You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am trying to run the following code on the CPU machine. but getting the error pasted below the code. Please help to resolve this error. I am using python 3.7 and latest version of nonLincausality.
import nonlincausality as nlc
import numpy as np
lags = [10,20,30]
n_obs = 53
result_of_non_causality=[]
for col in columns_candidate_for_x:
initial_list=[col]
print(f'non-causality for {initial_list}')
initial_list.append('Nifty_Price')
col_nifty_df=sentiment_all_exch_rate_all_indices_normal_Df[initial_list]
df_train, df_test = col_nifty_df[0:-n_obs], col_nifty_df[-n_obs:]
results = nlc.nonlincausalityGRU(x=np.array(df_train), maxlag=lags, GRU_layers=2, GRU_neurons=[25,25], Dense_layers=2, Dense_neurons=[100, 100], x_test=np.array(df_test), run=2, add_Dropout=True, Dropout_rate=0.01, epochs_num=[100], learning_rate=[0.001], batch_size_num=128, verbose=False, plot=False)
for lag in lags:
single_record={}
single_record['X_value']=col
~\Anaconda3\envs\thesispy37\lib\site-packages\nonlincausality\nonlincausality.py in run_nonlincausality(network_architecture, x, maxlag, Network_layers, Network_neurons, Dense_layers, Dense_neurons, x_test, run, z, z_test, add_Dropout, Dropout_rate, epochs_num, learning_rate, batch_size_num, regularization, reg_alpha, callbacks, verbose, plot, functin_type)
258 # Appending RSS, models, history of training and prediction errors to results object
259 result_lag.append_results(
--> 260 sum(error_X ** 2),
261 sum(error_XY ** 2),
262 model_X,
~\Anaconda3\envs\thesispy37\lib\site-packages\keras\utils\traceback_utils.py in error_handler(*args, **kwargs)
68 # To get the full stack trace, call:
69 # tf.debugging.disable_traceback_filtering()
---> 70 raise e.with_traceback(filtered_tb) from None
71 finally:
72 del filtered_tb
File "C:\Users\00006262\Anaconda3\envs\thesispy37\lib\site-packages\keras\engine\training.py", line 1249, in train_function *
return step_function(self, iterator)
File "C:\Users\00006262\Anaconda3\envs\thesispy37\lib\site-packages\keras\engine\training.py", line 1233, in step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "C:\Users\00006262\Anaconda3\envs\thesispy37\lib\site-packages\keras\engine\training.py", line 1222, in run_step **
outputs = model.train_step(data)
File "C:\Users\00006262\Anaconda3\envs\thesispy37\lib\site-packages\keras\engine\training.py", line 1027, in train_step
self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
File "C:\Users\00006262\Anaconda3\envs\thesispy37\lib\site-packages\keras\optimizers\optimizer_experimental\optimizer.py", line 527, in minimize
self.apply_gradients(grads_and_vars)
File "C:\Users\00006262\Anaconda3\envs\thesispy37\lib\site-packages\keras\optimizers\optimizer_experimental\optimizer.py", line 1140, in apply_gradients
return super().apply_gradients(grads_and_vars, name=name)
File "C:\Users\00006262\Anaconda3\envs\thesispy37\lib\site-packages\keras\optimizers\optimizer_experimental\optimizer.py", line 634, in apply_gradients
iteration = self._internal_apply_gradients(grads_and_vars)
File "C:\Users\00006262\Anaconda3\envs\thesispy37\lib\site-packages\keras\optimizers\optimizer_experimental\optimizer.py", line 1169, in _internal_apply_gradients
grads_and_vars,
File "C:\Users\00006262\Anaconda3\envs\thesispy37\lib\site-packages\keras\optimizers\optimizer_experimental\optimizer.py", line 1217, in _distributed_apply_gradients_fn
var, apply_grad_to_update_var, args=(grad,), group=False
File "C:\Users\00006262\Anaconda3\envs\thesispy37\lib\site-packages\keras\optimizers\optimizer_experimental\optimizer.py", line 1213, in apply_grad_to_update_var **
return self._update_step(grad, var)
File "C:\Users\00006262\Anaconda3\envs\thesispy37\lib\site-packages\keras\optimizers\optimizer_experimental\optimizer.py", line 217, in _update_step
f"The optimizer cannot recognize variable {variable.name}. "
KeyError: 'The optimizer cannot recognize variable gru_8/gru_cell_8/kernel:0. This usually means you are trying to call the optimizer to update different parts of the model separately. Please call `optimizer.build(variables)` with the full list of trainable variables before the training loop or use legacy optimizer `tf.keras.optimizers.legacy.{self.__class__.__name__}.'
