-
Notifications
You must be signed in to change notification settings - Fork 933
/
Copy pathtest.py
117 lines (101 loc) · 3.07 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Copyright © 2023 Apple Inc.
import unittest
import mistral
import mlx.core as mx
from mlx.utils import tree_map
class TestMistral(unittest.TestCase):
def test_model(self):
vocab_size = 100
L = 32
args = mistral.ModelArgs(
dim=128,
n_layers=2,
head_dim=32,
hidden_dim=256,
n_heads=4,
n_kv_heads=4,
norm_eps=1e-3,
vocab_size=vocab_size,
)
model = mistral.Mistral(args)
inputs = mx.random.randint(0, vocab_size, (L,))
logits, cache = model(inputs[None])
self.assertEqual(logits.shape, [1, L, vocab_size])
self.assertEqual(logits.dtype, mx.float32)
self.assertEqual(len(cache), args.n_layers)
params = tree_map(lambda p: p.astype(mx.float16), model.parameters())
model.update(params)
logits, _ = model(inputs[None])
self.assertEqual(logits.dtype, mx.float16)
def test_generate(self):
model, tokenizer = mistral.load_model("mistral-7B-v0.1")
prompt = mx.array(tokenizer.encode("This is a test"))
tokens = [t for t, _ in zip(mistral.generate(prompt, model), range(30))]
mx.eval(tokens)
tokens = [t.item() for t in tokens]
expected = [
302,
272,
11843,
11837,
1587,
28723,
851,
349,
865,
264,
1369,
28723,
13,
13,
3381,
456,
654,
264,
1353,
11843,
28725,
368,
682,
347,
2240,
767,
298,
511,
28723,
13,
]
self.assertEqual(tokens, expected)
def benchmark(self):
import time
model, tokenizer = mistral.load_model("mistral-7B-v0.1")
prompt = mx.random.randint(0, model.vocab_size, (128,))
# warmup
for _ in range(2):
generator = mistral.generate(prompt, model)
mx.eval(next(generator))
tic = time.time()
its = 5
for _ in range(its):
generator = mistral.generate(prompt, model)
mx.eval(next(generator))
toc = time.time()
tps = its * prompt.size / (toc - tic)
print(f"Prompt processing: {tps:.2f} tokens per second")
# warmup
for _ in range(2):
tokens = [t for t, _ in zip(mistral.generate(prompt, model), range(101))]
mx.eval(tokens)
time_total = 0.0
its = 2
for _ in range(its):
generator = mistral.generate(prompt, model)
mx.eval(next(generator))
tic = time.time()
tokens = [t for t, _ in zip(generator, range(100))]
mx.eval(tokens)
time_total += time.time() - tic
tps = len(tokens) * its / time_total
print(f"Token generation: {tps:.3f} tokens per second")
if __name__ == "__main__":
unittest.main()