forked from AdvancedImagingUTSW/FieldSynthesis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfieldSynthesis.py
198 lines (162 loc) · 6.69 KB
/
fieldSynthesis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import numpy as np
import scipy as sci
import scipy.fftpack as ft
import scipy.signal as sig
from scipy.stats import norm
import matplotlib.pyplot as plt
''' Field Synthesis
Python-based demonstration of Field Synthesis
supplementary material to:
Universal Light-Sheet Generation with Field Synthesis
Bo-Jui Chang, Mark Kittisopikul, Kevin M. Dean, Phillipe Roudot, Erik Welf and Reto Fiolka.
Mark Kittisopikul
Goldman Lab
Northwestern University
November 2018
Field Synthesis Demonstration -
Python code to demonstrate field synthesis light sheet microscopy
Copyright (C) 2019 Reto Fioka,
University of Texas Southwestern Medical Center
Copyright (C) 2019 Mark Kittisopikul,
Northwestern University
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
def createAnnulus(n=256, r=32, w=4):
''' createAnnulus - create a ring-like structure
INPUT
n - size of square array or vector
r - radius of the ring
w - width of the ring
OUTPUT
an array n x n
'''
if np.isscalar(n):
v = np.arange(n)
v = v - np.floor(n/2)
else:
v = n
y,x = np.meshgrid(v,v)
q = np.hypot(x,y)
annulus = abs(q-r) < w
return annulus
def doConventionalScan(Fsqmod,Lsqmod):
'''Simulate Conventional digital scanning / dithering
INPUT
F_sqmod - Square modulus of F at the front focal plane
L_sqmod - Square modulus of L at the front focal plane
OUTPUT
scanned - Scanned (dithered) intensity of Fsqmod by Lsqmod
'''
# Manually scan by shifting Fsqmod and multiplying by Lsqmod
scanned = np.zeros(Fsqmod.shape)
center = Lsqmod.shape[1]//2
for x in range(np.size(Fsqmod,1)):
scanned = scanned + np.roll(Fsqmod,x-center,1)*Lsqmod[center,x]
return scanned
def doConventionalScanHat(F_hat,L_hat):
'''Simulate Conventional digital scanning / dithering from frequency space representations
INPUT
F_hat - Mask at back focal plane
L_hat - Line scan profile in frequency space at the back focal plane
OUTPUT
scanned - Scanned (dithered) intensity of Fsqmod by Lsqmod at front focal plane
'''
F_hat = ft.ifftshift(F_hat)
F = ft.ifft2(F_hat)
F = ft.fftshift(F)
# This is the illumination intensity pattern
Fsqmod = np.real(F*np.conj(F))
L_hat = ft.ifftshift(L_hat)
L = ft.ifft2(L_hat)
L = ft.fftshift(L)
Lsqmod = L*np.conj(L)
scanned = doConventionalScan(Fsqmod,Lsqmod)
return scanned
def doFieldSynthesisLineScan(F_hat,L_hat):
'''Simulate Field Synthesis Method
INPUT
F_hat - Frequency space representation of illumination pattern, mask at back focal plane
L_hat - Line scan profile in frequency space at the back focal plane
OUTPUT
fieldSynthesis - Field synthesis construction by doing a line scan in the back focal plane
'''
# Do the Field Synthesis method of performing a line scan at the back focal plane
fieldSynthesis = np.zeros_like(F_hat)
for a in range(fieldSynthesis.shape[1]):
# Instaneous scan in frequency space
T_hat_a = F_hat * np.roll(L_hat,a-fieldSynthesis.shape[1]//2,1)
# Instaneous scan in object space
T_a = ft.fftshift( ft.fft2( ft.ifftshift(T_hat_a) ) )
# Incoherent summing of the intensities
fieldSynthesis = fieldSynthesis + np.abs(T_a)**2
return fieldSynthesis
def demoFieldSynthesis():
'''Demonstrate Field Synthesis Method with Plots
INPUT
None
OUTPUT
None
'''
# plt.rc('text', usetex=True)
fig, ax = plt.subplots(2,4,sharey=True,sharex=True,figsize=(16,9))
# Create F, the illumination pattern
F_hat = createAnnulus()
F_hat = ft.ifftshift(F_hat)
F = ft.ifft2(F_hat)
F = ft.fftshift(F)
# This is the illumination intensity pattern
Fsqmod = np.real(F*np.conj(F))
#plt.figure()
#plt.title('F')
#plt.imshow(Fsqmod, cmap='plasma')
#plt.show(block=False)
ax[0,0].imshow(Fsqmod, cmap='plasma')
ax[0,0].set_title('F(x,z)')
# Create L, the scan profile
L = np.zeros_like(Fsqmod)
center = L.shape[1]//2
sigma = 30
L[center,:] = norm.pdf(np.arange(-center,center),0,sigma)
# L[L.shape[1]//2,:] = 1
# The square modulus of L is the object space
Lsqmod = L*np.conj(L)
# This is the line scan profile used in Field Synthesis
L_hat = ft.fftshift(ft.fft2(ft.ifftshift(L)))
ax[0,1].imshow(L, cmap='plasma')
ax[0,1].set_title('$ L(x)\delta(z) $')
ax[0,2].imshow(Lsqmod, cmap='plasma')
ax[0,2].set_title('$ |L(x)\delta(z)|^2 $')
ax[0,3].imshow(np.abs(L_hat), cmap='plasma')
ax[0,3].set_title('$\hat{L}(k_x) $')
# Manually scan by shifting Fsqmod and multiplying by Lsqmod
scanned = doConventionalScan(Fsqmod,Lsqmod)
ax[1,0].imshow(scanned, cmap='plasma')
ax[1,0].set_title('Scanned: $ \sum_{x\'} |F(x\',z)|^2|L(x-x\')|^2 $')
# Manually scanning is a convolution operation
# There are potentially boundary effects here
convolved = sig.fftconvolve(Fsqmod,Lsqmod,'same')
ax[1,1].imshow(convolved, cmap='plasma')
ax[1,1].set_title('Convolved: $ |F(x,z)|^2 ** |L(x)\delta(z)|^2 $')
# This manual implementation of Fourier transform based convolution
# actually does circular convolution
convolvedft = ft.fftshift(ft.fft2(ft.ifft2(ft.ifftshift(Fsqmod)) *ft.ifft2(ft.ifftshift(Lsqmod))))
convolvedft = np.real(convolvedft)
ax[1,2].imshow(convolvedft, cmap='plasma')
ax[1,2].set_title(r'Convolved FT: $ \mathcal{F}^{-1} \{ \mathcal{F}\{|F|^2\} \mathcal{F}\{|L(x)\delta(z)|^2\} \} $')
# Do the Field Synthesis method of performing a line scan at the back focal plane
fieldSynthesis = doFieldSynthesisLineScan(F_hat,L_hat)
ax[1,3].imshow(fieldSynthesis, cmap='plasma')
ax[1,3].set_title('Field Synthesis: $ \sum_a |\mathcal{F}^{-1}\{ \hat{F}(k_x,k_z)\hat{L}(k_x-a) \}|^2 $')
plt.show()
plt.pause(0.001)
if __name__ == "__main__":
demoFieldSynthesis()