-
Notifications
You must be signed in to change notification settings - Fork 2
/
lrsmp.h
219 lines (178 loc) · 9.77 KB
/
lrsmp.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/* lrsmp.h (lrs extended precision arithmetic library) */
/* Copyright: David Avis 2000, [email protected] */
/* Version 4.1, February 17, 2000 */
/* This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA.
*/
/******************************************************************************/
/* See http://cgm.cs.mcgill.ca/~avis/C/lrs.html for lrs usage instructions */
/******************************************************************************/
/* This package contains the extended precision routines used by lrs
and some other miscellaneous routines. The maximum precision depends on
the parameter MAX_DIGITS defined below, with usual default of 255L. This
gives a maximum of 1020 decimal digits on 32 bit machines. The procedure
lrs_mp_init(dec_digits) may set a smaller number of dec_digits, and this
is useful if arrays or matrices will be used.
*/
/***********/
/* defines */
/***********/
#define suf(func) func
/*
this is number of longwords. Increasing this won't cost you that much
since only variables other than the A matrix are allocated this size.
Changing affects running time in small but not very predictable ways.
*/
#define MAX_DIGITS 255L
/*
this is in decimal digits, you pay in memory if you increase this,
unless you override by a line with
digits n
before the begin line of your file.
*/
#define DEFAULT_DIGITS 1000L
/**********MACHINE DEPENDENT CONSTANTS***********/
/* MAXD is 2^(k-1)-1 where k is word size */
/* MAXD must be at least 2*BASE^2 */
/* If BASE is 10^k, use "%k.ku" for FORMAT */
/* INTSIZE is number of bytes for integer */
/***********************************************/
/* 64 bit machines */
#define MAXD 9223372036854775807LL
#define BASE 1000000000LL
#define FORMAT "%9.9llu"
#define BASE_DIG 9
#define INTSIZE 16L
#define BIT "64bit"
#define MAXINPUT 1000 /*max length of any input rational */
#define POS 1L
#define NEG -1L
#ifndef TRUE
#define TRUE 1L
#endif
#ifndef FALSE
#define FALSE 0L
#endif
#define ONE 1L
#define TWO 2L
#define ZERO 0L
/**********************************/
/* MACROS */
/* dependent on mp implementation */
/**********************************/
#define exactdivint(a,b,c) divint((a),(b),(c)) /*should use special code here */
#define positive(a) (((a)[0] < 2 || ((a)[0]==2 && (a)[1]==0))?FALSE:TRUE)
#define negative(a) (((a)[0] > -2 || ((a)[0]==-2 && (a)[1]==0))?FALSE:TRUE)
#define zero(a) ((((a)[0]==2 || (a)[0]==-2) && (a)[1]==0)?TRUE:FALSE)
#define one(a) (((a)[0]==2 && (a)[1]==1)?TRUE:FALSE)
//#define length(a) (((a)[0] > 0) ? (a)[0] : -(a)[0])
#define sign(a) (((a)[0] < 0) ? NEG : POS)
#define storesign(a,sa) a[0]=((a)[0] > 0) ? (sa)*((a)[0]) : -(sa)*((a)[0])
#define changesign(a) a[0]= -(a)[0]
#define storelength(a,la) a[0]=((a)[0] > 0) ? (la) : -(la)
/*
* convert between decimal and machine (longword digits). Notice lovely
* implementation of ceiling function :-)
*/
#define DEC2DIG(d) ( (d) % BASE_DIG ? (d)/BASE_DIG+1 : (d)/BASE_DIG)
#define DIG2DEC(d) ((d)*BASE_DIG)
#include <stdlib.h>
#ifdef SIGNALS
#include <signal.h>
#include <unistd.h>
#define errcheck(s,e) if ((long)(e)==-1L){ perror(s);exit(1);}
#endif
#define CALLOC(n,s) xcalloc(n,s,__LINE__,__FILE__)
extern long lrs_digits; /* max permitted no. of digits */
extern long lrs_record_digits; /* this is the biggest acheived so far. */
extern FILE* lrs_ifp; /* input file pointer */
extern FILE* lrs_ofp; /* output file pointer */
/*************/
/* typedefs */
/*************/
typedef long long lrs_mp[MAX_DIGITS + 1]; /* type lrs_mp holds one multi-precision integer */
typedef long long *lrs_mp_t;
typedef long long **lrs_mp_vector;
typedef long long ***lrs_mp_matrix;
/*********************************************************/
/* Initialization and allocation procedures - must use! */
/******************************************************* */
/* next two functions are not used by lrsmp, but are for lrsgmp compatability */
#define lrs_alloc_mp(a)
#define lrs_clear_mp(a)
lrs_mp_t lrs_alloc_mp_t(); /* dynamic allocation of lrs_mp */
lrs_mp_vector lrs_alloc_mp_vector (long n); /* allocate lrs_mp_vector for n+1 lrs_mp numbers */
