diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..fb3a015 --- /dev/null +++ b/.gitignore @@ -0,0 +1,10 @@ +dataset_files/*/* +evaluation/repro* +webapp/log_results + +.env +.ipynb_checkpoints/ +.vscode/ + +**/__pycache__/ +**/scratch.* diff --git a/Pipfile b/Pipfile new file mode 100644 index 0000000..999fcd1 --- /dev/null +++ b/Pipfile @@ -0,0 +1,20 @@ +[[source]] +url = "https://pypi.org/simple" +verify_ssl = true +name = "pypi" + +[packages] +streamlit = "*" +streamlit-extras = "*" +pandas = "*" +tqdm = "*" +pydot = "*" +dowhy = "*" +ipython = "*" +pygraphviz = "*" + +[dev-packages] +ipykernel = "*" + +[requires] +python_version = "3.10" diff --git a/Pipfile.lock b/Pipfile.lock new file mode 100644 index 0000000..ac4850d --- /dev/null +++ b/Pipfile.lock @@ -0,0 +1,2208 @@ +{ + "_meta": { + "hash": { + "sha256": "2d089fb6a83b368b2f47b0086618f780feb075f3b7ea7cdbbc5484ffbc3e2bd1" + }, + "pipfile-spec": 6, + "requires": { + "python_version": "3.10" + }, + "sources": [ + { + "name": "pypi", + "url": "https://pypi.org/simple", + "verify_ssl": true + } + ] + }, + "default": { + "altair": { + "hashes": [ + "sha256:ad6cd6983c8db69a34dd68e42653f6172b7fc3775b7190005107f1b4fc60d64d", + "sha256:bb421459b53c80ad45f2bd009c87da2a81165b8f7d5a90658e0fc1ffc741bf34" + ], + "markers": "python_version >= '3.8'", + "version": "==5.1.1" + }, + "appnope": { + "hashes": [ + "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24", + "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e" + ], + "markers": "sys_platform == 'darwin'", + "version": "==0.1.3" + }, + "asttokens": { + "hashes": [ + "sha256:2e0171b991b2c959acc6c49318049236844a5da1d65ba2672c4880c1c894834e", + "sha256:cf8fc9e61a86461aa9fb161a14a0841a03c405fa829ac6b202670b3495d2ce69" + ], + "version": "==2.4.0" + }, + "attrs": { + "hashes": [ + "sha256:1f28b4522cdc2fb4256ac1a020c78acf9cba2c6b461ccd2c126f3aa8e8335d04", + "sha256:6279836d581513a26f1bf235f9acd333bc9115683f14f7e8fae46c98fc50e015" + ], + "markers": "python_version >= '3.7'", + "version": "==23.1.0" + }, + "backcall": { + "hashes": [ + "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e", + "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255" + ], + "version": "==0.2.0" + }, + "beautifulsoup4": { + "hashes": [ + "sha256:492bbc69dca35d12daac71c4db1bfff0c876c00ef4a2ffacce226d4638eb72da", + "sha256:bd2520ca0d9d7d12694a53d44ac482d181b4ec1888909b035a3dbf40d0f57d4a" + ], + "markers": "python_full_version >= '3.6.0'", + "version": "==4.12.2" + }, + "blinker": { + "hashes": [ + "sha256:4afd3de66ef3a9f8067559fb7a1cbe555c17dcbe15971b05d1b625c3e7abe213", + "sha256:c3d739772abb7bc2860abf5f2ec284223d9ad5c76da018234f6f50d6f31ab1f0" + ], + "markers": "python_version >= '3.7'", + "version": "==1.6.2" + }, + "cachetools": { + "hashes": [ + "sha256:95ef631eeaea14ba2e36f06437f36463aac3a096799e876ee55e5cdccb102590", + "sha256:dce83f2d9b4e1f732a8cd44af8e8fab2dbe46201467fc98b3ef8f269092bf62b" + ], + "markers": "python_version >= '3.7'", + "version": "==5.3.1" + }, + "causal-learn": { + "hashes": [ + "sha256:078a8fb35a00bbc33d0f076bd84f47c9960514198e0d5d9a871dd5f23c706a7f", + "sha256:336729de75effdc90b04180ee9c8703cfac79b5e8012fb3d193fec51e6a52485" + ], + "markers": "python_version >= '3.7'", + "version": "==0.1.3.6" + }, + "certifi": { + "hashes": [ + "sha256:539cc1d13202e33ca466e88b2807e29f4c13049d6d87031a3c110744495cb082", + "sha256:92d6037539857d8206b8f6ae472e8b77db8058fec5937a1ef3f54304089edbb9" + ], + "markers": "python_version >= '3.6'", + "version": "==2023.7.22" + }, + "charset-normalizer": { + "hashes": [ + "sha256:04e57ab9fbf9607b77f7d057974694b4f6b142da9ed4a199859d9d4d5c63fe96", + "sha256:09393e1b2a9461950b1c9a45d5fd251dc7c6f228acab64da1c9c0165d9c7765c", + "sha256:0b87549028f680ca955556e3bd57013ab47474c3124dc069faa0b6545b6c9710", + "sha256:1000fba1057b92a65daec275aec30586c3de2401ccdcd41f8a5c1e2c87078706", + "sha256:1249cbbf3d3b04902ff081ffbb33ce3377fa6e4c7356f759f3cd076cc138d020", + "sha256:1920d4ff15ce893210c1f0c0e9d19bfbecb7983c76b33f046c13a8ffbd570252", + "sha256:193cbc708ea3aca45e7221ae58f0fd63f933753a9bfb498a3b474878f12caaad", + "sha256:1a100c6d595a7f316f1b6f01d20815d916e75ff98c27a01ae817439ea7726329", + "sha256:1f30b48dd7fa1474554b0b0f3fdfdd4c13b5c737a3c6284d3cdc424ec0ffff3a", + "sha256:203f0c8871d5a7987be20c72442488a0b8cfd0f43b7973771640fc593f56321f", + "sha256:246de67b99b6851627d945db38147d1b209a899311b1305dd84916f2b88526c6", + "sha256:2dee8e57f052ef5353cf608e0b4c871aee320dd1b87d351c28764fc0ca55f9f4", + "sha256:2efb1bd13885392adfda4614c33d3b68dee4921fd0ac1d3988f8cbb7d589e72a", + "sha256:2f4ac36d8e2b4cc1aa71df3dd84ff8efbe3bfb97ac41242fbcfc053c67434f46", + "sha256:3170c9399da12c9dc66366e9d14da8bf7147e1e9d9ea566067bbce7bb74bd9c2", + "sha256:3b1613dd5aee995ec6d4c69f00378bbd07614702a315a2cf6c1d21461fe17c23", + "sha256:3bb3d25a8e6c0aedd251753a79ae98a093c7e7b471faa3aa9a93a81431987ace", + "sha256:3bb7fda7260735efe66d5107fb7e6af6a7c04c7fce9b2514e04b7a74b06bf5dd", + "sha256:41b25eaa7d15909cf3ac4c96088c1f266a9a93ec44f87f1d13d4a0e86c81b982", + "sha256:45de3f87179c1823e6d9e32156fb14c1927fcc9aba21433f088fdfb555b77c10", + "sha256:46fb8c61d794b78ec7134a715a3e564aafc8f6b5e338417cb19fe9f57a5a9bf2", + "sha256:48021783bdf96e3d6de03a6e39a1171ed5bd7e8bb93fc84cc649d11490f87cea", + "sha256:4957669ef390f0e6719db3613ab3a7631e68424604a7b448f079bee145da6e09", + "sha256:5e86d77b090dbddbe78867a0275cb4df08ea195e660f1f7f13435a4649e954e5", + "sha256:6339d047dab2780cc6220f46306628e04d9750f02f983ddb37439ca47ced7149", + "sha256:681eb3d7e02e3c3655d1b16059fbfb605ac464c834a0c629048a30fad2b27489", + "sha256:6c409c0deba34f147f77efaa67b8e4bb83d2f11c8806405f76397ae5b8c0d1c9", + "sha256:7095f6fbfaa55defb6b733cfeb14efaae7a29f0b59d8cf213be4e7ca0b857b80", + "sha256:70c610f6cbe4b9fce272c407dd9d07e33e6bf7b4aa1b7ffb6f6ded8e634e3592", + "sha256:72814c01533f51d68702802d74f77ea026b5ec52793c791e2da806a3844a46c3", + "sha256:7a4826ad2bd6b07ca615c74ab91f32f6c96d08f6fcc3902ceeedaec8cdc3bcd6", + "sha256:7c70087bfee18a42b4040bb9ec1ca15a08242cf5867c58726530bdf3945672ed", + "sha256:855eafa5d5a2034b4621c74925d89c5efef61418570e5ef9b37717d9c796419c", + "sha256:8700f06d0ce6f128de3ccdbc1acaea1ee264d2caa9ca05daaf492fde7c2a7200", + "sha256:89f1b185a01fe560bc8ae5f619e924407efca2191b56ce749ec84982fc59a32a", + "sha256:8b2c760cfc7042b27ebdb4a43a4453bd829a5742503599144d54a032c5dc7e9e", + "sha256:8c2f5e83493748286002f9369f3e6607c565a6a90425a3a1fef5ae32a36d749d", + "sha256:8e098148dd37b4ce3baca71fb394c81dc5d9c7728c95df695d2dca218edf40e6", + "sha256:94aea8eff76ee6d1cdacb07dd2123a68283cb5569e0250feab1240058f53b623", + "sha256:95eb302ff792e12aba9a8b8f8474ab229a83c103d74a750ec0bd1c1eea32e669", + "sha256:9bd9b3b31adcb054116447ea22caa61a285d92e94d710aa5ec97992ff5eb7cf3", + "sha256:9e608aafdb55eb9f255034709e20d5a83b6d60c054df0802fa9c9883d0a937aa", + "sha256:a103b3a7069b62f5d4890ae1b8f0597618f628b286b03d4bc9195230b154bfa9", + "sha256:a386ebe437176aab38c041de1260cd3ea459c6ce5263594399880bbc398225b2", + "sha256:a38856a971c602f98472050165cea2cdc97709240373041b69030be15047691f", + "sha256:a401b4598e5d3f4a9a811f3daf42ee2291790c7f9d74b18d75d6e21dda98a1a1", + "sha256:a7647ebdfb9682b7bb97e2a5e7cb6ae735b1c25008a70b906aecca294ee96cf4", + "sha256:aaf63899c94de41fe3cf934601b0f7ccb6b428c6e4eeb80da72c58eab077b19a", + "sha256:b0dac0ff919ba34d4df1b6131f59ce95b08b9065233446be7e459f95554c0dc8", + "sha256:baacc6aee0b2ef6f3d308e197b5d7a81c0e70b06beae1f1fcacffdbd124fe0e3", + "sha256:bf420121d4c8dce6b889f0e8e4ec0ca34b7f40186203f06a946fa0276ba54029", + "sha256:c04a46716adde8d927adb9457bbe39cf473e1e2c2f5d0a16ceb837e5d841ad4f", + "sha256:c0b21078a4b56965e2b12f247467b234734491897e99c1d51cee628da9786959", + "sha256:c1c76a1743432b4b60ab3358c937a3fe1341c828ae6194108a94c69028247f22", + "sha256:c4983bf937209c57240cff65906b18bb35e64ae872da6a0db937d7b4af845dd7", + "sha256:c4fb39a81950ec280984b3a44f5bd12819953dc5fa3a7e6fa7a80db5ee853952", + "sha256:c57921cda3a80d0f2b8aec7e25c8aa14479ea92b5b51b6876d975d925a2ea346", + "sha256:c8063cf17b19661471ecbdb3df1c84f24ad2e389e326ccaf89e3fb2484d8dd7e", + "sha256:ccd16eb18a849fd8dcb23e23380e2f0a354e8daa0c984b8a732d9cfaba3a776d", + "sha256:cd6dbe0238f7743d0efe563ab46294f54f9bc8f4b9bcf57c3c666cc5bc9d1299", + "sha256:d62e51710986674142526ab9f78663ca2b0726066ae26b78b22e0f5e571238dd", + "sha256:db901e2ac34c931d73054d9797383d0f8009991e723dab15109740a63e7f902a", + "sha256:e03b8895a6990c9ab2cdcd0f2fe44088ca1c65ae592b8f795c3294af00a461c3", + "sha256:e1c8a2f4c69e08e89632defbfabec2feb8a8d99edc9f89ce33c4b9e36ab63037", + "sha256:e4b749b9cc6ee664a3300bb3a273c1ca8068c46be705b6c31cf5d276f8628a94", + "sha256:e6a5bf2cba5ae1bb80b154ed68a3cfa2fa00fde979a7f50d6598d3e17d9ac20c", + "sha256:e857a2232ba53ae940d3456f7533ce6ca98b81917d47adc3c7fd55dad8fab858", + "sha256:ee4006268ed33370957f55bf2e6f4d263eaf4dc3cfc473d1d90baff6ed36ce4a", + "sha256:eef9df1eefada2c09a5e7a40991b9fc6ac6ef20b1372abd48d2794a316dc0449", + "sha256:f058f6963fd82eb143c692cecdc89e075fa0828db2e5b291070485390b2f1c9c", + "sha256:f25c229a6ba38a35ae6e25ca1264621cc25d4d38dca2942a7fce0b67a4efe918", + "sha256:f2a1d0fd4242bd8643ce6f98927cf9c04540af6efa92323e9d3124f57727bfc1", + "sha256:f7560358a6811e52e9c4d142d497f1a6e10103d3a6881f18d04dbce3729c0e2c", + "sha256:f779d3ad205f108d14e99bb3859aa7dd8e9c68874617c72354d7ecaec2a054ac", + "sha256:f87f746ee241d30d6ed93969de31e5ffd09a2961a051e60ae6bddde9ec3583aa" + ], + "markers": "python_full_version >= '3.7.0'", + "version": "==3.2.0" + }, + "click": { + "hashes": [ + "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28", + "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de" + ], + "markers": "python_version >= '3.7'", + "version": "==8.1.7" + }, + "contourpy": { + "hashes": [ + "sha256:059c3d2a94b930f4dafe8105bcdc1b21de99b30b51b5bce74c753686de858cb6", + "sha256:0683e1ae20dc038075d92e0e0148f09ffcefab120e57f6b4c9c0f477ec171f33", + "sha256:07d6f11dfaf80a84c97f1a5ba50d129d9303c5b4206f776e94037332e298dda8", + "sha256:081f3c0880712e40effc5f4c3b08feca6d064cb8cfbb372ca548105b86fd6c3d", + "sha256:0e48694d6a9c5a26ee85b10130c77a011a4fedf50a7279fa0bdaf44bafb4299d", + "sha256:11b836b7dbfb74e049c302bbf74b4b8f6cb9d0b6ca1bf86cfa8ba144aedadd9c", + "sha256:19557fa407e70f20bfaba7d55b4d97b14f9480856c4fb65812e8a05fe1c6f9bf", + "sha256:229a25f68046c5cf8067d6d6351c8b99e40da11b04d8416bf8d2b1d75922521e", + "sha256:24216552104ae8f3b34120ef84825400b16eb6133af2e27a190fdc13529f023e", + "sha256:3b53d5769aa1f2d4ea407c65f2d1d08002952fac1d9e9d307aa2e1023554a163", + "sha256:3de23ca4f381c3770dee6d10ead6fff524d540c0f662e763ad1530bde5112532", + "sha256:407d864db716a067cc696d61fa1ef6637fedf03606e8417fe2aeed20a061e6b2", + "sha256:41339b24471c58dc1499e56783fedc1afa4bb018bcd035cfb0ee2ad2a7501ef8", + "sha256:462c59914dc6d81e0b11f37e560b8a7c2dbab6aca4f38be31519d442d6cde1a1", + "sha256:46e24f5412c948d81736509377e255f6040e94216bf1a9b5ea1eaa9d29f6ec1b", + "sha256:498e53573e8b94b1caeb9e62d7c2d053c263ebb6aa259c81050766beb50ff8d9", + "sha256:4ebf42695f75ee1a952f98ce9775c873e4971732a87334b099dde90b6af6a916", + "sha256:4f9147051cb8fdb29a51dc2482d792b3b23e50f8f57e3720ca2e3d438b7adf23", + "sha256:549174b0713d49871c6dee90a4b499d3f12f5e5f69641cd23c50a4542e2ca1eb", + "sha256:560f1d68a33e89c62da5da4077ba98137a5e4d3a271b29f2f195d0fba2adcb6a", + "sha256:566f0e41df06dfef2431defcfaa155f0acfa1ca4acbf8fd80895b1e7e2ada40e", + "sha256:56de98a2fb23025882a18b60c7f0ea2d2d70bbbcfcf878f9067234b1c4818442", + "sha256:66544f853bfa85c0d07a68f6c648b2ec81dafd30f272565c37ab47a33b220684", + "sha256:6c06e4c6e234fcc65435223c7b2a90f286b7f1b2733058bdf1345d218cc59e34", + "sha256:6d0a8efc258659edc5299f9ef32d8d81de8b53b45d67bf4bfa3067f31366764d", + "sha256:70e5a10f8093d228bb2b552beeb318b8928b8a94763ef03b858ef3612b29395d", + "sha256:8394e652925a18ef0091115e3cc191fef350ab6dc3cc417f06da66bf98071ae9", + "sha256:8636cd2fc5da0fb102a2504fa2c4bea3cbc149533b345d72cdf0e7a924decc45", + "sha256:93df44ab351119d14cd1e6b52a5063d3336f0754b72736cc63db59307dabb718", + "sha256:96ba37c2e24b7212a77da85004c38e7c4d155d3e72a45eeaf22c1f03f607e8ab", + "sha256:a10dab5ea1bd4401c9483450b5b0ba5416be799bbd50fc7a6cc5e2a15e03e8a3", + "sha256:a66045af6cf00e19d02191ab578a50cb93b2028c3eefed999793698e9ea768ae", + "sha256:a75cc163a5f4531a256f2c523bd80db509a49fc23721b36dd1ef2f60ff41c3cb", + "sha256:b04c2f0adaf255bf756cf08ebef1be132d3c7a06fe6f9877d55640c5e60c72c5", + "sha256:ba42e3810999a0ddd0439e6e5dbf6d034055cdc72b7c5c839f37a7c274cb4eba", + "sha256:bfc8a5e9238232a45ebc5cb3bfee71f1167064c8d382cadd6076f0d51cff1da0", + "sha256:c5bd5680f844c3ff0008523a71949a3ff5e4953eb7701b28760805bc9bcff217", + "sha256:c84fdf3da00c2827d634de4fcf17e3e067490c4aea82833625c4c8e6cdea0887", + "sha256:ca6fab080484e419528e98624fb5c4282148b847e3602dc8dbe0cb0669469887", + "sha256:d0c188ae66b772d9d61d43c6030500344c13e3f73a00d1dc241da896f379bb62", + "sha256:d6ab42f223e58b7dac1bb0af32194a7b9311065583cc75ff59dcf301afd8a431", + "sha256:dfe80c017973e6a4c367e037cb31601044dd55e6bfacd57370674867d15a899b", + "sha256:e0c02b75acfea5cab07585d25069207e478d12309557f90a61b5a3b4f77f46ce", + "sha256:e30aaf2b8a2bac57eb7e1650df1b3a4130e8d0c66fc2f861039d507a11760e1b", + "sha256:eafbef886566dc1047d7b3d4b14db0d5b7deb99638d8e1be4e23a7c7ac59ff0f", + "sha256:efe0fab26d598e1ec07d72cf03eaeeba8e42b4ecf6b9ccb5a356fde60ff08b85", + "sha256:f08e469821a5e4751c97fcd34bcb586bc243c39c2e39321822060ba902eac49e", + "sha256:f1eaac5257a8f8a047248d60e8f9315c6cff58f7803971170d952555ef6344a7", + "sha256:f29fb0b3f1217dfe9362ec55440d0743fe868497359f2cf93293f4b2701b8251", + "sha256:f44d78b61740e4e8c71db1cf1fd56d9050a4747681c59ec1094750a658ceb970", + "sha256:f6aec19457617ef468ff091669cca01fa7ea557b12b59a7908b9474bb9674cf0", + "sha256:f9dc7f933975367251c1b34da882c4f0e0b2e24bb35dc906d2f598a40b72bfc7" + ], + "markers": "python_version >= '3.8'", + "version": "==1.1.1" + }, + "cvxpy": { + "hashes": [ + "sha256:05430b56b28bc11edf8be287ce773c34b942335fac154a18ebc298ad6245383b", + "sha256:0b685e5040f199f3d703f30f5d22d1f865597623455153d1ddd770245aef0975", + "sha256:11e3d09592427eb62dd3268e0e186ef2a1a2587418589e65c264cfe82331de2e", + "sha256:2b6dde84f42c7d8fd1bf6867a77667ff73529ee5e1ea27892e45716077119e86", + "sha256:3b39683655fa099e9b6e51b38bdad5353eaae86344c58dfc7616b33db661bcb0", + "sha256:4765a1e2529bd4f095720143ddd7e55f1063b5a2793daf9d03ebf7f584f87553", + "sha256:4bde3515840eb56c8448751d04847abcba074ddc1ebb2f47dbc2c85ad9b78b81", + "sha256:5c9b2b7474647483531ccd469bbfbb4589410d65ac4c28112751c8c56e14d2c3", + "sha256:646908a9afbd20deb2f7848c48521f6677916007170db4b31cf8b679c1e193e0", + "sha256:647ba8ced43c55241ca684fd9f5be58258e793e92e611abc802c1b540582cb8c", + "sha256:76c4e7b5a3bc540c09c8388302f5ed5033738454033a9d56a06eb78cfb303e11", + "sha256:817d82d1e8b6dc5da244061ce6a63549eb7ef2e3a083c7d170ad578ce09f3071", + "sha256:843f6cd637c31f70ffcf817df86731b99bb15c847d4554a47cf3c0479571a26d", + "sha256:8ff9c078919ff19e8297ff75be80262fd208d1ad014a3292baa3311c450f1de0", + "sha256:9fc6d54393eb926693634134c5109ddd7a17cdb642e8c5a0ff613d8873c0cba3", + "sha256:a0046798fd869853dd9d8d111530da08621b35f16c7346ff6a4775071fa2b273", + "sha256:a70540d1ed93491b285f3f05451bd76df5f39c16e82c350c79dae31a0f8776c6", + "sha256:b1e8b7b609630788aabd7ddbfc7dd3d0436a30b814e1896cb45d20155cae8809", + "sha256:b423313e614a73bc55d7b8474039160ed5ae74e133a15cef51f58639ab210050", + "sha256:ba37dd5499014fde1da022bdea6efc0ef5e998b3f62c052751812c235a1a58cf", + "sha256:bf60240f53441abe0f41f147383831345562c0f458e96e112ba55cb4d9030f27", + "sha256:d3bb3db0f7ac49b8acb9a92d3bd5cf814920a6115a9275124bef1299770208c3", + "sha256:d771ceba9195ebe3164c0b635fd038840577f009ffc12e910db5d1df44b30792", + "sha256:f372d8702b143f79bb097adcb102a0d5888cbb3e4e7e232fb4a101a04d97cc9b", + "sha256:fadc5c9761ad3b2e3a28bfffb0635bdf6689d2c26721c6f3feeec08b638dd940" + ], + "markers": "python_version >= '3.7'", + "version": "==1.3.2" + }, + "cycler": { + "hashes": [ + "sha256:3a27e95f763a428a739d2add979fa7494c912a32c17c4c38c4d5f082cad165a3", + "sha256:9c87405839a19696e837b3b818fed3f5f69f16f1eec1a1ad77e043dcea9c772f" + ], + "markers": "python_version >= '3.6'", + "version": "==0.11.0" + }, + "cython": { + "hashes": [ + "sha256:0bca6a7504e8cfc63a4d3c7c9b9a04e5d05501942a6c8cee177363b61a32c2d4", + "sha256:17c74f80b06e2fa8ffc8acd41925f4f9922da8a219cd25c6901beab2f7c56cc5", + "sha256:19ccf7fc527cf556e2e6a3dfeffcadfbcabd24a59a988289117795dfed8a25ad", + "sha256:1ea33c1c57f331f5653baa1313e445fbe80d1da56dd9a42c8611037887897b9d", + "sha256:1ef90023da8a9bf84cf16f06186db0906d2ce52a09f751e2cb9d3da9d54eae46", + "sha256:1ff2cc5518558c598028ae8d9a43401e0e734b74b6e598156b005328c9da3472", + "sha256:25ff471a459aad82146973b0b8c177175ab896051080713d3035ad4418739f66", + "sha256:28fb10aabd56a2e4d399273b48e106abe5a0d271728fd5eed3d36e7171000045", + "sha256:2edd9f8edca69178d74cbbbc180bc3e848433c9b7dc80374a11a0bb0076c926d", + "sha256:2fe34615c13ace29e77bf9d21c26188d23eff7ad8b3e248da70404e5f5436b95", + "sha256:41c0cfd2d754e383c9eeb95effc9aa4ab847d0c9747077ddd7c0dcb68c3bc01f", + "sha256:50d506d73a46c4a522ef9fdafcbf7a827ba13907b18ff58f61a8fa0887d0bd8d", + "sha256:53f93a8c342e9445a8f0cb7039775294f2dbbe5241936573daeaf0afe30397e4", + "sha256:568625e8274ee7288ad87b0f615ec36ab446ca9b35e77481ed010027d99c7020", + "sha256:6058a6d04e04d790cda530e1ff675e9352359eb4b777920df3cac2b62a9a030f", + "sha256:68abee3be27f21c9642a07a93f8333d491f4c52bc70068e42f51685df9ac1a57", + "sha256:69af2365de2343b4e5a61c567e7611ddf2575ae6f6e5c01968f7d4f2747324eb", + "sha256:6a571d7c7b52ee12d73bc65b4855779c069545da3bac26bec06a1389ad17ade5", + "sha256:6c4d7e36fe0211e394adffd296382b435ac22762d14f2fe45c506c230f91cf2d", + "sha256:74bddfc7dc8958526b2018d3adc1aa6dc9cf2a24095c972e5ad06758c360b261", + "sha256:768f65b16d23c630d8829ce1f95520ef1531a9c0489fa872d87c8c3813f65aee", + "sha256:7ca921068242cd8b52544870c807fe285c1f248b12df7b6dfae25cc9957b965e", + "sha256:7cb44aeaf6c5c25bd6a7562ece4eadf50d606fc9b5f624fa95bd0281e8bf0a97", + "sha256:847d07fc02978c4433d01b4f5ee489b75fd42fd32ccf9cc4b5fd887e8cffe822", + "sha256:86b7a13c6b23ab6471d40a320f573fbc8a4e39833947eebed96661145dc34771", + "sha256:8894db6f5b6479a3c164e0454e13083ebffeaa9a0822668bb2319bdf1b783df1", + "sha256:95bb13d8be507425d03ebe051f90d4b2a9fdccc64e4f30b35645fdb7542742eb", + "sha256:9deef0761e8c798043dbb728a1c6df97b26e5edc65b8d6c7608b3c07af3eb722", + "sha256:9f2a4b4587aaef08815410dc20653613ca04a120a2954a92c39e37c6b5fdf6be", + "sha256:a216b2801c7d9c3babe0a10cc25da3bc92494d7047d1f732d3c47b0cceaf0941", + "sha256:a9738f23d00d99481797b155ad58f8fc1c72096926ea2554b8ccc46e1d356c27", + "sha256:ae75eac4f13cbbcb50b2097470dcea570182446a3ebd0f7e95dd425c2017a2d7", + "sha256:af2f333f08c4c279f3480532341bf70ec8010bcbc7d8a6daa5ca0bf4513af295", + "sha256:bdc0a4cb99f55e6878d4b67a4bfee23823484915cb6b7e9c9dd01002dd3592ea", + "sha256:c6c0aea8491a70f98b7496b5057c9523740e02cec21cd678eef609d2aa6c1257", + "sha256:cd77cedbcc13cb67aef39b8615fd50a67fc42b0c6defea6fc0a21e19d3a062ec", + "sha256:de2045ceae1857e56a72f08e0acfa48c994277a353b7bdab1f097db9f8803f19", + "sha256:e4b8269e5a5d127a2191b02b9df3636c0dac73f14f1ff8a831f39cb5197c4f38", + "sha256:ee317f9bcab901a3db39c34ee5a27716f7132e5c0de150125342694d18b30f51", + "sha256:f0df6552be39853b10dfb5a10dbd08f5c49023d6b390d7ce92d4792a8b6e73ee", + "sha256:fdf377b0f6e9325b73ad88933136023184afdc795caeeaaf3dca13494cffd15e" + ], + "markers": "python_version >= '2.6' and python_version not in '3.0, 3.1, 3.2, 3.3'", + "version": "==0.29.36" + }, + "decorator": { + "hashes": [ + "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330", + "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186" + ], + "markers": "python_version >= '3.5'", + "version": "==5.1.1" + }, + "dowhy": { + "hashes": [ + "sha256:e2dcf7e95a98c445b142a9d832496a78cdc75ad4cd3f3e3937a987463ad6e7de", + "sha256:ebadf770de02ce5b9b0b882106238a1bd23b866f89f2fcb609ec8e7d86556bf5" + ], + "index": "pypi", + "markers": "python_version < '3.12' and python_version >= '3.8'", + "version": "==0.10.1" + }, + "ecos": { + "hashes": [ + "sha256:29d00164eaea66ed54697a3b361c575284a8bca54f2623381a0635806c7303a7", + "sha256:3e42bd4c19af6e04f76ccc85d941b1f1adc7faeee4d06d482395a6beb7bec895", + "sha256:4979dc2d1cb6667e371a45a61887068505c1305437eef104ed6ef16f4b6aa0e3", + "sha256:4e86671397d1d2cd7cccff8a9c45be0541b0c60af8b92a0ff3581c9ed869db67", + "sha256:5184a9d8521ad1af90ffcd9902a6fa75c7bc473f37d30d86f97beda1033dfca2", + "sha256:528b02f53835bd1baeb2e23f8153b8d6cc2b3704e1768be6a1a972f542241670", + "sha256:608bc822ee8e070927ab3519169b13a1a0fe88f3d562212d6b5dbb1039776360", + "sha256:617be25d74222849622b0f82b94a11abcf1fae78ccaf69977b328321ee6ffa0b", + "sha256:6def54336a15b5a49bc3bfcaa36035e8557cae8a4853b17ca84f5a29c93bcaea", + "sha256:7af08941552fce108bd80145cdb6be7fa74477a20bacdac170800442cc7027d4", + "sha256:835298a299c88c207b3402fba60ad9b5688b59bbbf2ac34a46de5b37165d773a", + "sha256:858a4dd3177bdc8cc6e362031732f5177b62138a1e4ef91c0dc3c6bd7d2d1248", + "sha256:da8fbbca3feb83a9e27075d29b3765417d0c80af8ea83cbdc4a558cae7b564af", + "sha256:eba07599084724eedc20b2862d5580eebebb09609f4740baadc78401cb99827c", + "sha256:f48816d73b87ae325556ea537b7c8743187311403c80e3832035224156337c4e", + "sha256:f70e4547966f530fd7715756f7a65d5b9b90b312b9d37f243ef9356c05e7d74c" + ], + "version": "==2.0.12" + }, + "exceptiongroup": { + "hashes": [ + "sha256:097acd85d473d75af5bb98e41b61ff7fe35efe6675e4f9370ec6ec5126d160e9", + "sha256:343280667a4585d195ca1cf9cef84a4e178c4b6cf2274caef9859782b567d5e3" + ], + "markers": "python_version < '3.11'", + "version": "==1.1.3" + }, + "executing": { + "hashes": [ + "sha256:0314a69e37426e3608aada02473b4161d4caf5a4b244d1d0c48072b8fee7bacc", + "sha256:19da64c18d2d851112f09c287f8d3dbbdf725ab0e569077efb6cdcbd3497c107" + ], + "version": "==1.2.0" + }, + "faker": { + "hashes": [ + "sha256:8fba91068dc26e3159c1ac9f22444a2338704b0991d86605322e454bda420092", + "sha256:d5d5953556b0fb428a46019e03fc2d40eab2980135ddef5a9eb3d054947fdf83" + ], + "markers": "python_version >= '3.8'", + "version": "==19.6.2" + }, + "favicon": { + "hashes": [ + "sha256:6d6b5a78de2a0d0084589f687f384b2ecd6a6527093fec564403b1a30605d7a8", + "sha256:7fec0617c73dcb8521ea788e1d38cdc7226c7cb8e28c81e11625d85fa1534880" + ], + "version": "==0.7.0" + }, + "fonttools": { + "hashes": [ + "sha256:0eb79a2da5eb6457a6f8ab904838454accc7d4cccdaff1fd2bd3a0679ea33d64", + "sha256:113337c2d29665839b7d90b39f99b3cac731f72a0eda9306165a305c7c31d341", + "sha256:12a7c247d1b946829bfa2f331107a629ea77dc5391dfd34fdcd78efa61f354ca", + "sha256:179737095eb98332a2744e8f12037b2977f22948cf23ff96656928923ddf560a", + "sha256:19b7db825c8adee96fac0692e6e1ecd858cae9affb3b4812cdb9d934a898b29e", + "sha256:37983b6bdab42c501202500a2be3a572f50d4efe3237e0686ee9d5f794d76b35", + "sha256:3a35981d90feebeaef05e46e33e6b9e5b5e618504672ca9cd0ff96b171e4bfff", + "sha256:46a0ec8adbc6ff13494eb0c9c2e643b6f009ce7320cf640de106fb614e4d4360", + "sha256:4aa79366e442dbca6e2c8595645a3a605d9eeabdb7a094d745ed6106816bef5d", + "sha256:515607ec756d7865f23070682622c49d922901943697871fc292277cf1e71967", + "sha256:53eb5091ddc8b1199330bb7b4a8a2e7995ad5d43376cadce84523d8223ef3136", + "sha256:5d18fc642fd0ac29236ff88ecfccff229ec0386090a839dd3f1162e9a7944a40", + "sha256:5fb289b7a815638a7613d46bcf324c9106804725b2bb8ad913c12b6958ffc4ec", + "sha256:62f481ac772fd68901573956231aea3e4b1ad87b9b1089a61613a91e2b50bb9b", + "sha256:689508b918332fb40ce117131633647731d098b1b10d092234aa959b4251add5", + "sha256:68a02bbe020dc22ee0540e040117535f06df9358106d3775e8817d826047f3fd", + "sha256:6ed2662a3d9c832afa36405f8748c250be94ae5dfc5283d668308391f2102861", + "sha256:7286aed4ea271df9eab8d7a9b29e507094b51397812f7ce051ecd77915a6e26b", + "sha256:7cc7d685b8eeca7ae69dc6416833fbfea61660684b7089bca666067cb2937dcf", + "sha256:8708b98c278012ad267ee8a7433baeb809948855e81922878118464b274c909d", + "sha256:9398f244e28e0596e2ee6024f808b06060109e33ed38dcc9bded452fd9bbb853", + "sha256:9e36344e48af3e3bde867a1ca54f97c308735dd8697005c2d24a86054a114a71", + "sha256:a398bdadb055f8de69f62b0fc70625f7cbdab436bbb31eef5816e28cab083ee8", + "sha256:acb47f6f8680de24c1ab65ebde39dd035768e2a9b571a07c7b8da95f6c8815fd", + "sha256:be24fcb80493b2c94eae21df70017351851652a37de514de553435b256b2f249", + "sha256:c391cd5af88aacaf41dd7cfb96eeedfad297b5899a39e12f4c2c3706d0a3329d", + "sha256:c95b0724a6deea2c8c5d3222191783ced0a2f09bd6d33f93e563f6f1a4b3b3a4", + "sha256:c9b1ce7a45978b821a06d375b83763b27a3a5e8a2e4570b3065abad240a18760", + "sha256:db372213d39fa33af667c2aa586a0c1235e88e9c850f5dd5c8e1f17515861868", + "sha256:db55cbaea02a20b49fefbd8e9d62bd481aaabe1f2301dabc575acc6b358874fa", + "sha256:ed1a13a27f59d1fc1920394a7f596792e9d546c9ca5a044419dca70c37815d7c", + "sha256:f2b82f46917d8722e6b5eafeefb4fb585d23babd15d8246c664cd88a5bddd19c", + "sha256:f2f806990160d1ce42d287aa419df3ffc42dfefe60d473695fb048355fe0c6a0", + "sha256:f720fa82a11c0f9042376fd509b5ed88dab7e3cd602eee63a1af08883b37342b" + ], + "markers": "python_version >= '3.8'", + "version": "==4.42.1" + }, + "gitdb": { + "hashes": [ + "sha256:6eb990b69df4e15bad899ea868dc46572c3f75339735663b81de79b06f17eb9a", + "sha256:c286cf298426064079ed96a9e4a9d39e7f3e9bf15ba60701e95f5492f28415c7" + ], + "markers": "python_version >= '3.7'", + "version": "==4.0.10" + }, + "gitpython": { + "hashes": [ + "sha256:5f4c4187de49616d710a77e98ddf17b4782060a1788df441846bddefbb89ab33", + "sha256:f9b9ddc0761c125d5780eab2d64be4873fc6817c2899cbcb34b02344bdc7bc54" + ], + "markers": "python_version >= '3.7'", + "version": "==3.1.37" + }, + "graphviz": { + "hashes": [ + "sha256:587c58a223b51611c0cf461132da386edd896a029524ca61a1462b880bf97977", + "sha256:8c58f14adaa3b947daf26c19bc1e98c4e0702cdc31cf99153e6f06904d492bf8" + ], + "markers": "python_version >= '3.7'", + "version": "==0.20.1" + }, + "htbuilder": { + "hashes": [ + "sha256:5bb707221a0e2162e406c9ecf7bcc9efa9ad590c9f2180149440415f43a10bb5", + "sha256:9979a4fb6e50ce732bf6f6bc0441039dcaa3a3fc70689d8f38f601ed8a1aeec0" + ], + "markers": "python_version >= '3.5'", + "version": "==0.6.2" + }, + "idna": { + "hashes": [ + "sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4", + "sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2" + ], + "markers": "python_version >= '3.5'", + "version": "==3.4" + }, + "importlib-metadata": { + "hashes": [ + "sha256:3ebb78df84a805d7698245025b975d9d67053cd94c79245ba4b3eb694abe68bb", + "sha256:dbace7892d8c0c4ac1ad096662232f831d4e64f4c4545bd53016a3e9d4654743" + ], + "markers": "python_version >= '3.8'", + "version": "==6.8.0" + }, + "ipython": { + "hashes": [ + "sha256:2baeb5be6949eeebf532150f81746f8333e2ccce02de1c7eedde3f23ed5e9f1e", + "sha256:45a2c3a529296870a97b7de34eda4a31bee16bc7bf954e07d39abe49caf8f887" + ], + "index": "pypi", + "markers": "python_version >= '3.9'", + "version": "==8.15.0" + }, + "jedi": { + "hashes": [ + "sha256:bcf9894f1753969cbac8022a8c2eaee06bfa3724e4192470aaffe7eb6272b0c4", + "sha256:cb8ce23fbccff0025e9386b5cf85e892f94c9b822378f8da49970471335ac64e" + ], + "markers": "python_version >= '3.6'", + "version": "==0.19.0" + }, + "jinja2": { + "hashes": [ + "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852", + "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61" + ], + "markers": "python_version >= '3.7'", + "version": "==3.1.2" + }, + "joblib": { + "hashes": [ + "sha256:92f865e621e17784e7955080b6d042489e3b8e294949cc44c6eac304f59772b1", + "sha256:ef4331c65f239985f3f2220ecc87db222f08fd22097a3dd5698f693875f8cbb9" + ], + "markers": "python_version >= '3.7'", + "version": "==1.3.2" + }, + "jsonschema": { + "hashes": [ + "sha256:cd5f1f9ed9444e554b38ba003af06c0a8c2868131e56bfbef0550fb450c0330e", + "sha256:ec84cc37cfa703ef7cd4928db24f9cb31428a5d0fa77747b8b51a847458e0bbf" + ], + "markers": "python_version >= '3.8'", + "version": "==4.19.1" + }, + "jsonschema-specifications": { + "hashes": [ + "sha256:05adf340b659828a004220a9613be00fa3f223f2b82002e273dee62fd50524b1", + "sha256:c91a50404e88a1f6ba40636778e2ee08f6e24c5613fe4c53ac24578a5a7f72bb" + ], + "markers": "python_version >= '3.8'", + "version": "==2023.7.1" + }, + "kiwisolver": { + "hashes": [ + "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf", + "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e", + "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af", + "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f", + "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046", + "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3", + "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5", + "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71", + "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee", + "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3", + "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9", + "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b", + "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985", + "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea", + "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16", + "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89", + "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c", + "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9", + "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712", + "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342", + "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a", + "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958", + "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d", + "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a", + "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130", + "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff", + "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898", + "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b", + "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f", + "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265", + "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93", + "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929", + "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635", + "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709", + "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b", + "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb", + "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a", + "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920", + "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e", + "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544", + "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45", + "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390", + "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77", + "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355", + "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff", + "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4", + "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7", + "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20", + "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c", + "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162", + "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228", + "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437", + "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc", + "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a", + "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901", + "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4", + "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770", + "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525", + "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad", + "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a", + "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29", + "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90", + "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250", + "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d", + "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3", + "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54", + "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f", + "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1", + "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da", + "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238", + "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa", + "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523", + "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0", + "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205", + "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3", + "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4", + "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac", + "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9", + "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb", + "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced", + "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd", + "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0", + "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da", + "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18", + "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9", + "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276", + "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333", + "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b", + "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db", + "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126", + "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9", + "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09", + "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0", + "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec", + "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7", + "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff", + "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9", + "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192", + "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8", + "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d", + "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6", + "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797", + "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892", + "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f" + ], + "markers": "python_version >= '3.7'", + "version": "==1.4.5" + }, + "lxml": { + "hashes": [ + "sha256:05186a0f1346ae12553d66df1cfce6f251589fea3ad3da4f3ef4e34b2d58c6a3", + "sha256:075b731ddd9e7f68ad24c635374211376aa05a281673ede86cbe1d1b3455279d", + "sha256:081d32421db5df44c41b7f08a334a090a545c54ba977e47fd7cc2deece78809a", + "sha256:0a3d3487f07c1d7f150894c238299934a2a074ef590b583103a45002035be120", + "sha256:0bfd0767c5c1de2551a120673b72e5d4b628737cb05414f03c3277bf9bed3305", + "sha256:0c0850c8b02c298d3c7006b23e98249515ac57430e16a166873fc47a5d549287", + "sha256:0e2cb47860da1f7e9a5256254b74ae331687b9672dfa780eed355c4c9c3dbd23", + "sha256:120fa9349a24c7043854c53cae8cec227e1f79195a7493e09e0c12e29f918e52", + "sha256:1247694b26342a7bf47c02e513d32225ededd18045264d40758abeb3c838a51f", + "sha256:141f1d1a9b663c679dc524af3ea1773e618907e96075262726c7612c02b149a4", + "sha256:14e019fd83b831b2e61baed40cab76222139926b1fb5ed0e79225bc0cae14584", + "sha256:1509dd12b773c02acd154582088820893109f6ca27ef7291b003d0e81666109f", + "sha256:17a753023436a18e27dd7769e798ce302963c236bc4114ceee5b25c18c52c693", + "sha256:1e224d5755dba2f4a9498e150c43792392ac9b5380aa1b845f98a1618c94eeef", + "sha256:1f447ea5429b54f9582d4b955f5f1985f278ce5cf169f72eea8afd9502973dd5", + "sha256:23eed6d7b1a3336ad92d8e39d4bfe09073c31bfe502f20ca5116b2a334f8ec02", + "sha256:25f32acefac14ef7bd53e4218fe93b804ef6f6b92ffdb4322bb6d49d94cad2bc", + "sha256:2c74524e179f2ad6d2a4f7caf70e2d96639c0954c943ad601a9e146c76408ed7", + "sha256:303bf1edce6ced16bf67a18a1cf8339d0db79577eec5d9a6d4a80f0fb10aa2da", + "sha256:3331bece23c9ee066e0fb3f96c61322b9e0f54d775fccefff4c38ca488de283a", + "sha256:3e9bdd30efde2b9ccfa9cb5768ba04fe71b018a25ea093379c857c9dad262c40", + "sha256:411007c0d88188d9f621b11d252cce90c4a2d1a49db6c068e3c16422f306eab8", + "sha256:42871176e7896d5d45138f6d28751053c711ed4d48d8e30b498da155af39aebd", + "sha256:46f409a2d60f634fe550f7133ed30ad5321ae2e6630f13657fb9479506b00601", + "sha256:48628bd53a426c9eb9bc066a923acaa0878d1e86129fd5359aee99285f4eed9c", + "sha256:48d6ed886b343d11493129e019da91d4039826794a3e3027321c56d9e71505be", + "sha256:4930be26af26ac545c3dffb662521d4e6268352866956672231887d18f0eaab2", + "sha256:4aec80cde9197340bc353d2768e2a75f5f60bacda2bab72ab1dc499589b3878c", + "sha256:4c28a9144688aef80d6ea666c809b4b0e50010a2aca784c97f5e6bf143d9f129", + "sha256:4d2d1edbca80b510443f51afd8496be95529db04a509bc8faee49c7b0fb6d2cc", + "sha256:4dd9a263e845a72eacb60d12401e37c616438ea2e5442885f65082c276dfb2b2", + "sha256:4f1026bc732b6a7f96369f7bfe1a4f2290fb34dce00d8644bc3036fb351a4ca1", + "sha256:4fb960a632a49f2f089d522f70496640fdf1218f1243889da3822e0a9f5f3ba7", + "sha256:50670615eaf97227d5dc60de2dc99fb134a7130d310d783314e7724bf163f75d", + "sha256:50baa9c1c47efcaef189f31e3d00d697c6d4afda5c3cde0302d063492ff9b477", + "sha256:53ace1c1fd5a74ef662f844a0413446c0629d151055340e9893da958a374f70d", + "sha256:5515edd2a6d1a5a70bfcdee23b42ec33425e405c5b351478ab7dc9347228f96e", + "sha256:56dc1f1ebccc656d1b3ed288f11e27172a01503fc016bcabdcbc0978b19352b7", + "sha256:578695735c5a3f51569810dfebd05dd6f888147a34f0f98d4bb27e92b76e05c2", + "sha256:57aba1bbdf450b726d58b2aea5fe47c7875f5afb2c4a23784ed78f19a0462574", + "sha256:57d6ba0ca2b0c462f339640d22882acc711de224d769edf29962b09f77129cbf", + "sha256:5c245b783db29c4e4fbbbfc9c5a78be496c9fea25517f90606aa1f6b2b3d5f7b", + "sha256:5c31c7462abdf8f2ac0577d9f05279727e698f97ecbb02f17939ea99ae8daa98", + "sha256:64f479d719dc9f4c813ad9bb6b28f8390360660b73b2e4beb4cb0ae7104f1c12", + "sha256:65299ea57d82fb91c7f019300d24050c4ddeb7c5a190e076b5f48a2b43d19c42", + "sha256:6689a3d7fd13dc687e9102a27e98ef33730ac4fe37795d5036d18b4d527abd35", + "sha256:690dafd0b187ed38583a648076865d8c229661ed20e48f2335d68e2cf7dc829d", + "sha256:6fc3c450eaa0b56f815c7b62f2b7fba7266c4779adcf1cece9e6deb1de7305ce", + "sha256:704f61ba8c1283c71b16135caf697557f5ecf3e74d9e453233e4771d68a1f42d", + "sha256:71c52db65e4b56b8ddc5bb89fb2e66c558ed9d1a74a45ceb7dcb20c191c3df2f", + "sha256:71d66ee82e7417828af6ecd7db817913cb0cf9d4e61aa0ac1fde0583d84358db", + "sha256:7d298a1bd60c067ea75d9f684f5f3992c9d6766fadbc0bcedd39750bf344c2f4", + "sha256:8b77946fd508cbf0fccd8e400a7f71d4ac0e1595812e66025bac475a8e811694", + "sha256:8d7e43bd40f65f7d97ad8ef5c9b1778943d02f04febef12def25f7583d19baac", + "sha256:8df133a2ea5e74eef5e8fc6f19b9e085f758768a16e9877a60aec455ed2609b2", + "sha256:8ed74706b26ad100433da4b9d807eae371efaa266ffc3e9191ea436087a9d6a7", + "sha256:92af161ecbdb2883c4593d5ed4815ea71b31fafd7fd05789b23100d081ecac96", + "sha256:97047f0d25cd4bcae81f9ec9dc290ca3e15927c192df17331b53bebe0e3ff96d", + "sha256:9719fe17307a9e814580af1f5c6e05ca593b12fb7e44fe62450a5384dbf61b4b", + "sha256:9767e79108424fb6c3edf8f81e6730666a50feb01a328f4a016464a5893f835a", + "sha256:9a92d3faef50658dd2c5470af249985782bf754c4e18e15afb67d3ab06233f13", + "sha256:9bb6ad405121241e99a86efff22d3ef469024ce22875a7ae045896ad23ba2340", + "sha256:9e28c51fa0ce5674be9f560c6761c1b441631901993f76700b1b30ca6c8378d6", + "sha256:aca086dc5f9ef98c512bac8efea4483eb84abbf926eaeedf7b91479feb092458", + "sha256:ae8b9c6deb1e634ba4f1930eb67ef6e6bf6a44b6eb5ad605642b2d6d5ed9ce3c", + "sha256:b0a545b46b526d418eb91754565ba5b63b1c0b12f9bd2f808c852d9b4b2f9b5c", + "sha256:b4e4bc18382088514ebde9328da057775055940a1f2e18f6ad2d78aa0f3ec5b9", + "sha256:b6420a005548ad52154c8ceab4a1290ff78d757f9e5cbc68f8c77089acd3c432", + "sha256:b86164d2cff4d3aaa1f04a14685cbc072efd0b4f99ca5708b2ad1b9b5988a991", + "sha256:bb3bb49c7a6ad9d981d734ef7c7193bc349ac338776a0360cc671eaee89bcf69", + "sha256:bef4e656f7d98aaa3486d2627e7d2df1157d7e88e7efd43a65aa5dd4714916cf", + "sha256:c0781a98ff5e6586926293e59480b64ddd46282953203c76ae15dbbbf302e8bb", + "sha256:c2006f5c8d28dee289f7020f721354362fa304acbaaf9745751ac4006650254b", + "sha256:c41bfca0bd3532d53d16fd34d20806d5c2b1ace22a2f2e4c0008570bf2c58833", + "sha256:cd47b4a0d41d2afa3e58e5bf1f62069255aa2fd6ff5ee41604418ca925911d76", + "sha256:cdb650fc86227eba20de1a29d4b2c1bfe139dc75a0669270033cb2ea3d391b85", + "sha256:cef2502e7e8a96fe5ad686d60b49e1ab03e438bd9123987994528febd569868e", + "sha256:d27be7405547d1f958b60837dc4c1007da90b8b23f54ba1f8b728c78fdb19d50", + "sha256:d37017287a7adb6ab77e1c5bee9bcf9660f90ff445042b790402a654d2ad81d8", + "sha256:d3ff32724f98fbbbfa9f49d82852b159e9784d6094983d9a8b7f2ddaebb063d4", + "sha256:d73d8ecf8ecf10a3bd007f2192725a34bd62898e8da27eb9d32a58084f93962b", + "sha256:dd708cf4ee4408cf46a48b108fb9427bfa00b9b85812a9262b5c668af2533ea5", + "sha256:e3cd95e10c2610c360154afdc2f1480aea394f4a4f1ea0a5eacce49640c9b190", + "sha256:e4da8ca0c0c0aea88fd46be8e44bd49716772358d648cce45fe387f7b92374a7", + "sha256:eadfbbbfb41b44034a4c757fd5d70baccd43296fb894dba0295606a7cf3124aa", + "sha256:ed667f49b11360951e201453fc3967344d0d0263aa415e1619e85ae7fd17b4e0", + "sha256:f3df3db1d336b9356dd3112eae5f5c2b8b377f3bc826848567f10bfddfee77e9", + "sha256:f6bdac493b949141b733c5345b6ba8f87a226029cbabc7e9e121a413e49441e0", + "sha256:fbf521479bcac1e25a663df882c46a641a9bff6b56dc8b0fafaebd2f66fb231b", + "sha256:fc9b106a1bf918db68619fdcd6d5ad4f972fdd19c01d19bdb6bf63f3589a9ec5", + "sha256:fcdd00edfd0a3001e0181eab3e63bd5c74ad3e67152c84f93f13769a40e073a7", + "sha256:fe4bda6bd4340caa6e5cf95e73f8fea5c4bfc55763dd42f1b50a94c1b4a2fbd4" + ], + "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'", + "version": "==4.9.3" + }, + "markdown": { + "hashes": [ + "sha256:225c6123522495d4119a90b3a3ba31a1e87a70369e03f14799ea9c0d7183a3d6", + "sha256:a4c1b65c0957b4bd9e7d86ddc7b3c9868fb9670660f6f99f6d1bca8954d5a941" + ], + "markers": "python_version >= '3.7'", + "version": "==3.4.4" + }, + "markdown-it-py": { + "hashes": [ + "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1", + "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb" + ], + "markers": "python_version >= '3.8'", + "version": "==3.0.0" + }, + "markdownlit": { + "hashes": [ + "sha256:553e2db454e2be4567caebef5176c98a40a7e24f7ea9c2fe8a1f05c1d9ea4005", + "sha256:b58bb539dcb52e0b040ab2fed32f1f3146cbb2746dc3812940d9dd359c378bb6" + ], + "markers": "python_version >= '3.6'", + "version": "==0.0.7" + }, + "markupsafe": { + "hashes": [ + "sha256:05fb21170423db021895e1ea1e1f3ab3adb85d1c2333cbc2310f2a26bc77272e", + "sha256:0a4e4a1aff6c7ac4cd55792abf96c915634c2b97e3cc1c7129578aa68ebd754e", + "sha256:10bbfe99883db80bdbaff2dcf681dfc6533a614f700da1287707e8a5d78a8431", + "sha256:134da1eca9ec0ae528110ccc9e48041e0828d79f24121a1a146161103c76e686", + "sha256:14ff806850827afd6b07a5f32bd917fb7f45b046ba40c57abdb636674a8b559c", + "sha256:1577735524cdad32f9f694208aa75e422adba74f1baee7551620e43a3141f559", + "sha256:1b40069d487e7edb2676d3fbdb2b0829ffa2cd63a2ec26c4938b2d34391b4ecc", + "sha256:1b8dd8c3fd14349433c79fa8abeb573a55fc0fdd769133baac1f5e07abf54aeb", + "sha256:1f67c7038d560d92149c060157d623c542173016c4babc0c1913cca0564b9939", + "sha256:282c2cb35b5b673bbcadb33a585408104df04f14b2d9b01d4c345a3b92861c2c", + "sha256:2c1b19b3aaacc6e57b7e25710ff571c24d6c3613a45e905b1fde04d691b98ee0", + "sha256:2ef12179d3a291be237280175b542c07a36e7f60718296278d8593d21ca937d4", + "sha256:338ae27d6b8745585f87218a3f23f1512dbf52c26c28e322dbe54bcede54ccb9", + "sha256:3c0fae6c3be832a0a0473ac912810b2877c8cb9d76ca48de1ed31e1c68386575", + "sha256:3fd4abcb888d15a94f32b75d8fd18ee162ca0c064f35b11134be77050296d6ba", + "sha256:42de32b22b6b804f42c5d98be4f7e5e977ecdd9ee9b660fda1a3edf03b11792d", + "sha256:47d4f1c5f80fc62fdd7777d0d40a2e9dda0a05883ab11374334f6c4de38adffd", + "sha256:504b320cd4b7eff6f968eddf81127112db685e81f7e36e75f9f84f0df46041c3", + "sha256:525808b8019e36eb524b8c68acdd63a37e75714eac50e988180b169d64480a00", + "sha256:56d9f2ecac662ca1611d183feb03a3fa4406469dafe241673d521dd5ae92a155", + "sha256:5bbe06f8eeafd38e5d0a4894ffec89378b6c6a625ff57e3028921f8ff59318ac", + "sha256:65c1a9bcdadc6c28eecee2c119465aebff8f7a584dd719facdd9e825ec61ab52", + "sha256:68e78619a61ecf91e76aa3e6e8e33fc4894a2bebe93410754bd28fce0a8a4f9f", + "sha256:69c0f17e9f5a7afdf2cc9fb2d1ce6aabdb3bafb7f38017c0b77862bcec2bbad8", + "sha256:6b2b56950d93e41f33b4223ead100ea0fe11f8e6ee5f641eb753ce4b77a7042b", + "sha256:715d3562f79d540f251b99ebd6d8baa547118974341db04f5ad06d5ea3eb8007", + "sha256:787003c0ddb00500e49a10f2844fac87aa6ce977b90b0feaaf9de23c22508b24", + "sha256:7ef3cb2ebbf91e330e3bb937efada0edd9003683db6b57bb108c4001f37a02ea", + "sha256:8023faf4e01efadfa183e863fefde0046de576c6f14659e8782065bcece22198", + "sha256:8758846a7e80910096950b67071243da3e5a20ed2546e6392603c096778d48e0", + "sha256:8afafd99945ead6e075b973fefa56379c5b5c53fd8937dad92c662da5d8fd5ee", + "sha256:8c41976a29d078bb235fea9b2ecd3da465df42a562910f9022f1a03107bd02be", + "sha256:8e254ae696c88d98da6555f5ace2279cf7cd5b3f52be2b5cf97feafe883b58d2", + "sha256:8f9293864fe09b8149f0cc42ce56e3f0e54de883a9de90cd427f191c346eb2e1", + "sha256:9402b03f1a1b4dc4c19845e5c749e3ab82d5078d16a2a4c2cd2df62d57bb0707", + "sha256:962f82a3086483f5e5f64dbad880d31038b698494799b097bc59c2edf392fce6", + "sha256:9aad3c1755095ce347e26488214ef77e0485a3c34a50c5a5e2471dff60b9dd9c", + "sha256:9dcdfd0eaf283af041973bff14a2e143b8bd64e069f4c383416ecd79a81aab58", + "sha256:aa57bd9cf8ae831a362185ee444e15a93ecb2e344c8e52e4d721ea3ab6ef1823", + "sha256:aa7bd130efab1c280bed0f45501b7c8795f9fdbeb02e965371bbef3523627779", + "sha256:ab4a0df41e7c16a1392727727e7998a467472d0ad65f3ad5e6e765015df08636", + "sha256:ad9e82fb8f09ade1c3e1b996a6337afac2b8b9e365f926f5a61aacc71adc5b3c", + "sha256:af598ed32d6ae86f1b747b82783958b1a4ab8f617b06fe68795c7f026abbdcad", + "sha256:b076b6226fb84157e3f7c971a47ff3a679d837cf338547532ab866c57930dbee", + "sha256:b7ff0f54cb4ff66dd38bebd335a38e2c22c41a8ee45aa608efc890ac3e3931bc", + "sha256:bfce63a9e7834b12b87c64d6b155fdd9b3b96191b6bd334bf37db7ff1fe457f2", + "sha256:c011a4149cfbcf9f03994ec2edffcb8b1dc2d2aede7ca243746df97a5d41ce48", + "sha256:c9c804664ebe8f83a211cace637506669e7890fec1b4195b505c214e50dd4eb7", + "sha256:ca379055a47383d02a5400cb0d110cef0a776fc644cda797db0c5696cfd7e18e", + "sha256:cb0932dc158471523c9637e807d9bfb93e06a95cbf010f1a38b98623b929ef2b", + "sha256:cd0f502fe016460680cd20aaa5a76d241d6f35a1c3350c474bac1273803893fa", + "sha256:ceb01949af7121f9fc39f7d27f91be8546f3fb112c608bc4029aef0bab86a2a5", + "sha256:d080e0a5eb2529460b30190fcfcc4199bd7f827663f858a226a81bc27beaa97e", + "sha256:dd15ff04ffd7e05ffcb7fe79f1b98041b8ea30ae9234aed2a9168b5797c3effb", + "sha256:df0be2b576a7abbf737b1575f048c23fb1d769f267ec4358296f31c2479db8f9", + "sha256:e09031c87a1e51556fdcb46e5bd4f59dfb743061cf93c4d6831bf894f125eb57", + "sha256:e4dd52d80b8c83fdce44e12478ad2e85c64ea965e75d66dbeafb0a3e77308fcc", + "sha256:f698de3fd0c4e6972b92290a45bd9b1536bffe8c6759c62471efaa8acb4c37bc", + "sha256:fec21693218efe39aa7f8599346e90c705afa52c5b31ae019b2e57e8f6542bb2", + "sha256:ffcc3f7c66b5f5b7931a5aa68fc9cecc51e685ef90282f4a82f0f5e9b704ad11" + ], + "markers": "python_version >= '3.7'", + "version": "==2.1.3" + }, + "matplotlib": { + "hashes": [ + "sha256:061ee58facb3580cd2d046a6d227fb77e9295599c5ec6ad069f06b5821ad1cfc", + "sha256:0b11f354aae62a2aa53ec5bb09946f5f06fc41793e351a04ff60223ea9162955", + "sha256:0d5ee602ef517a89d1f2c508ca189cfc395dd0b4a08284fb1b97a78eec354644", + "sha256:0e723f5b96f3cd4aad99103dc93e9e3cdc4f18afdcc76951f4857b46f8e39d2d", + "sha256:23ed11654fc83cd6cfdf6170b453e437674a050a452133a064d47f2f1371f8d3", + "sha256:2ea6886e93401c22e534bbfd39201ce8931b75502895cfb115cbdbbe2d31f287", + "sha256:31e793c8bd4ea268cc5d3a695c27b30650ec35238626961d73085d5e94b6ab68", + "sha256:36eafe2128772195b373e1242df28d1b7ec6c04c15b090b8d9e335d55a323900", + "sha256:3cc3776836d0f4f22654a7f2d2ec2004618d5cf86b7185318381f73b80fd8a2d", + "sha256:5dc945a9cb2deb7d197ba23eb4c210e591d52d77bf0ba27c35fc82dec9fa78d4", + "sha256:5de39dc61ca35342cf409e031f70f18219f2c48380d3886c1cf5ad9f17898e06", + "sha256:60a6e04dfd77c0d3bcfee61c3cd335fff1b917c2f303b32524cd1235e194ef99", + "sha256:6c49a2bd6981264bddcb8c317b6bd25febcece9e2ebfcbc34e7f4c0c867c09dc", + "sha256:6f25ffb6ad972cdffa7df8e5be4b1e3cadd2f8d43fc72085feb1518006178394", + "sha256:7b37b74f00c4cb6af908cb9a00779d97d294e89fd2145ad43f0cdc23f635760c", + "sha256:7f54b9fb87ca5acbcdd0f286021bedc162e1425fa5555ebf3b3dfc167b955ad9", + "sha256:87df75f528020a6299f76a1d986c0ed4406e3b2bd44bc5e306e46bca7d45e53e", + "sha256:90d74a95fe055f73a6cd737beecc1b81c26f2893b7a3751d52b53ff06ca53f36", + "sha256:a33bd3045c7452ca1fa65676d88ba940867880e13e2546abb143035fa9072a9d", + "sha256:c3499c312f5def8f362a2bf761d04fa2d452b333f3a9a3f58805273719bf20d9", + "sha256:c4940bad88a932ddc69734274f6fb047207e008389489f2b6f77d9ca485f0e7a", + "sha256:d670b9348e712ec176de225d425f150dc8e37b13010d85233c539b547da0be39", + "sha256:dae97fdd6996b3a25da8ee43e3fc734fff502f396801063c6b76c20b56683196", + "sha256:dd386c80a98b5f51571b9484bf6c6976de383cd2a8cd972b6a9562d85c6d2087", + "sha256:df8505e1c19d5c2c26aff3497a7cbd3ccfc2e97043d1e4db3e76afa399164b69", + "sha256:eee482731c8c17d86d9ddb5194d38621f9b0f0d53c99006275a12523ab021732", + "sha256:f691b4ef47c7384d0936b2e8ebdeb5d526c81d004ad9403dfb9d4c76b9979a93", + "sha256:f8b5a1bf27d078453aa7b5b27f52580e16360d02df6d3dc9504f3d2ce11f6309" + ], + "markers": "python_version >= '3.9'", + "version": "==3.8.0" + }, + "matplotlib-inline": { + "hashes": [ + "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311", + "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304" + ], + "markers": "python_version >= '3.5'", + "version": "==0.1.6" + }, + "mdurl": { + "hashes": [ + "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8", + "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba" + ], + "markers": "python_version >= '3.7'", + "version": "==0.1.2" + }, + "more-itertools": { + "hashes": [ + "sha256:626c369fa0eb37bac0291bce8259b332fd59ac792fa5497b59837309cd5b114a", + "sha256:64e0735fcfdc6f3464ea133afe8ea4483b1c5fe3a3d69852e6503b43a0b222e6" + ], + "markers": "python_version >= '3.8'", + "version": "==10.1.0" + }, + "mpmath": { + "hashes": [ + "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f", + "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c" + ], + "version": "==1.3.0" + }, + "networkx": { + "hashes": [ + "sha256:4f33f68cb2afcf86f28a45f43efc27a9386b535d567d2127f8f61d51dec58d36", + "sha256:de346335408f84de0eada6ff9fafafff9bcda11f0a0dfaa931133debb146ab61" + ], + "markers": "python_version >= '3.8'", + "version": "==3.1" + }, + "numpy": { + "hashes": [ + "sha256:020cdbee66ed46b671429c7265cf00d8ac91c046901c55684954c3958525dab2", + "sha256:0621f7daf973d34d18b4e4bafb210bbaf1ef5e0100b5fa750bd9cde84c7ac292", + "sha256:0792824ce2f7ea0c82ed2e4fecc29bb86bee0567a080dacaf2e0a01fe7654369", + "sha256:09aaee96c2cbdea95de76ecb8a586cb687d281c881f5f17bfc0fb7f5890f6b91", + "sha256:166b36197e9debc4e384e9c652ba60c0bacc216d0fc89e78f973a9760b503388", + "sha256:186ba67fad3c60dbe8a3abff3b67a91351100f2661c8e2a80364ae6279720299", + "sha256:306545e234503a24fe9ae95ebf84d25cba1fdc27db971aa2d9f1ab6bba19a9dd", + "sha256:436c8e9a4bdeeee84e3e59614d38c3dbd3235838a877af8c211cfcac8a80b8d3", + "sha256:4a873a8180479bc829313e8d9798d5234dfacfc2e8a7ac188418189bb8eafbd2", + "sha256:4acc65dd65da28060e206c8f27a573455ed724e6179941edb19f97e58161bb69", + "sha256:51be5f8c349fdd1a5568e72713a21f518e7d6707bcf8503b528b88d33b57dc68", + "sha256:546b7dd7e22f3c6861463bebb000646fa730e55df5ee4a0224408b5694cc6148", + "sha256:5671338034b820c8d58c81ad1dafc0ed5a00771a82fccc71d6438df00302094b", + "sha256:637c58b468a69869258b8ae26f4a4c6ff8abffd4a8334c830ffb63e0feefe99a", + "sha256:767254ad364991ccfc4d81b8152912e53e103ec192d1bb4ea6b1f5a7117040be", + "sha256:7d484292eaeb3e84a51432a94f53578689ffdea3f90e10c8b203a99be5af57d8", + "sha256:7f6bad22a791226d0a5c7c27a80a20e11cfe09ad5ef9084d4d3fc4a299cca505", + "sha256:86f737708b366c36b76e953c46ba5827d8c27b7a8c9d0f471810728e5a2fe57c", + "sha256:8c6adc33561bd1d46f81131d5352348350fc23df4d742bb246cdfca606ea1208", + "sha256:914b28d3215e0c721dc75db3ad6d62f51f630cb0c277e6b3bcb39519bed10bd8", + "sha256:b44e6a09afc12952a7d2a58ca0a2429ee0d49a4f89d83a0a11052da696440e49", + "sha256:bb0d9a1aaf5f1cb7967320e80690a1d7ff69f1d47ebc5a9bea013e3a21faec95", + "sha256:c0b45c8b65b79337dee5134d038346d30e109e9e2e9d43464a2970e5c0e93229", + "sha256:c2e698cb0c6dda9372ea98a0344245ee65bdc1c9dd939cceed6bb91256837896", + "sha256:c78a22e95182fb2e7874712433eaa610478a3caf86f28c621708d35fa4fd6e7f", + "sha256:e062aa24638bb5018b7841977c360d2f5917268d125c833a686b7cbabbec496c", + "sha256:e5e18e5b14a7560d8acf1c596688f4dfd19b4f2945b245a71e5af4ddb7422feb", + "sha256:eae430ecf5794cb7ae7fa3808740b015aa80747e5266153128ef055975a72b99", + "sha256:ee84ca3c58fe48b8ddafdeb1db87388dce2c3c3f701bf447b05e4cfcc3679112", + "sha256:f042f66d0b4ae6d48e70e28d487376204d3cbf43b84c03bac57e28dac6151581", + "sha256:f8db2f125746e44dce707dd44d4f4efeea8d7e2b43aace3f8d1f235cfa2733dd", + "sha256:f93fc78fe8bf15afe2b8d6b6499f1c73953169fad1e9a8dd086cdff3190e7fdf" + ], + "markers": "python_version < '3.13' and python_version >= '3.9'", + "version": "==1.26.0" + }, + "osqp": { + "hashes": [ + "sha256:0084e3d733c75687d68bc133bc380ce471dfe6f7724af2718a43491782eec8d6", + "sha256:03e460e683ec2ce0f839353ddfa3c4c8ffa509ab8cf6a2b2afbb586fa453e180", + "sha256:0441c10f7fe5f46692a9b44a57138977bb112ae3f8127151671968c5d9ec5dbb", + "sha256:146b89f2cfbf59eaeb2c47e3a312f2034138df78d80ce052364810dc0ef70fc4", + "sha256:1b2049b2c42565dcaa63ddca1c4028b1fb20aab141453f5d77e8ff5b1a99a2cf", + "sha256:1b573fe1cd0e82239a279c58817c1d365187ef862e928b2b9c828c3c516ad3c2", + "sha256:1c548a0b3691850e7e22f3624a128d8af33416d70a9b5976a47d4d832028dcd8", + "sha256:30fbc3b3c028c06a6c5f1e66be7b7106ad48a29e0dc5bd82393f82dd68235ef8", + "sha256:387e7abd737dfe32c9ec00ad74af25328cdd0d0f634d79530655c040a5cb9590", + "sha256:3cbb6efdaffb7387dc0037dfe3259d4803e5ad7217e6f20fb605c92953214b9d", + "sha256:3f3a3c6d2708868e5e3fe2da300d6523cbf68a3d8734ce9c5043db37391969f5", + "sha256:41f304d1d7f91af07d8f0b01e5af29ec3bb8824f0102c7fd8b13b497be120da4", + "sha256:60abec3593870990b16f00bd5017096a7091fb00b68d0db3383fc048ca8e55c9", + "sha256:6c3951ef505177b858c6cd34de980346014cae3d2234c93db960b12c5885f9a2", + "sha256:71d9f611823af4a8b241c86805920e5382cd65c7f94fd3615b4eef999ed94c7c", + "sha256:7eafa3f3e82dd36c52f3f4ef19a95142405c807c272c4b53c5971c53535d7804", + "sha256:b15e65a307fbbabf60248bb9bc204e61d5d4ae64e00427a69e2dad9622f4c29d", + "sha256:b73bdd9589901841af83c5ed6a4092b4fac5a0beff9e32682d8526d1f16a728c", + "sha256:c07b1a4b538aab629b0fae69f644b7e76f81f94d65230014d482e296dacd046b", + "sha256:dc18f87c9549032c163ce590a5e32079df94ee656c8fb357ba607aa9d78fab81", + "sha256:e1445e10a94e01698e13c87a7debf6ac1a15f3acd1f8f6340cb1ad945db4732b", + "sha256:e1dfda08c38c3521012740a73ef782f97dfc54a41deae4b0bc4afd18d0e74da0", + "sha256:e6b7d923c836f1d07115057e595245ccc1694ecae730a1affda78fc6f3c8d239", + "sha256:ea7d8c92bcdf4fef98d777f13d39060d425ef2e8778ed487c96a6fa10848cdea", + "sha256:fe57e4bde071b388518ecb068f26319506dd9cb107363d3d80c12d2e59fc1e81" + ], + "version": "==0.6.3" + }, + "packaging": { + "hashes": [ + "sha256:994793af429502c4ea2ebf6bf664629d07c1a9fe974af92966e4b8d2df7edc61", + "sha256:a392980d2b6cffa644431898be54b0045151319d1e7ec34f0cfed48767dd334f" + ], + "markers": "python_version >= '3.7'", + "version": "==23.1" + }, + "pandas": { + "hashes": [ + "sha256:02304e11582c5d090e5a52aec726f31fe3f42895d6bfc1f28738f9b64b6f0614", + "sha256:0489b0e6aa3d907e909aef92975edae89b1ee1654db5eafb9be633b0124abe97", + "sha256:05674536bd477af36aa2effd4ec8f71b92234ce0cc174de34fd21e2ee99adbc2", + "sha256:25e8474a8eb258e391e30c288eecec565bfed3e026f312b0cbd709a63906b6f8", + "sha256:29deb61de5a8a93bdd033df328441a79fcf8dd3c12d5ed0b41a395eef9cd76f0", + "sha256:366da7b0e540d1b908886d4feb3d951f2f1e572e655c1160f5fde28ad4abb750", + "sha256:3bcad1e6fb34b727b016775bea407311f7721db87e5b409e6542f4546a4951ea", + "sha256:4c3f32fd7c4dccd035f71734df39231ac1a6ff95e8bdab8d891167197b7018d2", + "sha256:4cdb0fab0400c2cb46dafcf1a0fe084c8bb2480a1fa8d81e19d15e12e6d4ded2", + "sha256:4f99bebf19b7e03cf80a4e770a3e65eee9dd4e2679039f542d7c1ace7b7b1daa", + "sha256:58d997dbee0d4b64f3cb881a24f918b5f25dd64ddf31f467bb9b67ae4c63a1e4", + "sha256:75ce97667d06d69396d72be074f0556698c7f662029322027c226fd7a26965cb", + "sha256:84e7e910096416adec68075dc87b986ff202920fb8704e6d9c8c9897fe7332d6", + "sha256:9e2959720b70e106bb1d8b6eadd8ecd7c8e99ccdbe03ee03260877184bb2877d", + "sha256:9e50e72b667415a816ac27dfcfe686dc5a0b02202e06196b943d54c4f9c7693e", + "sha256:a0dbfea0dd3901ad4ce2306575c54348d98499c95be01b8d885a2737fe4d7a98", + "sha256:b407381258a667df49d58a1b637be33e514b07f9285feb27769cedb3ab3d0b3a", + "sha256:b8bd1685556f3374520466998929bade3076aeae77c3e67ada5ed2b90b4de7f0", + "sha256:c1f84c144dee086fe4f04a472b5cd51e680f061adf75c1ae4fc3a9275560f8f4", + "sha256:c747793c4e9dcece7bb20156179529898abf505fe32cb40c4052107a3c620b49", + "sha256:cc1ab6a25da197f03ebe6d8fa17273126120874386b4ac11c1d687df288542dd", + "sha256:dc3657869c7902810f32bd072f0740487f9e030c1a3ab03e0af093db35a9d14e", + "sha256:f5ec7740f9ccb90aec64edd71434711f58ee0ea7f5ed4ac48be11cfa9abf7317", + "sha256:fecb198dc389429be557cde50a2d46da8434a17fe37d7d41ff102e3987fd947b", + "sha256:ffa8f0966de2c22de408d0e322db2faed6f6e74265aa0856f3824813cf124363" + ], + "index": "pypi", + "markers": "python_version >= '3.9'", + "version": "==2.1.1" + }, + "parso": { + "hashes": [ + "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0", + "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75" + ], + "markers": "python_version >= '3.6'", + "version": "==0.8.3" + }, + "patsy": { + "hashes": [ + "sha256:7eb5349754ed6aa982af81f636479b1b8db9d5b1a6e957a6016ec0534b5c86b7", + "sha256:bdc18001875e319bc91c812c1eb6a10be4bb13cb81eb763f466179dca3b67277" + ], + "version": "==0.5.3" + }, + "pexpect": { + "hashes": [ + "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937", + "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c" + ], + "markers": "sys_platform != 'win32'", + "version": "==4.8.