forked from AdvancedImagingUTSW/FieldSynthesis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFieldSynthesisInteractive.m
311 lines (274 loc) · 10.9 KB
/
FieldSynthesisInteractive.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
function [ hfig ] = FieldSynthesisInteractive( mask, doshift, lineProfile )
%FieldSynthesisInteractive Create an interactive line scan demonstration of
%field synthesis
%
% INPUT
% mask - mask at the pupil, which is the Fourier transform of electrical
% field at the focal plane. zeroth frequency should be in the
% middle. ifftshift will be applied for calcualtions.
% doshift - if true, shift the Fourier transform of the mask so the first
% pixel is in the center of the image rather than the upper left
% lineProfile - line profile for the scan in the pupil mask
% EITHER:
% 1) 0 for a delta function line scan
% 2) a positive double value indicating the sigma of the
% gaussianLine in pixels
% 3) a line profile vector the same width as mask. The main
% peak is expected to be in the center and ifftshift
% will be applied
%
% OUTPUT
% hfig - handle for the display figure
%
% INTERACTIVE
% The button in the lower left plays / pauses the movie.
% The arrow buttons on the slider will move the scan by one column.
% Clicking on the trough of the slider will move the scan by five columns.
% The button in the lower right labeled R will reset the cumulative view.
%
% DISPLAY
% The display consists of 6 panels
% 1 2 3
% 4 5 6
% 1. The pupil mask, |\hat{F}|^2 in log scale
% 2. The object domain, |F|^2, scanning left to right
% Line plot indicates beam intensity
% 3. Dithered, averaged intensity. Cumulative sum of display #2
% 4. Display of the real component of the electric field of an insteaneous
% scan, Real{T_a}
% 5. Instaneous scan intensity, |T_a|^2
% 6. Cumulative scan intensity of display #5
%
% EXAMPLE
% FieldSynthesisInteractive; % default demonstration with cameraman
% FieldSynthesisInteractive(createAnnulus(),true); % demonstrate a Bessel beam
% Create a sinc profile to emulate a scan over a finite range
% N = 128;
% x = -ceil(N/2):floor(N/2-1)
% L_hat = fftshift(fft(ifftshift(abs(x) < 30)));
% FieldSynthesisInteractive(createAnnulus(),true,L_hat);
%
% Mark Kittisopikul , August 2018
% Goldman Lab
% Northwestern University
% Field Synthesis Demonstration -
% MATLAB code to demonstrate field synthesis light sheet microscopy
% Copyright (C) 2018 Reto Fioka,
% University of Texas Southwestern Medical Center
% Copyright (C) 2018 Mark Kittisopikul,
% Northwestern University
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <https://www.gnu.org/licenses/>.
if(nargin < 1)
mask = fftshift(fft2(double(imread('cameraman.tif'))));
end
if(nargin < 2)
doshift = false;
end
if(nargin < 3)
% delta function
lineProfile = 0;
end
%% Setup helper functions
% Show the intensity (square modulus) using a log transform
dispLogAbs2PlusOne = @(x) mat2gray(log(abs(x).^2 + 1));
% Do a 1D smear (dithering)
smear1D = @(I,dim) repmat(mean(I,dim),circshift([1 size(I,dim)],dim,2));
% Prepare Image for 1D DFT Display
disp1DFFT = @(I,dim) dispLogAbs2PlusOne(fftshift(fft(I,[],dim),dim));
% Prepare Image for 2D DFT Display
disp2DFFT = @(I) dispLogAbs2PlusOne(fftshift(fft2(I)));
%% Setup line profile
if(isscalar(lineProfile))
% If lineProfile is scalar, interpret it to be gaussianLineSigma
gaussianLineSigma = lineProfile;
assert(gaussianLineSigma >= 0,...