lrs_mp_matrix lrs_alloc_mp_matrix (long m, long n); /* allocate lrs_mp_matrix for m+1 x n+1 lrs_mp */
long lrs_mp_init (long dec_digits, FILE * lrs_ifp, FILE * lrs_ofp); /* max number of decimal digits, fps */
void lrs_clear_mp_vector (lrs_mp_vector a, long n);
void lrs_clear_mp_matrix (lrs_mp_matrix a, long m, long n);
/*********************************************************/
/* Core library functions - depend on mp implementation */
/******************************************************* */
long length (lrs_mp a); /* return length of lrs_mp integer */
void atomp (char s[], lrs_mp a); /* convert string to lrs_mp integer */
long compare (lrs_mp a, lrs_mp b); /* a ? b and returns -1,0,1 for <,=,> */
void copy (lrs_mp a, lrs_mp b); /* assigns a=b */
void divint (lrs_mp a, lrs_mp b, lrs_mp c); /* c=a/b, a contains remainder on return */
void gcd (lrs_mp u, lrs_mp v); /* returns u=gcd(u,v) destroying v */
long mp_greater (lrs_mp a, lrs_mp b); /* tests if a > b and returns (TRUE=POS) */
void itomp (long in, lrs_mp a); /* convert integer i to lrs_mp */
void linint (lrs_mp a, long ka, lrs_mp b, long kb); /* compute a*ka+b*kb --> a */
#ifdef PLRS
long plrs_readrat (lrs_mp Na, lrs_mp Da, const char * rat); /* take a rational number and convert to lrs_mp */
#endif
void mptodouble (lrs_mp a, double *x); /* convert lrs_mp to double */
long mptoi (lrs_mp a); /* convert lrs_mp to long integer */
char *mpgetstr10 (char *, lrs_mp); /* convert lrs_mp to char array */
void mulint (lrs_mp a, lrs_mp b, lrs_mp c); /* multiply two integers a*b --> c */
void normalize (lrs_mp a); /* normalize lrs_mp after computation */
void pmp (const char *name, lrs_mp a); /* print the long precision integer a */
void prat (const char *name, lrs_mp Nt, lrs_mp Dt); /* reduce and print Nt/Dt */
char *cpmp(const char *name, lrs_mp Nt); /* mp int to char */
char *cprat(const char *name, lrs_mp Nt, lrs_mp Dt); /* C version of prat */
long readrat (lrs_mp Na, lrs_mp Da); /* read a rational or int and convert to lrs_mp */
void reduce (lrs_mp Na, lrs_mp Da); /* reduces Na Da by gcd(Na,Da) */
/*********************************************************/
/* Standard arithmetic & misc. functions */
/* should be independent of mp implementation */
/******************************************************* */
void atoaa (char in[], char num[], char den[]); /* convert rational string in to num/den strings */
void addint (lrs_mp a, lrs_mp b, lrs_mp c); /* compute c=a+b */
long atos (char s[]); /* convert s to integer */
long comprod (lrs_mp Na, lrs_mp Nb, lrs_mp Nc, lrs_mp Nd); /* +1 if Na*Nb > Nc*Nd,-1 if Na*Nb > Nc*Nd else 0 */
void decint (lrs_mp a, lrs_mp b); /* compute a=a-b */
void divrat (lrs_mp Na, lrs_mp Da, lrs_mp Nb, lrs_mp Db, lrs_mp Nc, lrs_mp Dc);
/* computes Nc/Dc = (Na/Da) /( Nb/Db ) and reduce */
void getfactorial (lrs_mp factorial, long k); /* compute k factorial in lrs_mp */
/* NC/DC = ka*Na/Da + kb*Nb/Db */
void linrat (lrs_mp Na, lrs_mp Da, long ka, lrs_mp Nb, lrs_mp Db, long kb, lrs_mp Nc, lrs_mp Dc);
void lcm (lrs_mp a, lrs_mp b); /* a = least common multiple of a, b; b is saved */
void mulrat (lrs_mp Na, lrs_mp Da, lrs_mp Nb, lrs_mp Db, lrs_mp Nc, lrs_mp Dc);
/* computes Nc/Dc=(Na/Da)*(Nb/Db) and reduce */
long myrandom (long num, long nrange); /* return a random number in range 0..nrange-1 */
void notimpl (const char *s); /* bail out - help! */
void rattodouble (lrs_mp a, lrs_mp b, double *x); /* convert lrs_mp rational to double */
void reduceint (lrs_mp Na, lrs_mp Da); /* divide Na by Da and return it */
void reducearray (lrs_mp_vector p, long n); /* find gcd of p[0]..p[n-1] and divide through by */
void scalerat (lrs_mp Na, lrs_mp Da, long ka); /* scales rational by ka */
void subint (lrs_mp a, lrs_mp b, lrs_mp c); /* compute c=a-b */
/**********************************/
/* Miscellaneous functions */
/******************************** */
void free (void *);
void lrs_getdigits (long *a, long *b); /* send digit information to user */
void stringcpy (char *s, char *t); /* copy t to s pointer version */
void *xcalloc (long n, long s, long l, const char *f);
void lrs_default_digits_overflow ();
void digits_overflow ();
void lrs_exit(int i);
/* end of lrsmp.h (vertex enumeration using lexicographic reverse search) */