-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect.py
248 lines (216 loc) · 9.85 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import argparse
import time
from pathlib import Path
import os
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import (
check_img_size,
non_max_suppression,
apply_classifier,
scale_coords,
xyxy2xywh,
strip_optimizer,
set_logging,
increment_path,
)
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized
from config import ModelsConfig
import json
class DetectOptions:
def __init__(self, img_path) -> None:
self.source = img_path
self.agnostic_nms = ModelsConfig.DetectorConfig.AGNOSTIC_NMS
self.augment = ModelsConfig.DetectorConfig.AUGMENT
self.classes = ModelsConfig.DetectorConfig.CLASSES
self.conf_thres = ModelsConfig.DetectorConfig.CONF_THRES
self.device = ModelsConfig.DetectorConfig.DEVICE
self.exist_ok = ModelsConfig.DetectorConfig.EXIST_OK
self.img_size = ModelsConfig.DetectorConfig.IMG_SIZE
self.iou_thres = ModelsConfig.DetectorConfig.IOU_THRESH
self.name = ModelsConfig.DetectorConfig.NAME
self.project = ModelsConfig.DetectorConfig.PROJECT
self.save_conf = ModelsConfig.DetectorConfig.SAVE_CONF
self.save_txt = ModelsConfig.DetectorConfig.SAVE_TXT
self.update = ModelsConfig.DetectorConfig.UPDATE
self.view_img = ModelsConfig.DetectorConfig.VIEW_IMG
self.weights = ModelsConfig.DetectorConfig.WEIGHTS_FILE
self.detected = ModelsConfig.DetectorConfig.DETECTED_NAME
def __str__(self) -> str:
return json.dumps(self.__dict__)
class Detector:
def __init__(self, logger, file_path:str = None, options:DetectOptions = None) -> None:
self.logger = logger
if not options:
assert file_path != ''
assert os.path.exists(file_path)
self.options = options if options else DetectOptions(file_path)
def detect(self) -> Path:
with torch.no_grad():
return self.__detect_internal__()
def __detect_internal__(self, save_img=True):
source, weights, view_img, save_txt, imgsz = (
self.options.source,
self.options.weights,
self.options.view_img,
self.options.save_txt,
self.options.img_size,
)
webcam = False
# webcam = (
# source.isnumeric()
# or source.endswith(".txt")
# or source.lower().startswith(("rtsp://", "rtmp://", "http://"))
# )
# Directories
save_dir = Path(
increment_path(Path(self.options.project) / self.options.name,
exist_ok=self.options.exist_ok)
) # increment run
save_detected_dir = save_dir / self.options.detected
save_detected_dir.mkdir(parents=True, exist_ok=True) # make dir
# Initialize
# set_logging()
device = select_device(self.options.device)
self.logger.debug(f"Device={device}")
half = device.type != "cpu" # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
if half:
model.half() # to FP16
# # Second-stage classifier
# classify = False
# if classify:
# modelc = load_classifier(name="resnet101", n=2) # initialize
# modelc.load_state_dict(
# torch.load("weights/resnet101.pt", map_location=device)["model"]
# ).to(device).eval()
# Set Dataloader
save_img = True
dataset = LoadImages(source, img_size=imgsz)
# vid_path, vid_writer = None, None
# if webcam:
# view_img = True
# cudnn.benchmark = True # set True to speed up constant image size inference
# dataset = LoadStreams(source, img_size=imgsz)
# else:
# save_img = True
# dataset = LoadImages(source, img_size=imgsz)
# Get names and colors
names = model.module.names if hasattr(model, "module") else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# Run inference
t0 = time.time()
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(img.half() if half else img) if device.type != "cpu" else None # run once
for path, img, im0s, vid_cap in dataset:
img_ext = path.split(".")[-1]
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(img, augment=self.options.augment)[0]
# Apply NMS
pred = non_max_suppression(
pred,
self.options.conf_thres,
self.options.iou_thres,
classes=self.options.classes,
agnostic=self.options.agnostic_nms,
)
t2 = time_synchronized()
# # Apply Classifier
# if classify:
# pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0 = Path(path[i]), "%g: " % i, im0s[i].copy()
else:
p, s, im0 = Path(path), "", im0s
save_path = str(save_dir / p.name)
s += "%gx%g " % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += "%g %ss, " % (n, names[int(c)]) # add to string
# Write results
counter = 0
for *xyxy, conf, cls in reversed(det):
xywh = (
(xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn)
.view(-1)
.tolist()
) # normalized xywh
line = (
(cls, *xywh, conf) if self.options.save_conf else (cls, *xywh)
) # label format
# Crop a xywh subimage in the top left corner
c1, c2 = (int(xyxy[0]), int(xyxy[1])), (
int(xyxy[2]),
int(xyxy[3]),
)
raw_img = cv2.imread(path)
# raw_img = cv2.cvtColor(raw_img, cv2.COLOR_BGR2RGB)
cropped_image = raw_img[c1[1] : c2[1], c1[0] : c2[0]]
# print(i)
cv2.imwrite(
str(save_detected_dir / f"det_{counter}.{img_ext}"),
cropped_image,
)
counter = counter + 1
if save_img or view_img: # Add bbox to image
label = "%s %.2f" % (names[int(cls)], conf)
plot_one_box(
xyxy,
im0,
label=label,
color=colors[int(cls)],
line_thickness=3,
)
# Print time (inference + NMS)
self.logger.info("%sDone. (%.3fs)" % (s, t2 - t1))
# Stream results
if view_img:
cv2.imshow(str(p), im0)
if cv2.waitKey(1) == ord("q"): # q to quit
raise StopIteration
# Save results (image with detections)
if save_img:
if dataset.mode == "images":
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fourcc = "mp4v" # output video codec
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(
save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)
)
vid_writer.write(im0)
if save_txt or save_img:
s = (
f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}"
if save_txt
else ""
)
self.logger.info(f"Results saved to {save_dir}{s}")
self.logger.info("Done. (%.3fs)" % (time.time() - t0))
return save_detected_dir