'lineProfile scalar must be nonnegative');
% 1D delta function
L_hat = zeros(size(mask));
L_hat(:,1) = 1;
% If lineProfile is 0, then line profile is delta function
if(gaussianLineSigma > 0)
L_hat = circshift(L_hat,[0 ceil(5*gaussianLineSigma)]);
L_hat = imgaussfilt(L_hat,gaussianLineSigma);
L_hat = circshift(L_hat,[0 -ceil(5*gaussianLineSigma)]);
end
elseif(isvector(lineProfile))
assert(length(lineProfile) == size(mask,2), ...
'lineProfile vector must match size(mask,2)');
% 1-D arbitrary line profile is provided
L_hat = lineProfile;
L_hat = ifftshift(L_hat);
L_hat = repmat(L_hat(:).',size(mask,1),1);
else
assert(all(size(lineProfile) == size(mask)), ...
'lineProfile field must match mask size');
% 2-D arbitrary line profile is provided
L_hat = lineProfile;
L_hat = ifftshift(L_hat);
end
L_hat_sqmod = abs(L_hat).^2;
L = ifft2(L_hat);
L_sqmod = fftshift(abs(L).^2);
center = floor(size(mask,2)/2+1);
%% Modulate the mask so that the image at the focal plane is centered
% if(doshift)
% shifter = zeros(size(mask));
% shifter(ceil(size(mask,1)/2+1),ceil(size(mask,1)/2+1)) = 1;
% mask = mask .* fft2(shifter);
% end
% mask = ifftshift(mask);
mask_unshifted = ifftshift(mask);
% startCol = find(any(mask,1),1);
% nCols = find(any(mask,1),1,'last');
startCol = 1;
nCols = size(mask,2);
F = ifft2(mask_unshifted);
F_sqmod = abs(F).^2;
if(doshift)
F_sqmod = fftshift(F_sqmod);
end
% smeared = sum(abs(F).^2,2);
% smeared = repmat(smeared,1,size(F,2));
% Use circulation convolution due to potential x-boundary effects with small
% sigma. Linear convolution (conv2) will work in large sigma case
cconv2 = @(A,B,~) fftshift(ifft2(fft2(ifftshift(A)).*fft2(ifftshift(B))));
smeared = cconv2(F_sqmod,L_sqmod);
%% Begin display
hfig = figure;
% Mask at pupil
subplot(2,3,1);
himMask = imshowpair(dispLogAbs2PlusOne(mask),zeros(size(mask)));
title('Mask: $\log(|\hat{F}|^2+1)$','interpreter','latex');
% hline = patch([1 1],[1 size(mask,2)],0,'EdgeColor','g','EdgeAlpha',0.5);
% Focal plane
subplot(2,3,2);
hFocalPlane = imshow(F_sqmod,[]);
title('Intensity: $|F|^2$','interpreter','latex');
hold on;
hlsqmod = plot(1:size(mask,2),-mat2gray(L_sqmod(center,:))*size(mask,1)/2+size(mask,1));
% Smeared
subplot(2,3,3)
hSmeared = imshow(smeared,[]);
hold on;
plot(mat2gray(smeared(:,center))*(size(mask,2)-1)/2+1,1:size(mask,1),'m')
title('Dithered Intensity: $\sum_x |F|^2$','interpreter','latex');
% Electric field at focal plane
subplot(2,3,4);
hreal = imshow(zeros(size(mask)),[]);
hreal_title = title('Electric field: $Real\{T_a\}$','interpreter','latex');
% Instaneous intensity at line scan
subplot(2,3,5);
hsqmod = imshow(zeros(size(mask)),[]);
hold on;
hsqmod_line = plot(zeros(1,size(mask,1)),1:size(mask,1),'m');
hsqmod_title = title('Scan Intensity: $|T_a|^2$','interpreter','latex');
% Cumulative intensity of line scans
subplot(2,3,6);
hcumulative = imshow(zeros(size(mask)),[]);
hold on;
hcumulative_line = plot(zeros(1,size(mask,1)),1:size(mask,1),'m');
title('Cum. Intensity: $\sum_a |T_a|^2$','interpreter','latex');
% Cumulative matrix
cumulativeScan = zeros(size(mask));
cumulative = zeros(size(mask));
% Play button in the lower left
hplay = uicontrol('Style','togglebutton','Units','normalized', ...
