forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.js
232 lines (208 loc) · 8.13 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* Weather Prediction Example.
*
* - Visualizes data using tfjs-vis.
* - Trains simple models (linear regressor and MLPs) and visualizes the
* training processes.
*/
import * as tf from '@tensorflow/tfjs';
import * as tfvis from '@tensorflow/tfjs-vis';
import {JenaWeatherData} from './data';
import {buildModel, trainModel} from './models';
import {currBeginIndex, getDataVizOptions, logStatus, populateSelects, TIME_SPAN_RANGE_MAP, TIME_SPAN_STRIDE_MAP, updateDateTimeRangeSpan, updateScatterCheckbox} from './ui';
const dataChartContainer = document.getElementById('data-chart');
const trainModelButton = document.getElementById('train-model');
const modelTypeSelect = document.getElementById('model-type');
const includeDateTimeSelect =
document.getElementById('include-date-time-features');
const epochsInput = document.getElementById('epochs');
let jenaWeatherData;
/**
* Render data chart.
*
* The rendered visualization obeys:
*
* - The dropdown menus for the timeseries.
* - The "Plot against each other" checkbox.
* - The "Normalize data" checkbox.
*
* Depending on the status of the UI contorls, the chart may be
*
* - A line chart that plots one or two timeseries against time, or
* - A scatter plot that plots two timeseries against on another.
*/
export function plotData() {
logStatus('Rendering data plot...');
const {timeSpan, series1, series2, normalize, scatter} = getDataVizOptions();
if (scatter && series1 !== 'None' && series2 !== 'None') {
// Plot the two series against each other.
makeTimeSeriesScatterPlot(series1, series2, timeSpan, normalize);
} else {
// Plot one or two series agains time.
makeTimeSeriesChart(
series1, series2, timeSpan, normalize, dataChartContainer);
}
updateDateTimeRangeSpan(jenaWeatherData);
updateScatterCheckbox();
logStatus('Done rendering chart.');
}
/**
* Plot zero, one or two time series against time.
*
* @param {string} series1 Name of timeseries 1 (x-axis).
* @param {string} series2 Name of timeseries 2 (y-axis).
* @param {string} timeSpan Name of the time span. Must be a member of
* `TIME_SPAN_STRIDE_MAP`.
* @param {boolean} normalize Whether to use normalized for the two
* timeseries.
* @param {HTMLDivElement} chartConatiner The div element in which
* the charts will be rendered.
*/
function makeTimeSeriesChart(
series1, series2, timeSpan, normalize, chartConatiner) {
const values = [];
const series = [];
const includeTime = true;
if (series1 !== 'None') {
values.push(jenaWeatherData.getColumnData(
series1, includeTime, normalize, currBeginIndex,
TIME_SPAN_RANGE_MAP[timeSpan], TIME_SPAN_STRIDE_MAP[timeSpan]));
series.push(normalize ? `${series1} (normalized)` : series1);
}
if (series2 !== 'None') {
values.push(jenaWeatherData.getColumnData(
series2, includeTime, normalize, currBeginIndex,
TIME_SPAN_RANGE_MAP[timeSpan], TIME_SPAN_STRIDE_MAP[timeSpan]));
series.push(normalize ? `${series2} (normalized)` : series2);
}
// NOTE(cais): On a Linux workstation running latest Chrome, the length
// limit seems to be around 120k.
tfvis.render.linechart(chartConatiner, {values, series: series}, {
width: chartConatiner.offsetWidth * 0.95,
height: chartConatiner.offsetWidth * 0.3,
xLabel: 'Time',
yLabel: series.length === 1 ? series[0] : '',
});
}
/**
* Make a scatter plot of two timeseries.
*
* The scatter plot plots the two timeseries against each other.
*
* @param {string} series1 Name of timeseries 1 (x-axis).
* @param {string} series2 Name of timeseries 2 (y-axis).
* @param {string} timeSpan Name of the time span. Must be a member of
* `TIME_SPAN_STRIDE_MAP`.
* @param {boolean} normalize Whether to use normalized for the two
* timeseries.
