
Large Survey Database

A Distributed Framework for Storage and Analysis of
Large Datasets

Summary

The Large Survey Database (LSD) is a Python framework and DBMS for distributed

storage, cross-matching and querying of large survey catalogs (>109 rows, >1 TB).

The primary driver behind its development is the analysis of Pan-STARRS PS1 data.

It is optimized for fast queries and parallel sweeps of positionally and temporally

indexed datasets. It transparently scales to more than >102 nodes, and can be made

to function in "shared nothing" architectures.

An LSD database consists of a set of vertically and horizontally partitioned tables,

physically stored as compressed HDF5 files. Vertically, we partition the tables into

sets of related columns ('column groups'), grouping together logically related data

(e.g., astrometry, photometry). Horizontally, the tables are partitioned into partially

overlapping ``cells'' by position in space (lon, lat) and time (t). This organization

allows for fast lookups based on spatial and temporal coordinates, as well as data

and task distribution. The design was inspired by the success of Google BigTable

(Chang et al., 2006).

Our programming model is a pipelined extension of MapReduce (Dean and

Ghemawat, 2004). An SQL-like query language is used to access data. For complex

tasks, MapReduce ``kernels'' that operate on query results on a per-cell basis can be

written, with the framework taking care of their distribution, scheduling, and

execution. The combination leverages the users' familiarity with SQL, while offering a

fully distributed computing environment.

LSD adds little overhead compared to direct Python file I/O. In tests, we sweeped

through 1.1 Grows of PanSTARRS+SDSS data (220GB) less than 15 minutes on an

8-core machine. In a cluster environment, we achieve bandwidths of 14Gbits/sec

(I/O limited). Based on current experience, we believe LSD should scale to be useful

for analysis and storage of LSST-scale datasets.

Develpment versions of LSD can be downloaded from http://mwscience.net/lsd.

LSD: A Spatially and Temporally Partitioned Database

Distributed Computing on LSD: LSD/MapReduce

LSD is optimized for fast queries and efficient parallel iteration through positionally (lon,
lat) and temporally (time) indexed sets of rows. Its design and some of the terminology
have been inspired by Google's BigTable distributed database and the MapReduce
programming model. LSD is a system now capable of efficiently sweeping through
PanSTARRS PS1 3π catalogs (~1010 rows), that should scale to LSST-sized datasets
(>1012 rows) and be possible to distribute over large (100-1000) clusters of machines.

LSD tables are internally split vertically into column groups (cgroups): groups of columns
with related data (e.g., astrometry, photometry, survey metadata, etc.). They're further
partitioned horizontally into equal-area space and time cells (HEALPix pixels on the sky
and equal time interval). The horizontal partitioning maps to a directory structure on the
disk: every space/time cell maps to a unique directory. The data in each cell are stored
in tablets: compressed, checksummed, HDF5 tables in the cell's directory, one per
column group, and accessed using PyTables. LSD design allows this directory structure
to be distributed onto a cluster of computers with no common storage, where each node
stores and operates on a subset of cells. While not currently implemented, this capability
is planned in the near future.

Each tablet also contains a copy of all rows that are within a margin (typically, 30 arcsec)
outside the cell's boundaries (the “neighbor cache”). This allows for efficient neighbor
lookup (or, for example, for the application of spatial matched filters) without the need to
access tablets in neighboring cells. To facilitate parallelization and distribution, all LSD
operations are always internally performed on cell-by-cell basis, with no inter-cell
communication.

LSD Query Syntax

1.) SQL-like, case-insensitive

keywords

2.) Column specifications are Python expressions; 

free to call Python functions from within query 

clauses

3.) Implicit natural JOINs 

between tables, outer JOINs supported
4.) The WHERE clause is a Python expression,

with column data given in NumPy arrays.

The computation over results of LSD queries may be distributed over hundreds of
computational nodes by writing computational kernels conforming to the
MapReduce programming model.

A MapReduce code to visualize survey footprint, utilizing a single mapper, is shown
below.

PyMR: A Pipelined Distributed MapReduce Engine for Python
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PyMR is an implementation of the MapReduce programming model for Python
programs running on Beowulf clusters. PyMR requires no special cluster-wide setup and
can be launched via whatever scheduler is available (e.g. PBS, LSF, SGE, or others).
This makes the deployment of PyMR possible for non-privileged users. PyMR
transparently handles MapReduce task startup, distribution, communication, and the
return of the results to the application.

In contrast to Hadoop and similar solutions, the running of MapReduce jobs on PyMR is
pipelined; each PyMR MapReduce stage transmits the results to the next one in “push”
fashion, and subsequent stages start as soon as there’s data available to be processed.
This provides a substantial speed up for certain types of tasks.

Top right: A PyMR “hive” consists of tens to hundreds of peers, running on nodes of
the cluster, typically with one peer per core. Peers are contact points for PyMR clients,
and launchers of PyMR workers (see below). All peers are registered in a well known
directory, and listen for task submission from the clients. The client consults the
directory to find an available peer and submit a new map reduce task.

Middle right: A new task is submitted via a HTTP POST request from the client. The
submission consists of the chain of MapReduce kernels to execute, and the Python
source file containing them. The peer responds by spawning a coordinator thread, that
manages the spawning and communication between workers – the processes actually
executing the M/R task. The workers, form the “swarm” for the task, exchange control
and progress messages with the coordinator (XMLRPC), but transmit data via long-lived
direct worker-to-worker TCP connections. The final result is made available to the client
via HTTP.

Bottom: Internally, each worker runs a gatherer thread, that receives and aggressively
buffers the incoming data, one or more MapReduce threads, that perform the actual
computation by running the user’s kernels, a scatterer thread, distributing the emitted
(key, value) pairs to the workers that will handle them, and a command & control
monitor thread. The multi-threaded design ensures the I/O and computation run in
parallel with minimum interference, maximizing the I/O throughput.

All of this is fully hidden from the user, as seen from the source-code example 
(eg, see the listing  to the left)

A diagram of a PyMR hive

A diagram of a running PyMR swarm

Internal structure of a PyMR worker process

The I/O throughput on 
Harvard FAS Odyssey 

computer cluster with a 
centralized LustreFS
storage grid having a 

theoretical bandwidth of 
20Gbps. The blue line 

represents reads, green 
line are the writes.

The lsd-footprint code 
(listed on the left) was run 

with 40, 80 and 96 
workers for the first, 

second and third bump, 
respectively. 

The 96-worker run operated on 28 distinct nodes giving 
peak throughput of ~50 Mbytes/node.

PanSTARRS PS1 source map constructed using the MapReduce code above

An illustration of “Butterfly HEALPix” 
projection, and the hierarchical spatial 

partitioning of database tables into cells
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