'Position',[0 0 0.05 0.05],'String','||','Value',1, ...
'Callback',@toggleButton);
% Reset button in the lower right
hreset = uicontrol('Style','pushbutton','Units','normalized', ...
'Position',[0.95 0 0.05 0.05],'String','R', ...
'Callback',@resetCumulative);
% Slide control
hslider = uicontrol('Style','slider','Units','normalized', ...
'Position',[0.05 0 0.90 0.05],'String','Scan Position', ...
'Min',startCol,'Max',nCols,'Value',startCol, ...
'SliderStep',[1 5]/nCols, ...
'Callback',@updateSlider);
% Text label for slider
uicontrol('Style','text','Units','normalized', ...
'Position',[0 0.05 1 0.05], ...
'String','Scan Position','HorizontalAlignment','left');
% Axis annotation
annotation('textarrow','Color','m','Position',[0.1 0.17 0 0.1],'String','z');
annotation('textarrow','Color','m','Position',[0.15 0.12 0.1 0],'String','x');
% Play on start
play();
function play()
% Loop from min to max values
for aa=round(get(hslider,'Value')):nCols
set(hslider,'Value',aa);
updateSlider(hslider,[]);
if(~get(hplay,'Value'))
break;
end
pause(0.1);
end
set(hplay,'Value',0);
toggleButton(hplay,[]);
end
function toggleButton(source,event)
% Toggle the play button
switch(get(source,'Value'))
case 0
set(source,'String','>');
case 1
set(source,'String','||');
% If at the end, reset the line scan position on play
if(get(hslider,'Value') == get(hslider,'Max'))
set(hslider,'Value',get(hslider,'Min'));
end
play();
end
end
function updateSlider(source,event)
% Update the slider and the corresponding images
a = round(source.Value);
% hline.XData = [a a];
Ta = ifft2(ifftshift(mask.*circshift(L_hat,a-1,2)));
Ta_sqmod = abs(Ta).^2;
if(doshift)
Ta = fftshift(Ta);
Ta_sqmod = fftshift(Ta_sqmod);
end
F_sqmod_scanning = circshift(F_sqmod,-center+a-1,2);
pupil = get(himMask,'CData');
pupil(:,:,1) = mat2gray(circshift(L_hat_sqmod,a-1,2))*255;
pupil(:,:,3) = pupil(:,:,1);
set(himMask,'CData',pupil);
set(hFocalPlane,'CData',F_sqmod_scanning);
cumulativeScan = cumulativeScan + F_sqmod_scanning.*L_sqmod(center,a);
set(hSmeared,'CData',cumulativeScan);
set(hreal,'CData',mat2gray(real(Ta)));
set(hsqmod,'CData',mat2gray(Ta_sqmod));
set(hsqmod_line,'XData',mat2gray(Ta_sqmod(:,center))*(size(mask,2)-1)/2+1);
cumulative = cumulative + Ta_sqmod;
set(hcumulative_line,'XData', ...
mat2gray(cumulative(:,center))*(size(mask,2)-1)/2+1);
set(hcumulative,'CData',mat2gray(cumulative));
end
function resetCumulative(source,event)
% Zero out the cumulative matrix
cumulative = zeros(size(mask));
set(hcumulative_line,'XData', ...
mat2gray(cumulative(:,1))*(size(mask,2)-1)/2+1);
set(hcumulative,'CData',mat2gray(cumulative));
cumulativeScan = zeros(size(mask));
set(hSmeared,'CData',mat2gray(cumulativeScan));
% set(hcumulative_line,'XData', ...
% mat2gray(cumulative(:,1))*(size(mask,2)-1)/2+1);
% set(hcumulative,'CData',mat2gray(cumulative));
end
end