self.word2idx[word]
def __len__(self):
return len(self.word2idx)