forked from navidstuv/NuClick
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
94 lines (82 loc) · 4.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy as np
from skimage.io import imsave
import matplotlib.pyplot as plt
from models.models import getModel
from skimage.color import label2rgb
from config import config
import os
from utils.utils import readImageAndGetClicks, getClickMapAndBoundingBox,\
getPatchs, sharpnessEnhancement, contrastEnhancement,\
predictPatchs, postProcessing, generateInstanceMap, readImageAndGetSignals, predictSingleImage
seeddd = 1
img_rows = config.img_rows # 480#640
img_cols = config.img_cols # 768#1024
img_chnls = config.img_chnls
input_shape = (img_rows, img_cols)
testTimeAug = config.testTimeAug
def main():
modelType = config.modelType #['MultiScaleResUnet']
lossType = config.lossType
modelBaseName = 'NuClick_%s_%s_%s' % (config.application, modelType, lossType)
modelSaveName = "%s/weights-%s.h5" % (config.weights_path, modelBaseName)
# loading models
model = getModel(modelType, lossType,input_shape)
model.load_weights(modelSaveName)
##Reading images
# Select one image input paradigm
# img, cx, cy = readImageAndCentroids(path,name)
# img, cx, cy = readImageFromPathAndGetClicks (path,name,ext='.bmp')
if config.application in ['Cell', 'Nucleus']:
img, cx, cy, imgPath = readImageAndGetClicks(os.getcwd())
m, n = img.shape[0:2]
clickMap, boundingBoxes = getClickMapAndBoundingBox(cx, cy, m, n)
patchs, nucPoints, otherPoints = getPatchs(img, clickMap, boundingBoxes, cx, cy, m, n)
dists = np.float32(np.concatenate((nucPoints, otherPoints, otherPoints), axis=3)) # the last one is only dummy!
# prediction with test time augmentation
predNum = 0 # augNum*numModel
preds = np.zeros((len(patchs), img_rows, img_cols), dtype=np.float32)
preds += predictPatchs(model, patchs, dists, config.testTimeJittering)
predNum += 1
print("Original images prediction, DONE!")
if testTimeAug:
print("Test Time Augmentation Started")
# sharpenning the image
patchs_shappened = patchs.copy()
for i in range(len(patchs)):
patchs_shappened[i] = sharpnessEnhancement(patchs[i])
temp = predictPatchs(model, patchs_shappened[:, :, ::-1], dists[:, :, ::-1], config.testTimeJittering)
preds += temp[:, :, ::-1]
predNum += 1
print("Sharpenned images prediction, DONE!")
# contrast enhancing the image
patchs_contrasted = patchs.copy()
for i in range(len(patchs)):
patchs_contrasted[i] = contrastEnhancement(patchs[i])
temp = predictPatchs(model, patchs_contrasted[:, ::-1, ::-1], dists[:, ::-1, ::-1], config.testTimeJittering)
preds += temp[:, ::-1, ::-1]
predNum += 1
print("Contrasted images prediction, DONE!")
preds /= predNum
try:
masks = postProcessing(preds, thresh=config.Thresh, minSize=config.minSize, minHole=config.minHole, doReconstruction=True, nucPoints=nucPoints)
except:
masks = postProcessing(preds, thresh=config.Thresh, minSize=config.minSize, minHole=config.minHole, doReconstruction=False, nucPoints=nucPoints)
instanceMap = generateInstanceMap(masks, boundingBoxes, m, n)
instanceMap_RGB = label2rgb(instanceMap, image=img, alpha=0.3, bg_label=0, bg_color=(0, 0, 0), image_alpha=1,
kind='overlay')
plt.figure(), plt.imshow(instanceMap_RGB)
plt.show()
# imsave(imgPath[:-4]+'_overlay.png',instanceMap_RGB)
imsave(imgPath[:-4] + '_instances.png', instanceMap * 255)
imsave(imgPath[:-4] + '_points.png', np.uint8(255 * np.sum(nucPoints, axis=(0, 3))))
# plt.figure(),plt.imshow(img)
if config.application=='Gland':
img, markups, imgPath = readImageAndGetSignals(os.getcwd())
instanceMap = predictSingleImage(model, img, markups)
instanceMap_RGB = label2rgb(np.uint8(instanceMap), image=img, alpha=0.3, bg_label=0, bg_color=(0, 0, 0),
image_alpha=1, kind='overlay')
plt.figure(), plt.imshow(instanceMap_RGB), plt.show()
imsave(imgPath[:-4] + '_instances.png', instanceMap)
imsave(imgPath[:-4] + '_signals.png', markups)
if __name__=='__main__':
main()