-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcondens.cpp
92 lines (76 loc) · 2.35 KB
/
condens.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#include "condens.h"
using namespace cv;
using namespace std;
typedef unsigned int uint;
ConDensation::ConDensation(unsigned int num_states, unsigned int num_particles)
:m_num_states(num_states),
m_transition_matrix(m_num_states, m_num_states),
m_state(m_num_states, 1),
m_num_particles(num_particles),
m_particles(),
m_confidence(),
m_new_particles(),
m_cumulative(),
m_temp(m_num_states, 1),
m_rng(),
m_std_dev(0)
{
const float prob = 1.0 / num_particles;
for(uint i = 0; i < num_particles; i++) {
m_particles.push_back(Mat_<float>(m_num_states, 1));
m_new_particles.push_back(Mat_<float>(m_num_states, 1));
m_confidence.push_back(prob);
m_cumulative.push_back(1.0);
}
}
ConDensation::~ConDensation(){}
void ConDensation::time_update(){
float sum = 0;
uint i, j;
// Calculate the weighted mean of the particles
m_temp = Mat_<float>::zeros(m_temp.size());
for( i = 0; i < m_num_particles; i++ ) {
m_state = m_particles[i] * m_confidence[i];
m_temp += m_state;
sum += m_confidence[i];
m_cumulative[i] = sum;
}
// Transform the mean state by the dynamics matrix
m_temp *= 1.f / sum;
m_state = m_transition_matrix * m_temp;
float mean_confidence = sum / m_num_particles;
// Systematic resampling. A particle is selected
// repeatedly until it's confidence is less than
// the expected cumulative confidence for that index.
for( i = 0; i < m_num_particles; i++ ) {
uint j = 0;
while( (m_cumulative[j] <= (float) i * mean_confidence) && ( j < m_num_particles-1)) {
j++;
}
m_particles[j].copyTo(m_new_particles[i]);
}
// Since particle 0 always gets chosen by the above, assign the mean state to it
m_state.copyTo(m_new_particles[0]);
// Transform and randomly perturb the new particles
for( i = 0; i < m_num_particles; i++ ) {
for( j = 0; j < m_num_states; j++ ) {
m_temp(j) = m_rng.gaussian(m_std_dev[j]);
}
m_particles[i] = m_transition_matrix * m_new_particles[i];
m_particles[i] += m_temp;
}
}
void ConDensation::init_sample_set(const float initial[], const float std_dev[] ) {
m_std_dev = std_dev;
uint i, j;
for( i = 0; i < m_num_particles; i++ ) {
for( j = 0; j < m_num_states; j++ ) {
float r = m_rng.gaussian(m_std_dev[j]);
m_particles[i](j) = initial[j] + r;
}
m_confidence[i] = 1.0 / (float)m_num_particles;
}
for( j = 0; j < m_num_states; j++) {
m_state(j) = initial[j];
}
}