-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIntro3.agda
257 lines (154 loc) · 5.26 KB
/
Intro3.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
{-
Dependently Typed Programming
Mauro Jaskelioff
Universidad Nacionl de Rosario, Argentina
Inspired by a course by Thorsten Altenkirch,
and a talk by Conor McBride (ICFP 2012).
-}
module Intro3 where
{- Let's learn about Agda. -}
{- Agda has very few reserved characters and a very simple lexer.
The characters (){} separate things, but everything else must be separated by spaces.
-}
{- Let us define the natural numbers -}
data Nat : Set where
zero : Nat
suc : Nat → Nat
{- C-c C-l executes the type checker.
if everything goes well we should see colour
-}
{- Unicode characters
→ = \to
-}
{- The following pragma allows to write arabic numerals
instead of suc (suc (.... ))
-}
{-# BUILTIN NATURAL Nat #-}
_+_ : Nat → Nat → Nat
zero + n = n
suc m + n = suc (m + n)
--{-# BUILTIN NATPLUS _+_ #-}
{- C-c C-c splits in cases -}
{- C-c C-r refines the problem -}
{- We can look for a definition using M-click -}
{- We can evaluate using C-c C-n -}
infixl 6 _+_
{- The underscore _ denote where the arguments should go
This is a nice notation that easily allows for mixfix operators.
-}
{- Let us see another example -}
data Bool : Set where
tt : Bool
ff : Bool
if_then_else_ : {T : Set} -> Bool -> T -> T -> T
if tt then e1 else e2 = e1
if ff then e1 else e2 = e2
{- Let us define lists -}
{- We declare the precedence and associativity of the operator ∷ -}
infixr 5 _∷_
{- UNICODE \:: = ∷ -}
data List (A : Set) : Set where
[] : List A
_∷_ : (x : A) → (xs : List A) → List A
{- Concatenate two lists -}
_++_ : {A : Set} → List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ xs ++ ys
{- C-c SPC checks the type of what I wrote in the shed -}
{- {A : Set} .. is an implicit parameter. It is filled by the compiler. -}
infixr 5 _++_
{- pointwise application -}
appL : {A B : Set} → List (A → B) → List A -> List B
appL [] [] = []
appL (x ∷ fs) [] = []
appL [] (x ∷ xs) = []
appL (f ∷ fs) (x ∷ xs) = f x ∷ appL fs xs
{- We define the Maybe type -}
data Maybe (A : Set) : Set where
nothing : Maybe A
just : A → Maybe A
{- lookup for the nth element of a list. -}
_!!_ : {A : Set} → List A → Nat → Maybe A
[] !! n = nothing
(x ∷ xs) !! zero = just x
(x ∷ xs) !! suc n = xs !! suc n
{- Dynamic checks?
We better put depedent types to work and use more precise types!
-}
{- We define vectors -}
data Vec (A : Set) : Nat → Set where
[] : Vec A 0
_∷_ : {n : Nat} → (x : A) → (xs : Vec A n) → Vec A (1 + n)
{- Pointwise application for vectors -}
appV : {A B : Set}{n : Nat} → Vec (A → B) n → Vec A n → Vec B n
appV [] [] = []
appV (f ∷ fs) (x ∷ xs) = f x ∷ appV fs xs
{- the Fin n type is the type of naturals up to n-1, i.e. {0,1,...,n-1} -}
data Fin : Nat -> Set where
zero : {n : Nat} → Fin (suc n)
suc : {n : Nat} → Fin n -> Fin (suc n)
{-
Fin 0 -> ∅ (empty set)
Fin 1 { zero }
Fin 2 { zero , suc (zero) }
Fin 3 { zero , suc zero , suc (suc (zero)) }
...
-}
{- lookup in a Vector -}
_!!v_ : {A : Set}{n : Nat} → Vec A n → Fin n → A
(x ∷ vs) !!v zero = x
(x ∷ vs) !!v suc i = vs !!v i
{- We statically ensure that application is well-defined! -}
-------------------------------------------------------------
{- Let's construct a compiler -}
data Expr : Set where
val : (v : Nat) -> Expr
boo : (b : Bool) -> Expr
_+'_ : (e1 e2 : Expr) -> Expr
if'_then_else_ : (e1 e2 e3 : Expr) -> Expr
data Val : Set where
VN : Nat -> Val
VB : Bool -> Val
eval_ : Expr -> Val
eval (val n) = VN n
eval (boo b) = VB b
eval (e1 +' e2) with eval e1 | eval e2
(eval (e1 +' e2)) | VN x | VN x₁ = {! !}
(eval (e1 +' e2)) | VN x | VB x₁ = {! !}
(eval (e1 +' e2)) | VB x | VN x₁ = {! !}
(eval (e1 +' e2)) | VB x | VB x₁ = {! !}
-- eval (e1 +' e2) | VN y | VN y' = VN (y + y')
-- eval (e1 +' e2) | VN y | VB y' = {!!}
-- eval (e1 +' e2) | VB y | v2 = {!!}
eval (if' e1 then e2 else e3) = {!!}
-- Transitive Reflexive Closure of a Relation
data TRC {I : Set}(R : I -> I -> Set) : I -> I -> Set where
[] : {i : I} -> TRC R i i
_∷_ : {i j k : I}(x : R i j) -> (xs : TRC R j k)
-> TRC R i k
_<>_ : forall {I R i j}{k : I} -> TRC R i j -> TRC R j k -> TRC R i k
[] <> ys = ys
(x ∷ xs) <> ys = x ∷ (xs <> ys)
infixr 5 _<>_
{- Language for a simple stack machine -}
data Inst : Nat → Nat → Set where
PUSH : ∀{n}(v : Nat) -> Inst n (1 + n)
ADD : ∀{n} -> Inst (2 + n) (1 + n)
{-
PUSH pushes a value into the stack
ADD pops the two values at the top of the stack, adds them, and pushes the result into the stack
-}
compile : ∀{n} → Expr → TRC Inst n (1 + n)
compile (val v) = PUSH v ∷ []
compile (e1 +' e2) = compile e1 <> compile e2 <> ADD ∷ []
compile (boo b) = {! !}
compile (if' x then x₁ else x₂) = {! !}
{- How to run the machine? -}
run : ∀{i j} → TRC Inst i j -> Vec Nat i -> Vec Nat j
run [] ns = ns
run (PUSH v ∷ is) ns = run is (v ∷ ns)
run (ADD ∷ is) (n ∷ m ∷ ns) = run is ((n + m) ∷ ns)
test : Vec Nat 1
test = run (compile ((val 2) +' (val 3))) []
{- C-C C-N evaluates (normalizes) a term -}
{- https://github.com/mjaskelioff/USP2023 -}