Skip to content

Latest commit

 

History

History
151 lines (116 loc) · 6.57 KB

tutorial-compile-infer.md

File metadata and controls

151 lines (116 loc) · 6.57 KB

Tutorial: Getting Started with TensorFlow-Neuron (ResNet-50 Tutorial)

Steps Overview:

  1. Launch an EC2 Compilation Instance (recommended instance: c5.4xlarge)
  2. Install TensorFlow-Neuron and Neuron-Compiler on the Compilation Instance
  3. Compile the compute-graph on the compilation-instance, and copy the artifacts into the deployment-instance
  4. Install TensorFlow-Neuron and Neuron-Runtime on Deployment Instance
  5. Deploy inferences inference on the Deployment Instance (Inf1)

Step 1: Launch EC2 Instance(s)

A typical workflow with the Neuron SDK will be to compile trained ML models on a compilation instance and then distribute the artifacts to a fleet of deployment instances, for execution. Neuron enables TensorFlow to be used for all of these steps.

1.1. Select an AMI of your choice. Refer to the Neuron installation guide for details.

1.2. Select and launch an EC2 instance of your choice to compile. Launch an instance by following EC2 instance launch instructions.

  • It is recommended to use c5.4xlarge or larger. For this example we will use a c5.4xlarge.
  • Users may choose to compile and deploy on the same instance, in which case it is recommend to use an inf1.6xlarge instance or larger.

1.3. Select and launch a deployment (Inf1) instance of your choice.

Step 2: Compilation Instance Installations

If using Conda DLAMI version 26 and up, activate pre-installed TensorFlow-Neuron environment (using source activate aws_neuron_tensorflow_p36 command). Please update Neuron by following update steps in DLAMI release notes.

To install in your own AMI, please see Neuron Install Guide to setup virtual environment and install TensorFlow-Neuron (tensorflow-neuron) and Neuron Compiler (neuron-cc) packages.

Step 3: Compile on Compilation Instance

A trained model must be compiled to Inferentia target before it can be deployed on Inferentia instances. In this step we compile the Keras ResNet50 model and export it as a SavedModel which is an interchange format for TensorFlow models.

3.1. Create a python script named compile_resnet50.py with the following content:

import os
import time
import shutil
import tensorflow as tf
import tensorflow.neuron as tfn
import tensorflow.compat.v1.keras as keras
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.applications.resnet50 import preprocess_input

# Create a workspace
WORKSPACE = './ws_resnet50'
os.makedirs(WORKSPACE, exist_ok=True)

# Prepare export directory (old one removed)
model_dir = os.path.join(WORKSPACE, 'resnet50')
compiled_model_dir = os.path.join(WORKSPACE, 'resnet50_neuron')
shutil.rmtree(model_dir, ignore_errors=True)
shutil.rmtree(compiled_model_dir, ignore_errors=True)

# Instantiate Keras ResNet50 model
keras.backend.set_learning_phase(0)
keras.backend.set_image_data_format('channels_last')

model = ResNet50(weights='imagenet')

# Export SavedModel
tf.saved_model.simple_save(
    session            = keras.backend.get_session(),
    export_dir         = model_dir,
    inputs             = {'input': model.inputs[0]},
    outputs            = {'output': model.outputs[0]})

# Compile using Neuron
tfn.saved_model.compile(model_dir, compiled_model_dir)    

# Prepare SavedModel for uploading to Inf1 instance
shutil.make_archive('./resnet50_neuron', 'zip', WORKSPACE, 'resnet50_neuron')

3.2. Run the compilation script, which will take a few minutes on c5.4xlarge. At the end of script execution, the compiled SavedModel is zipped as resnet50_neuron.zip in local directory:

python compile_resnet50.py
...
INFO:tensorflow:fusing subgraph neuron_op_d6f098c01c780733 with neuron-cc
INFO:tensorflow:Number of operations in TensorFlow session: 4638
INFO:tensorflow:Number of operations after tf.neuron optimizations: 556
INFO:tensorflow:Number of operations placed on Neuron runtime: 554
INFO:tensorflow:Successfully converted ./ws_resnet50/resnet50 to ./ws_resnet50/
...

3.3. If not compiling and inferring on the same instance, copy the artifact to the inference server:

scp -i <PEM key file>  ./resnet50_neuron.zip ubuntu@<instance DNS>:~/ # if Ubuntu-based AMI
scp -i <PEM key file>  ./resnet50_neuron.zip ec2-user@<instance DNS>:~/  # if using AML2-based AMI

Step 4: Deployment Instance Installations

If using DLAMI, activate pre-installed TensorFlow-Neuron environment (using source activate aws_neuron_tensorflow_p36 command) and skip this step.

On the instance you are going to use for inference, install TensorFlow-Neuron and Neuron Runtime

4.1. Follow Step 2 above to install TensorFlow-Neuron.

  • Install neuron-cc if compilation on inference instance is desired (see notes above on recommended Inf1 sizes for compilation)
  • Skip neuron-cc if compilation is not done on inference instance

4.2. To install Neuron Runtime, see Getting started: Installing and Configuring Neuron-RTD.

Step 5: Deploy

In this step we run inference on Inf1 using the model compiled in Step 3.

5.1. Unzip the compiled model package from Step 3, download the example image, and install pillow module for inference:

unzip -o resnet50_neuron.zip
curl -O https://raw.githubusercontent.com/awslabs/mxnet-model-server/master/docs/images/kitten_small.jpg
pip install pillow # Necessary for loading images

5.2. On the Inf1, create a inference Python script named infer_resnet50.py with the following content:

import os
import time
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications import resnet50

tf.keras.backend.set_image_data_format('channels_last')

# Create input from image
img_sgl = image.load_img('kitten_small.jpg', target_size=(224, 224))
img_arr = image.img_to_array(img_sgl)
img_arr2 = np.expand_dims(img_arr, axis=0)
img_arr3 = resnet50.preprocess_input(img_arr2)

# Load model
COMPILED_MODEL_DIR = './resnet50_neuron/'
predictor_inferentia = tf.contrib.predictor.from_saved_model(COMPILED_MODEL_DIR)

# Run inference
model_feed_dict={'input': img_arr3}
infa_rslts = predictor_inferentia(model_feed_dict);

# Display results
print(resnet50.decode_predictions(infa_rslts["output"], top=5)[0])

5.3. Run the inference:

python infer_resnet50.py
[('n02123045', 'tabby', 0.6956522), ('n02127052', 'lynx', 0.120923914), ('n02123159', 'tiger_cat', 0.08831522), ('n02124075', 'Egyptian_cat', 0.06453805), ('n02128757', 'snow_leopard', 0.0087466035)]