The text was updated successfully, but these errors were encountered:
Hello mrosol,
I am trying to run the following code on the CPU machine. but getting the error pasted below the code. Please help to resolve this error. I am using python 3.7 and latest version of nonLincausality.
import nonlincausality as nlc
import numpy as np
lags = [10,20,30]
n_obs = 53
result_of_non_causality=[]
for col in columns_candidate_for_x:
initial_list=[col]
print(f'non-causality for {initial_list}')
initial_list.append('Nifty_Price')
col_nifty_df=sentiment_all_exch_rate_all_indices_normal_Df[initial_list]
df_train, df_test = col_nifty_df[0:-n_obs], col_nifty_df[-n_obs:]
results = nlc.nonlincausalityGRU(x=np.array(df_train), maxlag=lags, GRU_layers=2, GRU_neurons=[25,25], Dense_layers=2, Dense_neurons=[100, 100], x_test=np.array(df_test), run=2, add_Dropout=True, Dropout_rate=0.01, epochs_num=[100], learning_rate=[0.001], batch_size_num=128, verbose=False, plot=False)
for lag in lags:
single_record={}
single_record['X_value']=col
del results
KeyError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_22704\273327593.py in
10 col_nifty_df=sentiment_all_exch_rate_all_indices_normal_Df[initial_list]
11 df_train, df_test = col_nifty_df[0:-n_obs], col_nifty_df[-n_obs:]
---> 12 results = nlc.nonlincausalityGRU(x=np.array(df_train), maxlag=lags, GRU_layers=2, GRU_neurons=[25,25], Dense_layers=2, Dense_neurons=[100, 100], x_test=np.array(df_test), run=2, add_Dropout=True, Dropout_rate=0.01, epochs_num=[100], learning_rate=[0.001], batch_size_num=128, verbose=False, plot=False)
13 for lag in lags:
14 single_record={}
~\Anaconda3\envs\thesispy37\lib\site-packages\nonlincausality\nonlincausality.py in nonlincausalityGRU(x, maxlag, GRU_layers, GRU_neurons, Dense_layers, Dense_neurons, x_test, run, z, z_test, add_Dropout, Dropout_rate, epochs_num, learning_rate, batch_size_num, regularization, reg_alpha, callbacks, verbose, plot)
713 input_layer = Input((data_shape[1], data_shape[2]))
714
--> 715 layers_dense = Dense(Dense_neurons[0], activation="relu")(input_layer)
716 # Adding Dropout
717 if add_Dropout:
~\Anaconda3\envs\thesispy37\lib\site-packages\nonlincausality\nonlincausality.py in run_nonlincausality(network_architecture, x, maxlag, Network_layers, Network_neurons, Dense_layers, Dense_neurons, x_test, run, z, z_test, add_Dropout, Dropout_rate, epochs_num, learning_rate, batch_size_num, regularization, reg_alpha, callbacks, verbose, plot, functin_type)
258 # Appending RSS, models, history of training and prediction errors to results object
259 result_lag.append_results(
--> 260 sum(error_X ** 2),
261 sum(error_XY ** 2),
262 model_X,
~\Anaconda3\envs\thesispy37\lib\site-packages\keras\utils\traceback_utils.py in error_handler(*args, **kwargs)
68 # To get the full stack trace, call:
69 #
tf.debugging.disable_traceback_filtering()
---> 70 raise e.with_traceback(filtered_tb) from None
71 finally:
72 del filtered_tb
~\Anaconda3\envs\thesispy37\lib\site-packages\keras\engine\training.py in tf__train_function(iterator)
13 try:
14 do_return = True
---> 15 retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope)
16 except:
17 do_return = False
KeyError: in user code:
The text was updated successfully, but these errors were encountered: