forked from navidstuv/NuClick
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
68 lines (60 loc) · 1.93 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
class DefaultConfigs(object):
application = 'Gland' # either: 'Nucleus', 'Cell' (for WBC segmentation), 'Gland'
multiGPU = False
LearningRate = 4e-4
modelType = 'MultiScaleResUnet'
lossType = 'complexBCEweighted'
batchSize = 32 # set this as large as possible
if application=='Nucleus':
img_rows = 128
img_cols = 128
img_chnls = 3
elif application=='Cell':
img_rows = 256
img_cols = 256
img_chnls = 3
elif application=='Gland':
img_rows = 512
img_cols = 512
img_chnls = 3
else: # define your custom sizes
img_rows = 128
img_cols = 128
img_chnls = 3
if application=='Gland':
guidingSignalType = 'Skeleton'
else:
guidingSignalType = 'Point'
#path to train folder comprising info folders and npy folders
train_data_path = ''
valid_data_path = None
weights_path = './weights'
preds_path = './preds'
# for processing images with their coressponding dots
mat_path = 'E:\Back_up\git-files\\Nuclick--\monuseg-data\mats'
images_path = 'E:\Back_up\git-files\\Nuclick--\monuseg-data\images'
save_path = 'here'
##########################################################
resumeTraining = False
outputValPreds = True # whether to run on validation set when training ends
if valid_data_path is None:
valPrec = 0.2 # if no validation folder specified, this part of training set would be used for validation
testTimeAug = True
if application=='Gland':
testTimeJittering = None
else:
testTimeJittering = 'PointJiterring'
#None
if application=='Gland':
Thresh = 0.3
minSize=1000
minHole=1000
elif application=='Cell':
Thresh = 0.8
minSize=100
minHole=100
else:
Thresh = 0.5
minSize=10
minHole=30
config = DefaultConfigs()