Skip to content

Latest commit

 

History

History
162 lines (133 loc) · 6 KB

README.md

File metadata and controls

162 lines (133 loc) · 6 KB

MLCFlow: Simplifying MLPerf Automations

License Downloads

MLC core actions test MLC script automation features test MLPerf inference resnet50 MLPerf inference bert (deepsparse, tf, onnxruntime, pytorch)

MLCFlow is a versatile CLI and Python interface developed by MLCommons in collaboration with a dedicated team of volunteers (see Contributors). It serves as a streamlined replacement for the CMind tool, designed to drive the automation workflows of MLPerf benchmarks more efficiently.

The concept behind CMind originated from Grigori Fursin, while the MLPerf Automations project was created by Grigori Fursin and Arjun Suresh, whose collective contributions laid the foundation for modernizing MLPerf benchmarking tools.

Key Features

Building upon the core idea of CMind—wrapping native scripts with Python wrappers and YAML metadata—MLCFlow focuses exclusively on key automation components: Scripts, along with its complementary modules: Cache, Docker, and Experiments. This targeted design simplifies both implementation and interface, enabling a more user-friendly experience.


Status

MLCFlow is now fully equipped for workflow development, with complete support for all previously used CM scripts in MLPerf inference automation. If you're interested in discussions, join the MLCommons Benchmark Infra Discord channel, and check out the latest progress in Issues.


MLC CLI Overview

The MLC Command-Line Interface (CLI) enables users to perform actions on specified targets using a simple syntax:

mlc <action> <target> [options]

Key Components:

  • <action>: The operation to be performed.
  • <target>: The object on which the action is executed.
  • [options]: Additional parameters passed to the action.

Supported Targets and Actions

1. Repo

  • Actions related to repositories, such as cloning or updating.

2. Script

  • Manage or execute automation scripts.

3. Cache

  • Handle cached data, including cleanup or inspection.

Each target has its own set of specific actions to tailor automation workflows as specified below.

Target Action
script run, search, rm, mv, cp, add, list, test, docker, show
cache search, rm, list, show, find
repo pull, search, rm, list, find

CM compatibility layer

MLC started with a compatibility layer where by it supported MLCommons CM automations - Script, Cache and Experiment. Now, MLCFLow has just the Script Automation which is an extension of the Script Automation from CM but with a cleaner integration of Cache Automation and Docker and Test extensions. The old CM scripts are now updated with the latest MLCFlow scripts in the MLPerf Automations repository.

Architectural Diagram

classDiagram
    class Action {
        +access(options)
        +find_target_folder(target)
        +load_repos_and_meta()
        +load_repos()
        +conflicting_repo(repo_meta)
        +register_repo(repo_meta)
        +unregister_repo(repo_path)
        +add(i)
        +rm(i)
        +save_new_meta(i, item_id, item_name, target_name, item_path, repo)
        +update(i)
        +is_uid(name)
        +cp(run_args)
        +copy_item(source_path, destination_path)
        +search(i)
    }
    class RepoAction {
        +find(run_args)
        +github_url_to_user_repo_format(url)
        +pull_repo(repo_url, branch, checkout)
        +pull(run_args)
        +list(run_args)
        +rm(run_args)
    }
    class ScriptAction {
        +search(i)
        +rm(i)
        +dynamic_import_module(script_path)
        +call_script_module_function(function_name, run_args)
        +docker(run_args)
        +run(run_args)
        +test(run_args)
        +list(args)
    }
    class CacheAction {
        +search(i)
        +find(i)
        +rm(i)
        +show(run_args)
        +list(args)
    }
    class ExperimentAction {
        +show(args)
        +list(args)
    }
    class CfgAction {
        +load(args)
    }
    class Index {
        +add(meta, folder_type, path, repo)
        +get_index(folder_type, uid)
        +update(meta, folder_type, path, repo)
        +rm(meta, folder_type, path)
        +build_index()
    }
    class Item {
        +meta
        +path
        +repo
        +_load_meta()
    }
    class Repo {
        +path
        +meta
        +_load_meta()
    }
    class Automation {
        +action_object
        +automation_type
        +meta
        +path
        +_load_meta()
        +search(i)
    }

    Action <|-- RepoAction
    Action <|-- ScriptAction
    Action <|-- CacheAction
    Action <|-- ExperimentAction
    Action <|-- CfgAction
    RepoAction o-- Repo
    ScriptAction o-- Automation
    CacheAction o-- Index
    ExperimentAction o-- Index
    CfgAction o-- Index
    Index o-- Repo
    Index o-- Item
    Item o-- Repo
    Automation o-- Action
Loading