*/
function makeTimeSeriesScatterPlot(series1, series2, timeSpan, normalize) {
const includeTime = false;
const xs = jenaWeatherData.getColumnData(
series1, includeTime, normalize, currBeginIndex,
TIME_SPAN_RANGE_MAP[timeSpan], TIME_SPAN_STRIDE_MAP[timeSpan]);
const ys = jenaWeatherData.getColumnData(
series2, includeTime, normalize, currBeginIndex,
TIME_SPAN_RANGE_MAP[timeSpan], TIME_SPAN_STRIDE_MAP[timeSpan]);
const values = [xs.map((x, i) => {
return {x, y: ys[i]};
})];
let seriesLabel1 = series1;
let seriesLabel2 = series2;
if (normalize) {
seriesLabel1 += ' (normalized)';
seriesLabel2 += ' (normalized)';
}
const series = [`${seriesLabel1} - ${seriesLabel2}`];
tfvis.render.scatterplot(dataChartContainer, {values, series}, {
width: dataChartContainer.offsetWidth * 0.7,
height: dataChartContainer.offsetWidth * 0.5,
xLabel: seriesLabel1,
yLabel: seriesLabel2
});
}
trainModelButton.addEventListener('click', async () => {
logStatus('Training model...');
trainModelButton.disabled = true;
trainModelButton.textContent = 'Training model. Please wait...'
// Test iteratorFn.
const lookBack = 10 * 24 * 6; // Look back 10 days.
const step = 6; // 1-hour steps.
const delay = 24 * 6; // Predict the weather 1 day later.
const batchSize = 128;
const normalize = true;
const includeDateTime = includeDateTimeSelect.checked;
const modelType = modelTypeSelect.value;
console.log('Creating model...');
let numFeatures = jenaWeatherData.getDataColumnNames().length;
const model = buildModel(modelType, Math.floor(lookBack / step), numFeatures);
// Draw a summary of the model with tfjs-vis visor.
const surface =
tfvis.visor().surface({tab: modelType, name: 'Model Summary'});
tfvis.show.modelSummary(surface, model);
const trainingSurface =
tfvis.visor().surface({tab: modelType, name: 'Model Training'});
console.log('Starting model training...');
const epochs = +epochsInput.value;
await trainModel(
model, jenaWeatherData, normalize, includeDateTime,
lookBack, step, delay, batchSize, epochs,
tfvis.show.fitCallbacks(trainingSurface, ['loss', 'val_loss'], {
callbacks: ['onBatchEnd', 'onEpochEnd']
}));
logStatus('Model training complete...');
if (modelType.indexOf('mlp') === 0) {
visualizeModelLayers(
modelType, [model.layers[1], model.layers[2]],
['Dense Layer 1', 'Dense Layer 2']);
} else if (modelType.indexOf('linear-regression') === 0) {
visualizeModelLayers(modelType, [model.layers[1]], ['Dense Layer 1']);
}
trainModelButton.textContent = 'Train model';
trainModelButton.disabled = false;
});
/**
* Visualize layers of a model.
*
* @param {string} tab Name of the tfjs-vis visor tab on which the visualization
* will be made.
* @param {tf.layers.Layer[]} layers An array of layers to visualize.
* @param {string[]} layerNames Names of the layers, to be used to label the
* tfvis surfaces. Must have the same length as `layers`.
*/
function visualizeModelLayers(tab, layers, layerNames) {
layers.forEach((layer, i) => {
const surface = tfvis.visor().surface({tab, name: layerNames[i]});
tfvis.show.layer(surface, layer);
});
}
async function run() {
logStatus('Loading Jena weather data (41.2 MB)...');
jenaWeatherData = new JenaWeatherData();
await jenaWeatherData.load();
logStatus('Done loading Jena weather data.');
console.log(
'standard deviation of the T (degC) column: ' +
jenaWeatherData.getMeanAndStddev('T (degC)').stddev.toFixed(4));
console.log('Populating data-series selects...');
populateSelects(jenaWeatherData);
console.log('Plotting data...');
plotData();
}
run();