-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtensorprint.mojo
64 lines (63 loc) · 1.97 KB
/
tensorprint.mojo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# *Copyright 2023 Modular, Inc: Licensed under the Apache License v2.0 with LLVM Exceptions.*
from tensor import Tensor, TensorShape, TensorSpec
from math import trunc, mod
fn tensorprint[type: DType](t: Tensor[type])->None:
let rank = t.rank()
var dim0:Int=0
var dim1:Int=0
var dim2:Int=0
if rank==0 or rank>3:
print("Error: Tensor rank should be: 1,2, or 3. Tensor rank is ", rank)
return
if rank==1:
dim0 = 1
dim1 = 1
dim2 = t.dim(0)
if rank==2:
dim0 = 1
dim1 = t.dim(0)
dim2 = t.dim(1)
if rank==3:
dim0 = t.dim(0)
dim1 = t.dim(1)
dim2 = t.dim(2)
var val:SIMD[type, 1]=0.0
for i in range(dim0):
if i==0 and rank==3:
print("[")
else:
if i>0:
print()
for j in range(dim1):
if rank!=1:
if j==0:
print_no_newline(" [")
else:
print_no_newline("\n ")
print_no_newline("[")
for k in range(dim2):
if rank==1:
val = t[k]
if rank==2:
val = t[j,k]
if rank==3:
val = t[i,j,k]
let int_str: String
if val > 0 or val == 0:
int_str = String(trunc(val).cast[DType.int32]())
else:
val = -val
int_str = "-"+String(trunc(val).cast[DType.int32]())
let float_str = String(mod(val,1))
let s = int_str+"."+float_str[2:6]
if k==0:
print_no_newline(s)
else:
print_no_newline(" ",s)
print_no_newline("]")
if rank>1:
print_no_newline("]")
print()
if rank==3:
print("]")
print("Tensor shape:",t.shape().__str__(),", Tensor rank:",rank,",","DType:", type.__str__())