-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspacy_training.py
44 lines (29 loc) · 1.13 KB
/
spacy_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# -*- coding: utf-8 -*-
"""
Created on Sat Aug 12 16:34:00 2023
@author: Choungryeol Axl Lee
"""
import re
import spacy as sp
import pandas as pd
# Load the spacy model
nlp_ = sp.load('en_core_web_lg')
# Data had some white spaces within the text, the function
# below removes that.
def remove_whitespace(text):
return re.sub(r'\s+([?.,:;!"])', r'\1', text)
# Read the training, test and dev data
training_data = pd.read_csv('./data/train_data.csv')
dev_data = pd.read_csv('./data/dev_data.csv')
training_data['text'] = training_data['text'].apply(lambda x: remove_whitespace(x))
dev_data['text'] = dev_data['text'].apply(lambda x: remove_whitespace(x))
# Converting the data in csv file to spacy format
def csv_to_spacy(data, outfile):
db = sp.tokens.DocBin()
for doc, label in nlp_.pipe(zip(data['text'], data['label']), as_tuples=True):
doc.cats["CAUSAL"] = label == 1
doc.cats["NOTCAUSAL"] = label == 0
db.add(doc)
db.to_disk(outfile)
csv_to_spacy(training_data, 'causal_training_data.spacy')
csv_to_spacy(dev_data, 'causal_dev_data.spacy')