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "pillow": { + "hashes": [ + "sha256:07999f5834bdc404c442146942a2ecadd1cb6292f5229f4ed3b31e0a108746b1", + "sha256:0852ddb76d85f127c135b6dd1f0bb88dbb9ee990d2cd9aa9e28526c93e794fba", + "sha256:1781a624c229cb35a2ac31cc4a77e28cafc8900733a864870c49bfeedacd106a", + "sha256:1e7723bd90ef94eda669a3c2c19d549874dd5badaeefabefd26053304abe5799", + "sha256:229e2c79c00e85989a34b5981a2b67aa079fd08c903f0aaead522a1d68d79e51", + "sha256:22baf0c3cf0c7f26e82d6e1adf118027afb325e703922c8dfc1d5d0156bb2eeb", + "sha256:252a03f1bdddce077eff2354c3861bf437c892fb1832f75ce813ee94347aa9b5", + "sha256:2dfaaf10b6172697b9bceb9a3bd7b951819d1ca339a5ef294d1f1ac6d7f63270", + "sha256:322724c0032af6692456cd6ed554bb85f8149214d97398bb80613b04e33769f6", + "sha256:35f6e77122a0c0762268216315bf239cf52b88865bba522999dc38f1c52b9b47", + "sha256:375f6e5ee9620a271acb6820b3d1e94ffa8e741c0601db4c0c4d3cb0a9c224bf", + "sha256:3ded42b9ad70e5f1754fb7c2e2d6465a9c842e41d178f262e08b8c85ed8a1d8e", + "sha256:432b975c009cf649420615388561c0ce7cc31ce9b2e374db659ee4f7d57a1f8b", + "sha256:482877592e927fd263028c105b36272398e3e1be3269efda09f6ba21fd83ec66", + "sha256:489f8389261e5ed43ac8ff7b453162af39c3e8abd730af8363587ba64bb2e865", + "sha256:54f7102ad31a3de5666827526e248c3530b3a33539dbda27c6843d19d72644ec", + "sha256:560737e70cb9c6255d6dcba3de6578a9e2ec4b573659943a5e7e4af13f298f5c", + "sha256:5671583eab84af046a397d6d0ba25343c00cd50bce03787948e0fff01d4fd9b1", + "sha256:5ba1b81ee69573fe7124881762bb4cd2e4b6ed9dd28c9c60a632902fe8db8b38", + "sha256:5d4ebf8e1db4441a55c509c4baa7a0587a0210f7cd25fcfe74dbbce7a4bd1906", + "sha256:60037a8db8750e474af7ffc9faa9b5859e6c6d0a50e55c45576bf28be7419705", + "sha256:608488bdcbdb4ba7837461442b90ea6f3079397ddc968c31265c1e056964f1ef", + "sha256:6608ff3bf781eee0cd14d0901a2b9cc3d3834516532e3bd673a0a204dc8615fc", + "sha256:662da1f3f89a302cc22faa9f14a262c2e3951f9dbc9617609a47521c69dd9f8f", + "sha256:7002d0797a3e4193c7cdee3198d7c14f92c0836d6b4a3f3046a64bd1ce8df2bf", + "sha256:763782b2e03e45e2c77d7779875f4432e25121ef002a41829d8868700d119392", + "sha256:77165c4a5e7d5a284f10a6efaa39a0ae8ba839da344f20b111d62cc932fa4e5d", + "sha256:7c9af5a3b406a50e313467e3565fc99929717f780164fe6fbb7704edba0cebbe", + "sha256:7ec6f6ce99dab90b52da21cf0dc519e21095e332ff3b399a357c187b1a5eee32", + "sha256:833b86a98e0ede388fa29363159c9b1a294b0905b5128baf01db683672f230f5", + "sha256:84a6f19ce086c1bf894644b43cd129702f781ba5751ca8572f08aa40ef0ab7b7", + "sha256:8507eda3cd0608a1f94f58c64817e83ec12fa93a9436938b191b80d9e4c0fc44", + "sha256:85ec677246533e27770b0de5cf0f9d6e4ec0c212a1f89dfc941b64b21226009d", + "sha256:8aca1152d93dcc27dc55395604dcfc55bed5f25ef4c98716a928bacba90d33a3", + "sha256:8d935f924bbab8f0a9a28404422da8af4904e36d5c33fc6f677e4c4485515625", + "sha256:8f36397bf3f7d7c6a3abdea815ecf6fd14e7fcd4418ab24bae01008d8d8ca15e", + "sha256:91ec6fe47b5eb5a9968c79ad9ed78c342b1f97a091677ba0e012701add857829", + "sha256:965e4a05ef364e7b973dd17fc765f42233415974d773e82144c9bbaaaea5d089", + "sha256:96e88745a55b88a7c64fa49bceff363a1a27d9a64e04019c2281049444a571e3", + "sha256:99eb6cafb6ba90e436684e08dad8be1637efb71c4f2180ee6b8f940739406e78", + "sha256:9adf58f5d64e474bed00d69bcd86ec4bcaa4123bfa70a65ce72e424bfb88ed96", + "sha256:9b1af95c3a967bf1da94f253e56b6286b50af23392a886720f563c547e48e964", + "sha256:a0aa9417994d91301056f3d0038af1199eb7adc86e646a36b9e050b06f526597", + "sha256:a0f9bb6c80e6efcde93ffc51256d5cfb2155ff8f78292f074f60f9e70b942d99", + "sha256:a127ae76092974abfbfa38ca2d12cbeddcdeac0fb71f9627cc1135bedaf9d51a", + "sha256:aaf305d6d40bd9632198c766fb64f0c1a83ca5b667f16c1e79e1661ab5060140", + "sha256:aca1c196f407ec7cf04dcbb15d19a43c507a81f7ffc45b690899d6a76ac9fda7", + "sha256:ace6ca218308447b9077c14ea4ef381ba0b67ee78d64046b3f19cf4e1139ad16", + "sha256:b416f03d37d27290cb93597335a2f85ed446731200705b22bb927405320de903", + "sha256:bf548479d336726d7a0eceb6e767e179fbde37833ae42794602631a070d630f1", + "sha256:c1170d6b195555644f0616fd6ed929dfcf6333b8675fcca044ae5ab110ded296", + "sha256:c380b27d041209b849ed246b111b7c166ba36d7933ec6e41175fd15ab9eb1572", + "sha256:c446d2245ba29820d405315083d55299a796695d747efceb5717a8b450324115", + "sha256:c830a02caeb789633863b466b9de10c015bded434deb3ec87c768e53752ad22a", + "sha256:cb841572862f629b99725ebaec3287fc6d275be9b14443ea746c1dd325053cbd", + "sha256:cfa4561277f677ecf651e2b22dc43e8f5368b74a25a8f7d1d4a3a243e573f2d4", + "sha256:cfcc2c53c06f2ccb8976fb5c71d448bdd0a07d26d8e07e321c103416444c7ad1", + "sha256:d3c6b54e304c60c4181da1c9dadf83e4a54fd266a99c70ba646a9baa626819eb", + "sha256:d3d403753c9d5adc04d4694d35cf0391f0f3d57c8e0030aac09d7678fa8030aa", + "sha256:d9c206c29b46cfd343ea7cdfe1232443072bbb270d6a46f59c259460db76779a", + "sha256:e49eb4e95ff6fd7c0c402508894b1ef0e01b99a44320ba7d8ecbabefddcc5569", + "sha256:f8286396b351785801a976b1e85ea88e937712ee2c3ac653710a4a57a8da5d9c", + "sha256:f8fc330c3370a81bbf3f88557097d1ea26cd8b019d6433aa59f71195f5ddebbf", + "sha256:fbd359831c1657d69bb81f0db962905ee05e5e9451913b18b831febfe0519082", + "sha256:fe7e1c262d3392afcf5071df9afa574544f28eac825284596ac6db56e6d11062", + "sha256:fed1e1cf6a42577953abbe8e6cf2fe2f566daebde7c34724ec8803c4c0cda579" + ], + "markers": "python_version >= '3.7'", + "version": "==9.5.0" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:04505ade687dc26dc4284b1ad19a83be2f2afe83e7a828ace0c72f3a1df72aac", + "sha256:9dffbe1d8acf91e3de75f3b544e4842382fc06c6babe903ac9acb74dc6e08d88" + ], + "markers": "python_full_version >= '3.7.0'", + "version": "==3.0.39" + }, + "protobuf": { + "hashes": [ + "sha256:067f750169bc644da2e1ef18c785e85071b7c296f14ac53e0900e605da588719", + "sha256:12e9ad2ec079b833176d2921be2cb24281fa591f0b119b208b788adc48c2561d", + "sha256:1b182c7181a2891e8f7f3a1b5242e4ec54d1f42582485a896e4de81aa17540c2", + "sha256:20651f11b6adc70c0f29efbe8f4a94a74caf61b6200472a9aea6e19898f9fcf4", + "sha256:2da777d34b4f4f7613cdf85c70eb9a90b1fbef9d36ae4a0ccfe014b0b07906f1", + "sha256:3d42e9e4796a811478c783ef63dc85b5a104b44aaaca85d4864d5b886e4b05e3", + "sha256:6e514e8af0045be2b56e56ae1bb14f43ce7ffa0f68b1c793670ccbe2c4fc7d2b", + "sha256:b0271a701e6782880d65a308ba42bc43874dabd1a0a0f41f72d2dac3b57f8e76", + "sha256:ba53c2f04798a326774f0e53b9c759eaef4f6a568ea7072ec6629851c8435959", + "sha256:e29d79c913f17a60cf17c626f1041e5288e9885c8579832580209de8b75f2a52", + "sha256:f631bb982c5478e0c1c70eab383af74a84be66945ebf5dd6b06fc90079668d0b", + "sha256:f6ccbcf027761a2978c1406070c3788f6de4a4b2cc20800cc03d52df716ad675", + "sha256:f6f8dc65625dadaad0c8545319c2e2f0424fede988368893ca3844261342c11a" + ], + "markers": "python_version >= '3.7'", + "version": "==4.24.3" + }, + "ptyprocess": { + "hashes": [ + "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35", + "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220" + ], + "version": "==0.7.0" + }, + "pure-eval": { + "hashes": [ + "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350", + "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3" + ], + "version": "==0.2.2" + }, + "pyarrow": { + "hashes": [ + "sha256:09552dad5cf3de2dc0aba1c7c4b470754c69bd821f5faafc3d774bedc3b04bb7", + "sha256:0f6eff839a9e40e9c5610d3ff8c5bdd2f10303408312caf4c8003285d0b49565", + "sha256:1afcc2c33f31f6fb25c92d50a86b7a9f076d38acbcb6f9e74349636109550148", + "sha256:3896ae6c205d73ad192d2fc1489cd0edfab9f12867c85b4c277af4d37383c18c", + "sha256:47663efc9c395e31d09c6aacfa860f4473815ad6804311c5433f7085415d62a7", + "sha256:51be67e29f3cfcde263a113c28e96aa04362ed8229cb7c6e5f5c719003659d33", + "sha256:588f0d2da6cf1b1680974d63be09a6530fd1bd825dc87f76e162404779a157dc", + "sha256:6241afd72b628787b4abea39e238e3ff9f34165273fad306c7acf780dd850956", + "sha256:6647444b21cb5e68b593b970b2a9a07748dd74ea457c7dadaa15fd469c48ada1", + "sha256:68fcd2dc1b7d9310b29a15949cdd0cb9bc34b6de767aff979ebf546020bf0ba0", + "sha256:69b6f9a089d116a82c3ed819eea8fe67dae6105f0d81eaf0fdd5e60d0c6e0944", + "sha256:70fa38cdc66b2fc1349a082987f2b499d51d072faaa6b600f71931150de2e0e3", + "sha256:83333726e83ed44b0ac94d8d7a21bbdee4a05029c3b1e8db58a863eec8fd8a33", + "sha256:868a073fd0ff6468ae7d869b5fc1f54de5c4255b37f44fb890385eb68b68f95d", + "sha256:8b30a27f1cddf5c6efcb67e598d7823a1e253d743d92ac32ec1eb4b6a1417867", + "sha256:aac0ae0146a9bfa5e12d87dda89d9ef7c57a96210b899459fc2f785303dcbb67", + "sha256:ab1268db81aeb241200e321e220e7cd769762f386f92f61b898352dd27e402ce", + "sha256:b9ba6b6d34bd2563345488cf444510588ea42ad5613df3b3509f48eb80250afd", + "sha256:c51afd87c35c8331b56f796eff954b9c7f8d4b7fef5903daf4e05fcf017d23a8", + "sha256:cd57b13a6466822498238877892a9b287b0a58c2e81e4bdb0b596dbb151cbb73", + "sha256:d00d374a5625beeb448a7fa23060df79adb596074beb3ddc1838adb647b6ef09", + "sha256:d1b4e7176443d12610874bb84d0060bf080f000ea9ed7c84b2801df851320295", + "sha256:d7759994217c86c161c6a8060509cfdf782b952163569606bb373828afdd82e8", + "sha256:dc6fd330fd574c51d10638e63c0d00ab456498fc804c9d01f2a61b9264f2c5b2", + "sha256:e3ad79455c197a36eefbd90ad4aa832bece7f830a64396c15c61a0985e337287", + "sha256:e66442e084979a97bb66939e18f7b8709e4ac5f887e636aba29486ffbf373763", + "sha256:ee7490f0f3f16a6c38f8c680949551053c8194e68de5046e6c288e396dccee80", + "sha256:f8ce69f7bf01de2e2764e14df45b8404fc6f1a5ed9871e8e08a12169f87b7a26", + "sha256:fda7857e35993673fcda603c07d43889fca60a5b254052a462653f8656c64f44" + ], + "markers": "python_version >= '3.8'", + "version": "==13.0.0" + }, + "pydeck": { + "hashes": [ + "sha256:9e0a67890ab061b8c6080e06f8c780934c00355a7114291c884f055f3fc0dc25", + "sha256:c89b3dd76f9991140a33b886b336c762105e9c9def8e842e891bc72dbce8a4ce" + ], + "markers": "python_version >= '3.7'", + "version": "==0.8.1b0" + }, + "pydot": { + "hashes": [ + "sha256:248081a39bcb56784deb018977e428605c1c758f10897a339fce1dd728ff007d", + "sha256:66c98190c65b8d2e2382a441b4c0edfdb4f4c025ef9cb9874de478fb0793a451" + ], + "index": "pypi", + "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'", + "version": "==1.4.2" + }, + "pygments": { + "hashes": [ + "sha256:13fc09fa63bc8d8671a6d247e1eb303c4b343eaee81d861f3404db2935653692", + "sha256:1daff0494820c69bc8941e407aa20f577374ee88364ee10a98fdbe0aece96e29" + ], + "markers": "python_version >= '3.7'", + "version": "==2.16.1" + }, + "pymdown-extensions": { + "hashes": [ + "sha256:77a82c621c58a83efc49a389159181d570e370fff9f810d3a4766a75fc678b66", + "sha256:94a0d8a03246712b64698af223848fd80aaf1ae4c4be29c8c61939b0467b5722" + ], + "markers": "python_version >= '3.8'", + "version": "==10.3" + }, + "pyparsing": { + "hashes": [ + "sha256:32c7c0b711493c72ff18a981d24f28aaf9c1fb7ed5e9667c9e84e3db623bdbfb", + "sha256:ede28a1a32462f5a9705e07aea48001a08f7cf81a021585011deba701581a0db" + ], + "markers": "python_full_version >= '3.6.8'", + "version": "==3.1.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86", + "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9" + ], + "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'", + "version": "==2.8.2" + }, + "pytz": { + "hashes": [ + "sha256:7b4fddbeb94a1eba4b557da24f19fdf9db575192544270a9101d8509f9f43d7b", + "sha256:ce42d816b81b68506614c11e8937d3aa9e41007ceb50bfdcb0749b921bf646c7" + ], + "version": "==2023.3.post1" + }, + "pyyaml": { + "hashes": [ + "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5", + "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc", + "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df", + "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741", + "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206", + "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27", + "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595", + "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62", + "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98", + "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696", + "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290", + "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9", + "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d", + "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6", + "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867", + "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47", + "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486", + "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6", + "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3", + "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007", + "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938", + "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0", + "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c", + "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735", + "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d", + "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28", + "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4", + "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba", + "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8", + "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5", + "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd", + "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3", + "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0", + "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515", + "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c", + "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c", + "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924", + "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34", + "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43", + "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859", + "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673", + "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54", + "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a", + "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b", + "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab", + "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa", + "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c", + "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585", + "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d", + "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f" + ], + "markers": "python_version >= '3.6'", + "version": "==6.0.1" + }, + "qdldl": { + "hashes": [ + "sha256:092f6606690a2b9bd3c939f3147887e02de13bb068fbed5ffdc7459034def623", + "sha256:0e3f06e8a49ddd834b24fc3d7afbba4fec0923101045aa2666e18d2a9980e329", + "sha256:26aa3d6f0da7779265d72e8f418094003e75fa53c515a53bc03fd8b9bcfbf7de", + "sha256:3a81c46522dd6b3042e2348fa98128bb5c0e466f42bce214e80cfb766ff40930", + "sha256:40e5d6753310377451ed4dc09b1ef28faf40108b713e7f55c8a8ae94d679a672", + "sha256:4a86155f3de66c5db0e21544b7a2421c671028fa20da407686d2a8d0e9b57e51", + "sha256:717cb1892b033c01a0aae84ededcfa1f05bcb97013095d779c497e6c32f90dac", + "sha256:718d8e141832e96ba71ca1807a74813836c6403110faaa3d33a67de1af3b29c4", + "sha256:8ab02e8b9ff86bd644a1935718387c82fbe04c31e3309cf9f7a121d02b1deda8", + "sha256:8fc35432913085d94b2327242cf51388467ef7a37ac0d71eb31b594b575dd498", + "sha256:981ca8672e9506976c663552c1eb6f6daf9726d62650b3bf5900260946156166", + "sha256:aa208703b44337a7e77f6f2663f7a452144becb4421970d534ff8297b92e1e10", + "sha256:ae161342529852b6248ace4642bc4ee371a7c1e0707b7bc43a43ef7e73c06ca3", + "sha256:b42649484f7c0d8ee659224ecaac0a3e97f12531018207f4d7323e4071320eb1", + "sha256:b8ec670d97cf756f9159dc0a11de5cf054e88aefe84bea1c7282f00334642843", + "sha256:c1dd0e570e65aaf35e10b7fb345f7ac763fd05a2227b9c06ce65e07993fc4984", + "sha256:e55bcd6962178029faf543addd49db145302dd51e19855fefa71b5fd55840eea", + "sha256:f346a114c8342ee6d4dbd6471eef314199fb268d3bf7b95885ca351fde2b023f", + "sha256:fd5cfd8c50f33ddacb830594a63b8c1093a24aea45312b9d2ed826cea5ece08a" + ], + "version": "==0.1.7.post0" + }, + "referencing": { + "hashes": [ + "sha256:449b6669b6121a9e96a7f9e410b245d471e8d48964c67113ce9afe50c8dd7bdf", + "sha256:794ad8003c65938edcdbc027f1933215e0d0ccc0291e3ce20a4d87432b59efc0" + ], + "markers": "python_version >= '3.8'", + "version": "==0.30.2" + }, + "requests": { + "hashes": [ + "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f", + "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1" + ], + "markers": "python_version >= '3.7'", + "version": "==2.31.0" + }, + "rich": { + "hashes": [ + "sha256:87b43e0543149efa1253f485cd845bb7ee54df16c9617b8a893650ab84b4acb6", + "sha256:9257b468badc3d347e146a4faa268ff229039d4c2d176ab0cffb4c4fbc73d5d9" + ], + "markers": "python_full_version >= '3.7.0'", + "version": "==13.5.3" + }, + "rpds-py": { + "hashes": [ + "sha256:015de2ce2af1586ff5dc873e804434185199a15f7d96920ce67e50604592cae9", + "sha256:061c3ff1f51ecec256e916cf71cc01f9975af8fb3af9b94d3c0cc8702cfea637", + "sha256:08a80cf4884920863623a9ee9a285ee04cef57ebedc1cc87b3e3e0f24c8acfe5", + "sha256:09362f86ec201288d5687d1dc476b07bf39c08478cde837cb710b302864e7ec9", + "sha256:0bb4f48bd0dd18eebe826395e6a48b7331291078a879295bae4e5d053be50d4c", + "sha256:106af1653007cc569d5fbb5f08c6648a49fe4de74c2df814e234e282ebc06957", + "sha256:11fdd1192240dda8d6c5d18a06146e9045cb7e3ba7c06de6973000ff035df7c6", + "sha256:16a472300bc6c83fe4c2072cc22b3972f90d718d56f241adabc7ae509f53f154", + "sha256:176287bb998fd1e9846a9b666e240e58f8d3373e3bf87e7642f15af5405187b8", + "sha256:177914f81f66c86c012311f8c7f46887ec375cfcfd2a2f28233a3053ac93a569", + "sha256:177c9dd834cdf4dc39c27436ade6fdf9fe81484758885f2d616d5d03c0a83bd2", + "sha256:187700668c018a7e76e89424b7c1042f317c8df9161f00c0c903c82b0a8cac5c", + "sha256:1d9b5ee46dcb498fa3e46d4dfabcb531e1f2e76b477e0d99ef114f17bbd38453", + "sha256:22da15b902f9f8e267020d1c8bcfc4831ca646fecb60254f7bc71763569f56b1", + "sha256:24cd91a03543a0f8d09cb18d1cb27df80a84b5553d2bd94cba5979ef6af5c6e7", + "sha256:255f1a10ae39b52122cce26ce0781f7a616f502feecce9e616976f6a87992d6b", + "sha256:271c360fdc464fe6a75f13ea0c08ddf71a321f4c55fc20a3fe62ea3ef09df7d9", + "sha256:2ed83d53a8c5902ec48b90b2ac045e28e1698c0bea9441af9409fc844dc79496", + "sha256:2f3e1867dd574014253b4b8f01ba443b9c914e61d45f3674e452a915d6e929a3", + "sha256:35fbd23c1c8732cde7a94abe7fb071ec173c2f58c0bd0d7e5b669fdfc80a2c7b", + "sha256:37d0c59548ae56fae01c14998918d04ee0d5d3277363c10208eef8c4e2b68ed6", + "sha256:39d05e65f23a0fe897b6ac395f2a8d48c56ac0f583f5d663e0afec1da89b95da", + "sha256:3ad59efe24a4d54c2742929001f2d02803aafc15d6d781c21379e3f7f66ec842", + "sha256:3aed39db2f0ace76faa94f465d4234aac72e2f32b009f15da6492a561b3bbebd", + "sha256:3bbac1953c17252f9cc675bb19372444aadf0179b5df575ac4b56faaec9f6294", + "sha256:40bc802a696887b14c002edd43c18082cb7b6f9ee8b838239b03b56574d97f71", + "sha256:42f712b4668831c0cd85e0a5b5a308700fe068e37dcd24c0062904c4e372b093", + "sha256:448a66b8266de0b581246ca7cd6a73b8d98d15100fb7165974535fa3b577340e", + "sha256:485301ee56ce87a51ccb182a4b180d852c5cb2b3cb3a82f7d4714b4141119d8c", + "sha256:485747ee62da83366a44fbba963c5fe017860ad408ccd6cd99aa66ea80d32b2e", + "sha256:4cf0855a842c5b5c391dd32ca273b09e86abf8367572073bd1edfc52bc44446b", + "sha256:4eca20917a06d2fca7628ef3c8b94a8c358f6b43f1a621c9815243462dcccf97", + "sha256:4ed172d0c79f156c1b954e99c03bc2e3033c17efce8dd1a7c781bc4d5793dfac", + "sha256:5267cfda873ad62591b9332fd9472d2409f7cf02a34a9c9cb367e2c0255994bf", + "sha256:52b5cbc0469328e58180021138207e6ec91d7ca2e037d3549cc9e34e2187330a", + "sha256:53d7a3cd46cdc1689296348cb05ffd4f4280035770aee0c8ead3bbd4d6529acc", + "sha256:563646d74a4b4456d0cf3b714ca522e725243c603e8254ad85c3b59b7c0c4bf0", + "sha256:570cc326e78ff23dec7f41487aa9c3dffd02e5ee9ab43a8f6ccc3df8f9327623", + "sha256:5aca759ada6b1967fcfd4336dcf460d02a8a23e6abe06e90ea7881e5c22c4de6", + "sha256:5de11c041486681ce854c814844f4ce3282b6ea1656faae19208ebe09d31c5b8", + "sha256:5e271dd97c7bb8eefda5cca38cd0b0373a1fea50f71e8071376b46968582af9b", + "sha256:642ed0a209ced4be3a46f8cb094f2d76f1f479e2a1ceca6de6346a096cd3409d", + "sha256:6446002739ca29249f0beaaf067fcbc2b5aab4bc7ee8fb941bd194947ce19aff", + "sha256:691d50c99a937709ac4c4cd570d959a006bd6a6d970a484c84cc99543d4a5bbb", + "sha256:69b857a7d8bd4f5d6e0db4086da8c46309a26e8cefdfc778c0c5cc17d4b11e08", + "sha256:6ac3fefb0d168c7c6cab24fdfc80ec62cd2b4dfd9e65b84bdceb1cb01d385c33", + "sha256:6c9141af27a4e5819d74d67d227d5047a20fa3c7d4d9df43037a955b4c748ec5", + "sha256:7170cbde4070dc3c77dec82abf86f3b210633d4f89550fa0ad2d4b549a05572a", + "sha256:763ad59e105fca09705d9f9b29ecffb95ecdc3b0363be3bb56081b2c6de7977a", + "sha256:77076bdc8776a2b029e1e6ffbe6d7056e35f56f5e80d9dc0bad26ad4a024a762", + "sha256:7cd020b1fb41e3ab7716d4d2c3972d4588fdfbab9bfbbb64acc7078eccef8860", + "sha256:821392559d37759caa67d622d0d2994c7a3f2fb29274948ac799d496d92bca73", + "sha256:829e91f3a8574888b73e7a3feb3b1af698e717513597e23136ff4eba0bc8387a", + "sha256:850c272e0e0d1a5c5d73b1b7871b0a7c2446b304cec55ccdb3eaac0d792bb065", + "sha256:87d9b206b1bd7a0523375dc2020a6ce88bca5330682ae2fe25e86fd5d45cea9c", + "sha256:8bd01ff4032abaed03f2db702fa9a61078bee37add0bd884a6190b05e63b028c", + "sha256:8d54bbdf5d56e2c8cf81a1857250f3ea132de77af543d0ba5dce667183b61fec", + "sha256:8efaeb08ede95066da3a3e3c420fcc0a21693fcd0c4396d0585b019613d28515", + "sha256:8f94fdd756ba1f79f988855d948ae0bad9ddf44df296770d9a58c774cfbcca72", + "sha256:95cde244e7195b2c07ec9b73fa4c5026d4a27233451485caa1cd0c1b55f26dbd", + "sha256:975382d9aa90dc59253d6a83a5ca72e07f4ada3ae3d6c0575ced513db322b8ec", + "sha256:9dd9d9d9e898b9d30683bdd2b6c1849449158647d1049a125879cb397ee9cd12", + "sha256:a019a344312d0b1f429c00d49c3be62fa273d4a1094e1b224f403716b6d03be1", + "sha256:a4d9bfda3f84fc563868fe25ca160c8ff0e69bc4443c5647f960d59400ce6557", + "sha256:a657250807b6efd19b28f5922520ae002a54cb43c2401e6f3d0230c352564d25", + "sha256:a771417c9c06c56c9d53d11a5b084d1de75de82978e23c544270ab25e7c066ff", + "sha256:aad6ed9e70ddfb34d849b761fb243be58c735be6a9265b9060d6ddb77751e3e8", + "sha256:ae87137951bb3dc08c7d8bfb8988d8c119f3230731b08a71146e84aaa919a7a9", + "sha256:af247fd4f12cca4129c1b82090244ea5a9d5bb089e9a82feb5a2f7c6a9fe181d", + "sha256:b5d4bdd697195f3876d134101c40c7d06d46c6ab25159ed5cbd44105c715278a", + "sha256:b9255e7165083de7c1d605e818025e8860636348f34a79d84ec533546064f07e", + "sha256:c22211c165166de6683de8136229721f3d5c8606cc2c3d1562da9a3a5058049c", + "sha256:c55f9821f88e8bee4b7a72c82cfb5ecd22b6aad04033334f33c329b29bfa4da0", + "sha256:c7aed97f2e676561416c927b063802c8a6285e9b55e1b83213dfd99a8f4f9e48", + "sha256:cd2163f42868865597d89399a01aa33b7594ce8e2c4a28503127c81a2f17784e", + "sha256:ce5e7504db95b76fc89055c7f41e367eaadef5b1d059e27e1d6eabf2b55ca314", + "sha256:cff7351c251c7546407827b6a37bcef6416304fc54d12d44dbfecbb717064717", + "sha256:d27aa6bbc1f33be920bb7adbb95581452cdf23005d5611b29a12bb6a3468cc95", + "sha256:d3b52a67ac66a3a64a7e710ba629f62d1e26ca0504c29ee8cbd99b97df7079a8", + "sha256:de61e424062173b4f70eec07e12469edde7e17fa180019a2a0d75c13a5c5dc57", + "sha256:e10e6a1ed2b8661201e79dff5531f8ad4cdd83548a0f81c95cf79b3184b20c33", + "sha256:e1a0ffc39f51aa5f5c22114a8f1906b3c17eba68c5babb86c5f77d8b1bba14d1", + "sha256:e22491d25f97199fc3581ad8dd8ce198d8c8fdb8dae80dea3512e1ce6d5fa99f", + "sha256:e626b864725680cd3904414d72e7b0bd81c0e5b2b53a5b30b4273034253bb41f", + "sha256:e8c71ea77536149e36c4c784f6d420ffd20bea041e3ba21ed021cb40ce58e2c9", + "sha256:e8d0f0eca087630d58b8c662085529781fd5dc80f0a54eda42d5c9029f812599", + "sha256:ea65b59882d5fa8c74a23f8960db579e5e341534934f43f3b18ec1839b893e41", + "sha256:ea93163472db26ac6043e8f7f93a05d9b59e0505c760da2a3cd22c7dd7111391", + "sha256:eab75a8569a095f2ad470b342f2751d9902f7944704f0571c8af46bede438475", + "sha256:ed8313809571a5463fd7db43aaca68ecb43ca7a58f5b23b6e6c6c5d02bdc7882", + "sha256:ef5fddfb264e89c435be4adb3953cef5d2936fdeb4463b4161a6ba2f22e7b740", + "sha256:ef750a20de1b65657a1425f77c525b0183eac63fe7b8f5ac0dd16f3668d3e64f", + "sha256:efb9ece97e696bb56e31166a9dd7919f8f0c6b31967b454718c6509f29ef6fee", + "sha256:f4c179a7aeae10ddf44c6bac87938134c1379c49c884529f090f9bf05566c836", + "sha256:f602881d80ee4228a2355c68da6b296a296cd22bbb91e5418d54577bbf17fa7c", + "sha256:fc2200e79d75b5238c8d69f6a30f8284290c777039d331e7340b6c17cad24a5a", + "sha256:fcc1ebb7561a3e24a6588f7c6ded15d80aec22c66a070c757559b57b17ffd1cb" + ], + "markers": "python_version >= '3.8'", + "version": "==0.10.3" + }, + "scikit-learn": { + "hashes": [ + "sha256:0ce9233cdf0cdcf0858a5849d306490bf6de71fa7603a3835124e386e62f2311", + "sha256:14e8775eba072ab10866a7e0596bc9906873e22c4c370a651223372eb62de180", + "sha256:1a231cced3ee3fa04756b4a7ab532dc9417acd581a330adff5f2c01ac2831fcf", + "sha256:1ec668ce003a5b3d12d020d2cde0abd64b262ac5f098b5c84cf9657deb9996a8", + "sha256:3153612ff8d36fa4e35ef8b897167119213698ea78f3fd130b4068e6f8d2da5a", + "sha256:4d379f2b34096105a96bd857b88601dffe7389bd55750f6f29aaa37bc6272eb5", + "sha256:52b77cc08bd555969ec5150788ed50276f5ef83abb72e6f469c5b91a0009bbca", + "sha256:58b0c2490eff8355dc26e884487bf8edaccf2ba48d09b194fb2f3a026dd64f9d", + "sha256:66f7bb1fec37d65f4ef85953e1df5d3c98a0f0141d394dcdaead5a6de9170347", + "sha256:6bb9490fdb8e7e00f1354621689187bef3cab289c9b869688f805bf724434755", + "sha256:7d8dee8c1f40eeba49a85fe378bdf70a07bb64aba1a08fda1e0f48d27edfc3e6", + "sha256:8454d57a22d856f1fbf3091bd86f9ebd4bff89088819886dc0c72f47a6c30652", + "sha256:845f81c7ceb4ea6bac64ab1c9f2ce8bef0a84d0f21f3bece2126adcc213dfecd", + "sha256:8d993fb70a1d78c9798b8f2f28705bfbfcd546b661f9e2e67aa85f81052b9c53", + "sha256:a15d964d9eb181c79c190d3dbc2fff7338786bf017e9039571418a1d53dab236", + "sha256:a683394bc3f80b7c312c27f9b14ebea7766b1f0a34faf1a2e9158d80e860ec26", + "sha256:a7135a03af71138669f19bc96e7d0cc8081aed4b3565cc3b131135d65fc642ba", + "sha256:c413c2c850241998168bbb3bd1bb59ff03b1195a53864f0b80ab092071af6028", + "sha256:c6448c37741145b241eeac617028ba6ec2119e1339b1385c9720dae31367f2be", + "sha256:ccbbedae99325628c1d1cbe3916b7ef58a1ce949672d8d39c8b190e10219fd32", + "sha256:f66eddfda9d45dd6cadcd706b65669ce1df84b8549875691b1f403730bdef217" + ], + "markers": "python_version >= '3.8'", + "version": "==1.3.1" + }, + "scipy": { + "hashes": [ + "sha256:00f325434b6424952fbb636506f0567898dca7b0f7654d48f1c382ea338ce9a3", + "sha256:033c3fd95d55012dd1148b201b72ae854d5086d25e7c316ec9850de4fe776929", + "sha256:0d3a136ae1ff0883fffbb1b05b0b2fea251cb1046a5077d0b435a1839b3e52b7", + "sha256:15f237e890c24aef6891c7d008f9ff7e758c6ef39a2b5df264650eb7900403c0", + "sha256:370f569c57e1d888304052c18e58f4a927338eafdaef78613c685ca2ea0d1fa0", + "sha256:3e1a8a4657673bfae1e05e1e1d6e94b0cabe5ed0c7c144c8aa7b7dbb774ce5c1", + "sha256:4b4bb134c7aa457e26cc6ea482b016fef45db71417d55cc6d8f43d799cdf9ef2", + "sha256:5305792c7110e32ff155aed0df46aa60a60fc6e52cd4ee02cdeb67eaccd5356e", + "sha256:5664e364f90be8219283eeb844323ff8cd79d7acbd64e15eb9c46b9bc7f6a42a", + "sha256:5f290cf561a4b4edfe8d1001ee4be6da60c1c4ea712985b58bf6bc62badee221", + "sha256:74e89dc5e00201e71dd94f5f382ab1c6a9f3ff806c7d24e4e90928bb1aafb280", + "sha256:7abda0e62ef00cde826d441485e2e32fe737bdddee3324e35c0e01dee65e2a88", + "sha256:90271dbde4be191522b3903fc97334e3956d7cfb9cce3f0718d0ab4fd7d8bfd6", + "sha256:91770cb3b1e81ae19463b3c235bf1e0e330767dca9eb4cd73ba3ded6c4151e4d", + "sha256:925c6f09d0053b1c0f90b2d92d03b261e889b20d1c9b08a3a51f61afc5f58165", + "sha256:9885e3e4f13b2bd44aaf2a1a6390a11add9f48d5295f7a592393ceb8991577a3", + "sha256:9ea7f579182d83d00fed0e5c11a4aa5ffe01460444219dedc448a36adf0c3917", + "sha256:a63d1ec9cadecce838467ce0631c17c15c7197ae61e49429434ba01d618caa83", + "sha256:bae66a2d7d5768eaa33008fa5a974389f167183c87bf39160d3fefe6664f8ddc", + "sha256:bba4d955f54edd61899776bad459bf7326e14b9fa1c552181f0479cc60a568cd", + "sha256:c77da50c9a91e23beb63c2a711ef9e9ca9a2060442757dffee34ea41847d8156", + "sha256:d2f6dee6cbb0e263b8142ed587bc93e3ed5e777f1f75448d24fb923d9fd4dce6", + "sha256:dfcc1552add7cb7c13fb70efcb2389d0624d571aaf2c80b04117e2755a0c5d15", + "sha256:e04aa19acc324a1a076abb4035dabe9b64badb19f76ad9c798bde39d41025cdc", + "sha256:e1f97cd89c0fe1a0685f8f89d85fa305deb3067d0668151571ba50913e445820" + ], + "markers": "python_version < '3.13' and python_version >= '3.9'", + "version": "==1.11.3" + }, + "scs": { + "hashes": [ + "sha256:2d835a74c283be73bff6e1978d3ae77a60d9e87db1fdd12916464fa2a1dda517", + "sha256:368194620918301bf5309a35a7cd0444f1b1992b182c0a29033c26eb97b3dcb2", + "sha256:3eb601738b260e3dcad117f3e02aceaca5d1e8eac2be225be1c0f9cbf83e75cb", + "sha256:6a80727167ad73151ced202a1ac6c0c7644b00b2e2607edec8a8807fc0443ac8", + "sha256:715ca4532de39b462bd393f9e8b4bf57be4122e20f0780d00db3cab1450a585d", + "sha256:79d7d6c42ee636821460d317b8250945ce04363a47a63aef6b1eae0bd7a418fc", + "sha256:81511fda3254c0d29089443dcd2305e81d203509e4d77afd160e9174b15ad75a", + "sha256:91f5194cfabe354c9b1f0ea1de82114028d81c5a4a633177b8da2fe36f301758", + "sha256:9a14a7c80efb34b469eb4dbaf26a9104dd2ca93e477985f948d8f28cd4b1a2ba", + "sha256:9d7f7fd2d2cd88938c159b15e8915d9536610e50a9c34ecf36ce0290807afe55", + "sha256:c0d15f21e9053c5df37dab0d700da55fcc71f2f454748f364b9de594988b2ab3", + "sha256:ddaa5af34a0e1f636d312eb1901bd407383f0b04dda50fba7242d56e618c0966", + "sha256:e3bd779e7e977e3ae5a2f2035aa4c2a309e29082d59a722d5d6592edc4bdb4b3", + "sha256:e6f64d23247797cfa289095fb5ddea6eeff5adf98961e953da90233278827e0c", + "sha256:f1b24176de97ecedf698596086f85da6dad472fe38a4b21cf4b460f87cae2c37", + "sha256:fcf4b985a787135b3e83682a4c5b9bce9c6290cfead1d7225c38f34f5ead7187" + ], + "version": "==3.2.3" + }, + "setuptools": { + "hashes": [ + "sha256:4ac1475276d2f1c48684874089fefcd83bd7162ddaafb81fac866ba0db282a87", + "sha256:b454a35605876da60632df1a60f736524eb73cc47bbc9f3f1ef1b644de74fd2a" + ], + "markers": "python_version >= '3.8'", + "version": "==68.2.2" + }, + "six": { + "hashes": [ + "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926", + "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254" + ], + "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'", + "version": "==1.16.0" + }, + "smmap": { + "hashes": [ + "sha256:dceeb6c0028fdb6734471eb07c0cd2aae706ccaecab45965ee83f11c8d3b1f62", + "sha256:e6d8668fa5f93e706934a62d7b4db19c8d9eb8cf2adbb75ef1b675aa332b69da" + ], + "markers": "python_version >= '3.7'", + "version": "==5.0.1" + }, + "soupsieve": { + "hashes": [ + "sha256:5663d5a7b3bfaeee0bc4372e7fc48f9cff4940b3eec54a6451cc5299f1097690", + "sha256:eaa337ff55a1579b6549dc679565eac1e3d000563bcb1c8ab0d0fefbc0c2cdc7" + ], + "markers": "python_version >= '3.8'", + "version": "==2.5" + }, + "st-annotated-text": { + "hashes": [ + "sha256:0a2a72903a5752a55c0acef71bdf92cd225a23a8ae4135cfc213c4538bed432f", + "sha256:a8ccb9a35c078ef22c6ebb244a9a0605ce27f1fd699f55939497669081b79630" + ], + "markers": "python_version >= '3.5'", + "version": "==4.0.1" + }, + "stack-data": { + "hashes": [ + "sha256:32d2dd0376772d01b6cb9fc996f3c8b57a357089dec328ed4b6553d037eaf815", + "sha256:cbb2a53eb64e5785878201a97ed7c7b94883f48b87bfb0bbe8b623c74679e4a8" + ], + "version": "==0.6.2" + }, + "statsmodels": { + "hashes": [ + "sha256:0eea4a0b761aebf0c355b726ac5616b9a8b618bd6e81a96b9f998a61f4fd7484", + "sha256:0ef7fa4813c7a73b0d8a0c830250f021c102c71c95e9fe0d6877bcfb56d38b8c", + "sha256:16bfe0c96a53b20fa19067e3b6bd2f1d39e30d4891ea0d7bc20734a0ae95942d", + "sha256:1c7724ad573af26139a98393ae64bc318d1b19762b13442d96c7a3e793f495c3", + "sha256:229b2f676b4a45cb62d132a105c9c06ca8a09ffba060abe34935391eb5d9ba87", + "sha256:3757542c95247e4ab025291a740efa5da91dc11a05990c033d40fce31c450dc9", + "sha256:3b0a135f3bfdeec987e36e3b3b4c53e0bb87a8d91464d2fcc4d169d176f46fdb", + "sha256:4c815ce7a699047727c65a7c179bff4031cff9ae90c78ca730cfd5200eb025dd", + "sha256:575f61337c8e406ae5fa074d34bc6eb77b5a57c544b2d4ee9bc3da6a0a084cf1", + "sha256:582f9e41092e342aaa04920d17cc3f97240e3ee198672f194719b5a3d08657d6", + "sha256:5a6a0a1a06ff79be8aa89c8494b33903442859add133f0dda1daf37c3c71682e", + "sha256:6875c7d689e966d948f15eb816ab5616f4928706b180cf470fd5907ab6f647a4", + "sha256:68b1c768dd94cc5ba8398121a632b673c625491aa7ed627b82cb4c880a25563f", + "sha256:6f7d762df4e04d1dde8127d07e91aff230eae643aa7078543e60e83e7d5b40db", + "sha256:71054f9dbcead56def14e3c9db6f66f943110fdfb19713caf0eb0f08c1ec03fd", + "sha256:76e290f4718177bffa8823a780f3b882d56dd64ad1c18cfb4bc8b5558f3f5757", + "sha256:77b3cd3a5268ef966a0a08582c591bd29c09c88b4566c892a7c087935234f285", + "sha256:7ebe885ccaa64b4bc5ad49ac781c246e7a594b491f08ab4cfd5aa456c363a6f6", + "sha256:8be53cdeb82f49c4cb0fda6d7eeeb2d67dbd50179b3e1033510e061863720d93", + "sha256:8d1e3e10dfbfcd58119ba5a4d3c7d519182b970a2aebaf0b6f539f55ae16058d", + "sha256:9c64ebe9cf376cba0c31aed138e15ed179a1d128612dd241cdf299d159e5e882", + "sha256:a6ad7b8aadccd4e4dd7f315a07bef1bca41d194eeaf4ec600d20dea02d242fce", + "sha256:afe80544ef46730ea1b11cc655da27038bbaa7159dc5af4bc35bbc32982262f2", + "sha256:b587ee5d23369a0e881da6e37f78371dce4238cf7638a455db4b633a1a1c62d6", + "sha256:ce28eb1c397dba437ec39b9ab18f2101806f388c7a0cf9cdfd8f09294ad1c799", + "sha256:d7fda067837df94e0a614d93d3a38fb6868958d37f7f50afe2a534524f2660cb", + "sha256:de489e3ed315bdba55c9d1554a2e89faa65d212e365ab81bc323fa52681fc60e", + "sha256:fb471f757fc45102a87e5d86e87dc2c8c78b34ad4f203679a46520f1d863b9da", + "sha256:fc2c7931008a911e3060c77ea8933f63f7367c0f3af04f82db3a04808ad2cd2c" + ], + "markers": "python_version >= '3.8'", + "version": "==0.14.0" + }, + "streamlit": { + "hashes": [ + "sha256:59a704195bbc669c794ddfcc3818480d9b9c2a282c02b48aa6e6de4b1c38d0a0", + "sha256:7488d4e22689d04f40449a1de521ba252ae95a5fbb5f5c606df16a4e16048b47" + ], + "index": "pypi", + "markers": "python_version >= '3.8' and python_full_version != '3.9.7'", + "version": "==1.27.0" + }, + "streamlit-camera-input-live": { + "hashes": [ + "sha256:20ceb952b98410084176fcfeb9148e02ea29033a88d4a923161ac7890cedae0f", + "sha256:dacb56cdedbb0d6c07e35a66b755b9145b5023e5c855c64193c3d3e73198e9be" + ], + "markers": "python_version >= '3.7'", + "version": "==0.2.0" + }, + "streamlit-card": { + "hashes": [ + "sha256:055f59440d3cce6d16f761bd9a861383b0c9bbe56dd73b82a3d62dab24e054e5", + "sha256:1a5414d2d7f7aa0cdd3f6d5780b6c9a172ac784bad7260707638c9f054f1240d" + ], + "markers": "python_version >= '3.8'", + "version": "==0.0.61" + }, + "streamlit-embedcode": { + "hashes": [ + "sha256:22a50eb43407bab3d0ed2d4b58e89819da477cd0592ef87edbd373c286712e3a", + "sha256:b3c9520c1b48f2eef3c702b5a967f64c9a8ff2ea8e74ebb26c0e9195965bb923" + ], + "markers": "python_version >= '3.6'", + "version": "==0.1.2" + }, + "streamlit-extras": { + "hashes": [ + "sha256:24c3b523f13a84c7622da83c4a01e93ea7a571ddd28c9d496a618156ecf10152", + "sha256:96820e605da0cb1ece570762a73273d40b0d85fee7cbdf2d3acbf5b10c6875ef" + ], + "index": "pypi", + "markers": "python_version not in '2.7, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7' and python_version >= '3.8'", + "version": "==0.3.2" + }, + "streamlit-faker": { + "hashes": [ + "sha256:3b6625fefb5c2bc759a3b2407c53c97b23cf69924ec31bd2fa7d5313b7691068", + "sha256:93d3d910d9be3e60f07c21b28d2ed0487737e071e48ce1faf858e1f68e05b624" + ], + "markers": "python_version >= '3.6'", + "version": "==0.0.2" + }, + "streamlit-image-coordinates": { + "hashes": [ + "sha256:2327599727243a5ad9798e5767b624ab4d26985f606c6be435145eb1c4127d1d", + "sha256:56b299c38c8c9aaa2fd724f12bc3b81017d01332a242152e10eeb63dffd50dd6" + ], + "markers": "python_version >= '3.7'", + "version": "==0.1.6" + }, + "streamlit-keyup": { + "hashes": [ + "sha256:5a38037af547163566eff9fec0ee17a7e3556e4bf99b68d44327c726b8ea85b3", + "sha256:7a187a40c3a95e3fea71be08e96e24c92c7054914e35c5bec3071be46f8a498e" + ], + "markers": "python_version >= '3.7'", + "version": "==0.2.0" + }, + "streamlit-toggle-switch": { + "hashes": [ + "sha256:0081212d80d178bda337acf2432425e2016d757f57834b18645d4c5b928d4c0f", + "sha256:991b103cd3448b0f6507f8051777b996a17b4630956d5b6fa13344175b20e572" + ], + "markers": "python_version >= '3.6'", + "version": "==1.0.2" + }, + "streamlit-vertical-slider": { + "hashes": [ + "sha256:6eaee79a397341eee6ec7862b77d27d548d2bdd126812fd811f831bd4d561f48", + "sha256:ab727cd5c1799c1d9a19c6201ff2a9bcda08222c849c5670ad7a0d994c9fdcdc" + ], + "markers": "python_version >= '3.6'", + "version": "==1.0.2" + }, + "sympy": { + "hashes": [ + "sha256:c3588cd4295d0c0f603d0f2ae780587e64e2efeedb3521e46b9bb1d08d184fa5", + "sha256:ebf595c8dac3e0fdc4152c51878b498396ec7f30e7a914d6071e674d49420fb8" + ], + "markers": "python_version >= '3.8'", + "version": "==1.12" + }, + "tenacity": { + "hashes": [ + "sha256:5398ef0d78e63f40007c1fb4c0bff96e1911394d2fa8d194f77619c05ff6cc8a", + "sha256:ce510e327a630c9e1beaf17d42e6ffacc88185044ad85cf74c0a8887c6a0f88c" + ], + "markers": "python_version >= '3.7'", + "version": "==8.2.3" + }, + "threadpoolctl": { + "hashes": [ + "sha256:2b7818516e423bdaebb97c723f86a7c6b0a83d3f3b0970328d66f4d9104dc032", + "sha256:c96a0ba3bdddeaca37dc4cc7344aafad41cdb8c313f74fdfe387a867bba93355" + ], + "markers": "python_version >= '3.8'", + "version": "==3.2.0" + }, + "toml": { + "hashes": [ + "sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b", + "sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f" + ], + "markers": "python_version >= '2.6' and python_version not in '3.0, 3.1, 3.2, 3.3'", + "version": "==0.10.2" + }, + "toolz": { + "hashes": [ + "sha256:2059bd4148deb1884bb0eb770a3cde70e7f954cfbbdc2285f1f2de01fd21eb6f", + "sha256:88c570861c440ee3f2f6037c4654613228ff40c93a6c25e0eba70d17282c6194" + ], + "markers": "python_version >= '3.5'", + "version": "==0.12.0" + }, + "tornado": { + "hashes": [ + "sha256:1bd19ca6c16882e4d37368e0152f99c099bad93e0950ce55e71daed74045908f", + "sha256:22d3c2fa10b5793da13c807e6fc38ff49a4f6e1e3868b0a6f4164768bb8e20f5", + "sha256:502fba735c84450974fec147340016ad928d29f1e91f49be168c0a4c18181e1d", + "sha256:65ceca9500383fbdf33a98c0087cb975b2ef3bfb874cb35b8de8740cf7f41bd3", + "sha256:71a8db65160a3c55d61839b7302a9a400074c9c753040455494e2af74e2501f2", + "sha256:7ac51f42808cca9b3613f51ffe2a965c8525cb1b00b7b2d56828b8045354f76a", + "sha256:7d01abc57ea0dbb51ddfed477dfe22719d376119844e33c661d873bf9c0e4a16", + "sha256:805d507b1f588320c26f7f097108eb4023bbaa984d63176d1652e184ba24270a", + "sha256:9dc4444c0defcd3929d5c1eb5706cbe1b116e762ff3e0deca8b715d14bf6ec17", + "sha256:ceb917a50cd35882b57600709dd5421a418c29ddc852da8bcdab1f0db33406b0", + "sha256:e7d8db41c0181c80d76c982aacc442c0783a2c54d6400fe028954201a2e032fe" + ], + "markers": "python_version >= '3.8'", + "version": "==6.3.3" + }, + "tqdm": { + "hashes": [ + "sha256:d302b3c5b53d47bce91fea46679d9c3c6508cf6332229aa1e7d8653723793386", + "sha256:d88e651f9db8d8551a62556d3cff9e3034274ca5d66e93197cf2490e2dcb69c7" + ], + "index": "pypi", + "markers": "python_version >= '3.7'", + "version": "==4.66.1" + }, + "traitlets": { + "hashes": [ + "sha256:07ab9c5bf8a0499fd7b088ba51be899c90ffc936ffc797d7b6907fc516bcd116", + "sha256:db9c4aa58139c3ba850101913915c042bdba86f7c8a0dda1c6f7f92c5da8e542" + ], + "markers": "python_version >= '3.8'", + "version": "==5.10.1" + }, + "typing-extensions": { + "hashes": [ + "sha256:8f92fc8806f9a6b641eaa5318da32b44d401efaac0f6678c9bc448ba3605faa0", + "sha256:df8e4339e9cb77357558cbdbceca33c303714cf861d1eef15e1070055ae8b7ef" + ], + "markers": "python_version >= '3.8'", + "version": "==4.8.0" + }, + "tzdata": { + "hashes": [ + "sha256:11ef1e08e54acb0d4f95bdb1be05da659673de4acbd21bf9c69e94cc5e907a3a", + "sha256:7e65763eef3120314099b6939b5546db7adce1e7d6f2e179e3df563c70511eda" + ], + "markers": "python_version >= '2'", + "version": "==2023.3" + }, + "tzlocal": { + "hashes": [ + "sha256:46eb99ad4bdb71f3f72b7d24f4267753e240944ecfc16f25d2719ba89827a803", + "sha256:f3596e180296aaf2dbd97d124fe76ae3a0e3d32b258447de7b939b3fd4be992f" + ], + "markers": "python_version >= '3.7'", + "version": "==5.0.1" + }, + "urllib3": { + "hashes": [ + "sha256:13abf37382ea2ce6fb744d4dad67838eec857c9f4f57009891805e0b5e123594", + "sha256:ef16afa8ba34a1f989db38e1dbbe0c302e4289a47856990d0682e374563ce35e" + ], + "markers": "python_version >= '3.7'", + "version": "==2.0.5" + }, + "validators": { + "hashes": [ + "sha256:61cf7d4a62bbae559f2e54aed3b000cea9ff3e2fdbe463f51179b92c58c9585a", + "sha256:77b2689b172eeeb600d9605ab86194641670cdb73b60afd577142a9397873370" + ], + "markers": "python_version >= '3.8'", + "version": "==0.22.0" + }, + "wcwidth": { + "hashes": [ + "sha256:795b138f6875577cd91bba52baf9e445cd5118fd32723b460e30a0af30ea230e", + "sha256:a5220780a404dbe3353789870978e472cfe477761f06ee55077256e509b156d0" + ], + "version": "==0.2.6" + }, + "zipp": { + "hashes": [ + "sha256:0e923e726174922dce09c53c59ad483ff7bbb8e572e00c7f7c46b88556409f31", + "sha256:84e64a1c28cf7e91ed2078bb8cc8c259cb19b76942096c8d7b84947690cabaf0" + ], + "markers": "python_version >= '3.8'", + "version": "==3.17.0" + } + }, + "develop": { + "appnope": { + "hashes": [ + "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24", + "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e" + ], + "markers": "sys_platform == 'darwin'", + "version": "==0.1.3" + }, + "asttokens": { + "hashes": [ + "sha256:2e0171b991b2c959acc6c49318049236844a5da1d65ba2672c4880c1c894834e", + "sha256:cf8fc9e61a86461aa9fb161a14a0841a03c405fa829ac6b202670b3495d2ce69" + ], + "version": "==2.4.0" + }, + "backcall": { + "hashes": [ + "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e", + "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255" + ], + "version": "==0.2.0" + }, + "comm": { + "hashes": [ + "sha256:354e40a59c9dd6db50c5cc6b4acc887d82e9603787f83b68c01a80a923984d15", + "sha256:6d52794cba11b36ed9860999cd10fd02d6b2eac177068fdd585e1e2f8a96e67a" + ], + "markers": "python_version >= '3.6'", + "version": "==0.1.4" + }, + "debugpy": { + "hashes": [ + "sha256:125b9a637e013f9faac0a3d6a82bd17c8b5d2c875fb6b7e2772c5aba6d082332", + "sha256:12af2c55b419521e33d5fb21bd022df0b5eb267c3e178f1d374a63a2a6bdccd0", + "sha256:3c6fb41c98ec51dd010d7ed650accfd07a87fe5e93eca9d5f584d0578f28f35f", + "sha256:46ab6780159eeabb43c1495d9c84cf85d62975e48b6ec21ee10c95767c0590aa", + "sha256:57161629133113c97b387382045649a2b985a348f0c9366e22217c87b68b73c6", + "sha256:5d9de202f5d42e62f932507ee8b21e30d49aae7e46d5b1dd5c908db1d7068637", + "sha256:60009b132c91951354f54363f8ebdf7457aeb150e84abba5ae251b8e9f29a8a6", + "sha256:61eab4a4c8b6125d41a34bad4e5fe3d2cc145caecd63c3fe953be4cc53e65bf8", + "sha256:7fb95ca78f7ac43393cd0e0f2b6deda438ec7c5e47fa5d38553340897d2fbdfb", + "sha256:8cd0197141eb9e8a4566794550cfdcdb8b3db0818bdf8c49a8e8f8053e56e38b", + "sha256:9c9b0ac1ce2a42888199df1a1906e45e6f3c9555497643a85e0bf2406e3ffbc4", + "sha256:a64093656c4c64dc6a438e11d59369875d200bd5abb8f9b26c1f5f723622e153", + "sha256:a8b7a2fd27cd9f3553ac112f356ad4ca93338feadd8910277aff71ab24d8775f", + "sha256:b05a6b503ed520ad58c8dc682749113d2fd9f41ffd45daec16e558ca884008cd", + "sha256:bdc5ef99d14b9c0fcb35351b4fbfc06ac0ee576aeab6b2511702e5a648a2e595", + "sha256:e3412f9faa9ade82aa64a50b602544efcba848c91384e9f93497a458767e6926", + "sha256:ef54404365fae8d45cf450d0544ee40cefbcb9cb85ea7afe89a963c27028261e", + "sha256:ef9ab7df0b9a42ed9c878afd3eaaff471fce3fa73df96022e1f5c9f8f8c87ada" + ], + "markers": "python_version >= '3.8'", + "version": "==1.8.0" + }, + "decorator": { + "hashes": [ + "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330", + "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186" + ], + "markers": "python_version >= '3.5'", + "version": "==5.1.1" + }, + "exceptiongroup": { + "hashes": [ + "sha256:097acd85d473d75af5bb98e41b61ff7fe35efe6675e4f9370ec6ec5126d160e9", + "sha256:343280667a4585d195ca1cf9cef84a4e178c4b6cf2274caef9859782b567d5e3" + ], + "markers": "python_version < '3.11'", + "version": "==1.1.3" + }, + "executing": { + "hashes": [ + "sha256:0314a69e37426e3608aada02473b4161d4caf5a4b244d1d0c48072b8fee7bacc", + "sha256:19da64c18d2d851112f09c287f8d3dbbdf725ab0e569077efb6cdcbd3497c107" + ], + "version": "==1.2.0" + }, + "ipykernel": { + "hashes": [ + "sha256:2e2ee359baba19f10251b99415bb39de1e97d04e1fab385646f24f0596510b77", + "sha256:f468ddd1f17acb48c8ce67fcfa49ba6d46d4f9ac0438c1f441be7c3d1372230b" + ], + "index": "pypi", + "markers": "python_version >= '3.8'", + "version": "==6.25.2" + }, + "ipython": { + "hashes": [ + "sha256:2baeb5be6949eeebf532150f81746f8333e2ccce02de1c7eedde3f23ed5e9f1e", + "sha256:45a2c3a529296870a97b7de34eda4a31bee16bc7bf954e07d39abe49caf8f887" + ], + "index": "pypi", + "markers": "python_version >= '3.9'", + "version": "==8.15.0" + }, + "jedi": { + "hashes": [ + "sha256:bcf9894f1753969cbac8022a8c2eaee06bfa3724e4192470aaffe7eb6272b0c4", + "sha256:cb8ce23fbccff0025e9386b5cf85e892f94c9b822378f8da49970471335ac64e" + ], + "markers": "python_version >= '3.6'", + "version": "==0.19.0" + }, + "jupyter-client": { + "hashes": [ + "sha256:5eb9f55eb0650e81de6b7e34308d8b92d04fe4ec41cd8193a913979e33d8e1a5", + "sha256:60294b2d5b869356c893f57b1a877ea6510d60d45cf4b38057f1672d85699ac9" + ], + "markers": "python_version >= '3.8'", + "version": "==8.3.1" + }, + "jupyter-core": { + "hashes": [ + "sha256:0c28db6cbe2c37b5b398e1a1a5b22f84fd64cd10afc1f6c05b02fb09481ba45f", + "sha256:a4af53c3fa3f6330cebb0d9f658e148725d15652811d1c32dc0f63bb96f2e6d6" + ], + "markers": "python_version >= '3.8'", + "version": "==5.3.2" + }, + "matplotlib-inline": { + "hashes": [ + "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311", + "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304" + ], + "markers": "python_version >= '3.5'", + "version": "==0.1.6" + }, + "nest-asyncio": { + "hashes": [ + "sha256:25aa2ca0d2a5b5531956b9e273b45cf664cae2b145101d73b86b199978d48fdb", + "sha256:accda7a339a70599cb08f9dd09a67e0c2ef8d8d6f4c07f96ab203f2ae254e48d" + ], + "markers": "python_version >= '3.5'", + "version": "==1.5.8" + }, + "packaging": { + "hashes": [ + "sha256:994793af429502c4ea2ebf6bf664629d07c1a9fe974af92966e4b8d2df7edc61", + "sha256:a392980d2b6cffa644431898be54b0045151319d1e7ec34f0cfed48767dd334f" + ], + "markers": "python_version >= '3.7'", + "version": "==23.1" + }, + "parso": { + "hashes": [ + "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0", + "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75" + ], + "markers": "python_version >= '3.6'", + "version": "==0.8.3" + }, + "pexpect": { + "hashes": [ + "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937", + "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c" + ], + "markers": "sys_platform != 'win32'", + "version": "==4.8.0" + }, + "pickleshare": { + "hashes": [ + "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca", + "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" + ], + "version": "==0.7.5" + }, + "platformdirs": { + "hashes": [ + "sha256:b45696dab2d7cc691a3226759c0d3b00c47c8b6e293d96f6436f733303f77f6d", + "sha256:d7c24979f292f916dc9cbf8648319032f551ea8c49a4c9bf2fb556a02070ec1d" + ], + "markers": "python_version >= '3.7'", + "version": "==3.10.0" + }, + "prompt-toolkit": { + "hashes": [ + "sha256:04505ade687dc26dc4284b1ad19a83be2f2afe83e7a828ace0c72f3a1df72aac", + "sha256:9dffbe1d8acf91e3de75f3b544e4842382fc06c6babe903ac9acb74dc6e08d88" + ], + "markers": "python_full_version >= '3.7.0'", + "version": "==3.0.39" + }, + "psutil": { + "hashes": [ + "sha256:104a5cc0e31baa2bcf67900be36acde157756b9c44017b86b2c049f11957887d", + "sha256:3c6f686f4225553615612f6d9bc21f1c0e305f75d7d8454f9b46e901778e7217", + "sha256:4aef137f3345082a3d3232187aeb4ac4ef959ba3d7c10c33dd73763fbc063da4", + "sha256:5410638e4df39c54d957fc51ce03048acd8e6d60abc0f5107af51e5fb566eb3c", + "sha256:5b9b8cb93f507e8dbaf22af6a2fd0ccbe8244bf30b1baad6b3954e935157ae3f", + "sha256:7a7dd9997128a0d928ed4fb2c2d57e5102bb6089027939f3b722f3a210f9a8da", + "sha256:89518112647f1276b03ca97b65cc7f64ca587b1eb0278383017c2a0dcc26cbe4", + "sha256:8c5f7c5a052d1d567db4ddd231a9d27a74e8e4a9c3f44b1032762bd7b9fdcd42", + "sha256:ab8ed1a1d77c95453db1ae00a3f9c50227ebd955437bcf2a574ba8adbf6a74d5", + "sha256:acf2aef9391710afded549ff602b5887d7a2349831ae4c26be7c807c0a39fac4", + "sha256:b258c0c1c9d145a1d5ceffab1134441c4c5113b2417fafff7315a917a026c3c9", + "sha256:be8929ce4313f9f8146caad4272f6abb8bf99fc6cf59344a3167ecd74f4f203f", + "sha256:c607bb3b57dc779d55e1554846352b4e358c10fff3abf3514a7a6601beebdb30", + "sha256:ea8518d152174e1249c4f2a1c89e3e6065941df2fa13a1ab45327716a23c2b48" + ], + "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'", + "version": "==5.9.5" + }, + "ptyprocess": { + "hashes": [ + "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35", + "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220" + ], + "version": "==0.7.0" + }, + "pure-eval": { + "hashes": [ + "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350", + "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3" + ], + "version": "==0.2.2" + }, + "pygments": { + "hashes": [ + "sha256:13fc09fa63bc8d8671a6d247e1eb303c4b343eaee81d861f3404db2935653692", + "sha256:1daff0494820c69bc8941e407aa20f577374ee88364ee10a98fdbe0aece96e29" + ], + "markers": "python_version >= '3.7'", + "version": "==2.16.1" + }, + "python-dateutil": { + "hashes": [ + "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86", + "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9" + ], + "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'", + "version": "==2.8.2" + }, + "pyzmq": { + "hashes": [ + "sha256:019e59ef5c5256a2c7378f2fb8560fc2a9ff1d315755204295b2eab96b254d0a", + "sha256:034239843541ef7a1aee0c7b2cb7f6aafffb005ede965ae9cbd49d5ff4ff73cf", + "sha256:03b3f49b57264909aacd0741892f2aecf2f51fb053e7d8ac6767f6c700832f45", + "sha256:047a640f5c9c6ade7b1cc6680a0e28c9dd5a0825135acbd3569cc96ea00b2505", + "sha256:04ccbed567171579ec2cebb9c8a3e30801723c575601f9a990ab25bcac6b51e2", + "sha256:057e824b2aae50accc0f9a0570998adc021b372478a921506fddd6c02e60308e", + "sha256:11baebdd5fc5b475d484195e49bae2dc64b94a5208f7c89954e9e354fc609d8f", + "sha256:11c1d2aed9079c6b0c9550a7257a836b4a637feb334904610f06d70eb44c56d2", + "sha256:11d58723d44d6ed4dd677c5615b2ffb19d5c426636345567d6af82be4dff8a55", + "sha256:12720a53e61c3b99d87262294e2b375c915fea93c31fc2336898c26d7aed34cd", + "sha256:17ef5f01d25b67ca8f98120d5fa1d21efe9611604e8eb03a5147360f517dd1e2", + "sha256:18d43df3f2302d836f2a56f17e5663e398416e9dd74b205b179065e61f1a6edf", + "sha256:1a5d26fe8f32f137e784f768143728438877d69a586ddeaad898558dc971a5ae", + "sha256:1af379b33ef33757224da93e9da62e6471cf4a66d10078cf32bae8127d3d0d4a", + "sha256:1ccf825981640b8c34ae54231b7ed00271822ea1c6d8ba1090ebd4943759abf5", + "sha256:21eb4e609a154a57c520e3d5bfa0d97e49b6872ea057b7c85257b11e78068222", + "sha256:2243700cc5548cff20963f0ca92d3e5e436394375ab8a354bbea2b12911b20b0", + "sha256:255ca2b219f9e5a3a9ef3081512e1358bd4760ce77828e1028b818ff5610b87b", + "sha256:259c22485b71abacdfa8bf79720cd7bcf4b9d128b30ea554f01ae71fdbfdaa23", + "sha256:25f0e6b78220aba09815cd1f3a32b9c7cb3e02cb846d1cfc526b6595f6046618", + "sha256:273bc3959bcbff3f48606b28229b4721716598d76b5aaea2b4a9d0ab454ec062", + "sha256:292fe3fc5ad4a75bc8df0dfaee7d0babe8b1f4ceb596437213821f761b4589f9", + "sha256:2ca57a5be0389f2a65e6d3bb2962a971688cbdd30b4c0bd188c99e39c234f414", + "sha256:2d163a18819277e49911f7461567bda923461c50b19d169a062536fffe7cd9d2", + "sha256:2d81f1ddae3858b8299d1da72dd7d19dd36aab654c19671aa8a7e7fb02f6638a", + "sha256:2f957ce63d13c28730f7fd6b72333814221c84ca2421298f66e5143f81c9f91f", + "sha256:330f9e188d0d89080cde66dc7470f57d1926ff2fb5576227f14d5be7ab30b9fa", + "sha256:34c850ce7976d19ebe7b9d4b9bb8c9dfc7aac336c0958e2651b88cbd46682123", + "sha256:35b5ab8c28978fbbb86ea54958cd89f5176ce747c1fb3d87356cf698048a7790", + "sha256:3669cf8ee3520c2f13b2e0351c41fea919852b220988d2049249db10046a7afb", + "sha256:381469297409c5adf9a0e884c5eb5186ed33137badcbbb0560b86e910a2f1e76", + "sha256:3d0a409d3b28607cc427aa5c30a6f1e4452cc44e311f843e05edb28ab5e36da0", + "sha256:44e58a0554b21fc662f2712814a746635ed668d0fbc98b7cb9d74cb798d202e6", + "sha256:458dea649f2f02a0b244ae6aef8dc29325a2810aa26b07af8374dc2a9faf57e3", + "sha256:48e466162a24daf86f6b5ca72444d2bf39a5e58da5f96370078be67c67adc978", + "sha256:49d238cf4b69652257db66d0c623cd3e09b5d2e9576b56bc067a396133a00d4a", + "sha256:4ca1ed0bb2d850aa8471387882247c68f1e62a4af0ce9c8a1dbe0d2bf69e41fb", + "sha256:52533489f28d62eb1258a965f2aba28a82aa747202c8fa5a1c7a43b5db0e85c1", + "sha256:548d6482dc8aadbe7e79d1b5806585c8120bafa1ef841167bc9090522b610fa6", + "sha256:5619f3f5a4db5dbb572b095ea3cb5cc035335159d9da950830c9c4db2fbb6995", + "sha256:57459b68e5cd85b0be8184382cefd91959cafe79ae019e6b1ae6e2ba8a12cda7", + "sha256:5a34d2395073ef862b4032343cf0c32a712f3ab49d7ec4f42c9661e0294d106f", + "sha256:61706a6b6c24bdece85ff177fec393545a3191eeda35b07aaa1458a027ad1304", + "sha256:724c292bb26365659fc434e9567b3f1adbdb5e8d640c936ed901f49e03e5d32e", + "sha256:73461eed88a88c866656e08f89299720a38cb4e9d34ae6bf5df6f71102570f2e", + "sha256:76705c9325d72a81155bb6ab48d4312e0032bf045fb0754889133200f7a0d849", + "sha256:76c1c8efb3ca3a1818b837aea423ff8a07bbf7aafe9f2f6582b61a0458b1a329", + "sha256:77a41c26205d2353a4c94d02be51d6cbdf63c06fbc1295ea57dad7e2d3381b71", + "sha256:79986f3b4af059777111409ee517da24a529bdbd46da578b33f25580adcff728", + "sha256:7cff25c5b315e63b07a36f0c2bab32c58eafbe57d0dce61b614ef4c76058c115", + "sha256:7f7e58effd14b641c5e4dec8c7dab02fb67a13df90329e61c869b9cc607ef752", + "sha256:820c4a08195a681252f46926de10e29b6bbf3e17b30037bd4250d72dd3ddaab8", + "sha256:87e34f31ca8f168c56d6fbf99692cc8d3b445abb5bfd08c229ae992d7547a92a", + "sha256:8f03d3f0d01cb5a018debeb412441996a517b11c5c17ab2001aa0597c6d6882c", + "sha256:90f26dc6d5f241ba358bef79be9ce06de58d477ca8485e3291675436d3827cf8", + "sha256:955215ed0604dac5b01907424dfa28b40f2b2292d6493445dd34d0dfa72586a8", + "sha256:985bbb1316192b98f32e25e7b9958088431d853ac63aca1d2c236f40afb17c83", + "sha256:a382372898a07479bd34bda781008e4a954ed8750f17891e794521c3e21c2e1c", + "sha256:a882ac0a351288dd18ecae3326b8a49d10c61a68b01419f3a0b9a306190baf69", + "sha256:aa8d6cdc8b8aa19ceb319aaa2b660cdaccc533ec477eeb1309e2a291eaacc43a", + "sha256:abc719161780932c4e11aaebb203be3d6acc6b38d2f26c0f523b5b59d2fc1996", + "sha256:abf34e43c531bbb510ae7e8f5b2b1f2a8ab93219510e2b287a944432fad135f3", + "sha256:ade6d25bb29c4555d718ac6d1443a7386595528c33d6b133b258f65f963bb0f6", + "sha256:afea96f64efa98df4da6958bae37f1cbea7932c35878b185e5982821bc883369", + "sha256:b1579413ae492b05de5a6174574f8c44c2b9b122a42015c5292afa4be2507f28", + "sha256:b3451108ab861040754fa5208bca4a5496c65875710f76789a9ad27c801a0075", + "sha256:b9af3757495c1ee3b5c4e945c1df7be95562277c6e5bccc20a39aec50f826cd0", + "sha256:bc16ac425cc927d0a57d242589f87ee093884ea4804c05a13834d07c20db203c", + "sha256:c2910967e6ab16bf6fbeb1f771c89a7050947221ae12a5b0b60f3bca2ee19bca", + "sha256:c2b92812bd214018e50b6380ea3ac0c8bb01ac07fcc14c5f86a5bb25e74026e9", + "sha256:c2f20ce161ebdb0091a10c9ca0372e023ce24980d0e1f810f519da6f79c60800", + "sha256:c56d748ea50215abef7030c72b60dd723ed5b5c7e65e7bc2504e77843631c1a6", + "sha256:c7c133e93b405eb0d36fa430c94185bdd13c36204a8635470cccc200723c13bb", + "sha256:c9c6c9b2c2f80747a98f34ef491c4d7b1a8d4853937bb1492774992a120f475d", + "sha256:cbc8df5c6a88ba5ae385d8930da02201165408dde8d8322072e3e5ddd4f68e22", + "sha256:cff084c6933680d1f8b2f3b4ff5bbb88538a4aac00d199ac13f49d0698727ecb", + "sha256:d2045d6d9439a0078f2a34b57c7b18c4a6aef0bee37f22e4ec9f32456c852c71", + "sha256:d20a0ddb3e989e8807d83225a27e5c2eb2260eaa851532086e9e0fa0d5287d83", + "sha256:d457aed310f2670f59cc5b57dcfced452aeeed77f9da2b9763616bd57e4dbaae", + "sha256:d89528b4943d27029a2818f847c10c2cecc79fa9590f3cb1860459a5be7933eb", + "sha256:db0b2af416ba735c6304c47f75d348f498b92952f5e3e8bff449336d2728795d", + "sha256:deee9ca4727f53464daf089536e68b13e6104e84a37820a88b0a057b97bba2d2", + "sha256:df27ffddff4190667d40de7beba4a950b5ce78fe28a7dcc41d6f8a700a80a3c0", + "sha256:e0c95ddd4f6e9fca4e9e3afaa4f9df8552f0ba5d1004e89ef0a68e1f1f9807c7", + "sha256:e1c1be77bc5fb77d923850f82e55a928f8638f64a61f00ff18a67c7404faf008", + "sha256:e1ffa1c924e8c72778b9ccd386a7067cddf626884fd8277f503c48bb5f51c762", + "sha256:e2400a94f7dd9cb20cd012951a0cbf8249e3d554c63a9c0cdfd5cbb6c01d2dec", + "sha256:e61f091c3ba0c3578411ef505992d356a812fb200643eab27f4f70eed34a29ef", + "sha256:e8a701123029cc240cea61dd2d16ad57cab4691804143ce80ecd9286b464d180", + "sha256:eadbefd5e92ef8a345f0525b5cfd01cf4e4cc651a2cffb8f23c0dd184975d787", + "sha256:f32260e556a983bc5c7ed588d04c942c9a8f9c2e99213fec11a031e316874c7e", + "sha256:f8115e303280ba09f3898194791a153862cbf9eef722ad8f7f741987ee2a97c7", + "sha256:fedbdc753827cf014c01dbbee9c3be17e5a208dcd1bf8641ce2cd29580d1f0d4" + ], + "markers": "python_version >= '3.6'", + "version": "==25.1.1" + }, + "six": { + "hashes": [ + "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926", + "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254" + ], + "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'", + "version": "==1.16.0" + }, + "stack-data": { + "hashes": [ + "sha256:32d2dd0376772d01b6cb9fc996f3c8b57a357089dec328ed4b6553d037eaf815", + "sha256:cbb2a53eb64e5785878201a97ed7c7b94883f48b87bfb0bbe8b623c74679e4a8" + ], + "version": "==0.6.2" + }, + "tornado": { + "hashes": [ + "sha256:1bd19ca6c16882e4d37368e0152f99c099bad93e0950ce55e71daed74045908f", + "sha256:22d3c2fa10b5793da13c807e6fc38ff49a4f6e1e3868b0a6f4164768bb8e20f5", + "sha256:502fba735c84450974fec147340016ad928d29f1e91f49be168c0a4c18181e1d", + "sha256:65ceca9500383fbdf33a98c0087cb975b2ef3bfb874cb35b8de8740cf7f41bd3", + "sha256:71a8db65160a3c55d61839b7302a9a400074c9c753040455494e2af74e2501f2", + "sha256:7ac51f42808cca9b3613f51ffe2a965c8525cb1b00b7b2d56828b8045354f76a", + "sha256:7d01abc57ea0dbb51ddfed477dfe22719d376119844e33c661d873bf9c0e4a16", + "sha256:805d507b1f588320c26f7f097108eb4023bbaa984d63176d1652e184ba24270a", + "sha256:9dc4444c0defcd3929d5c1eb5706cbe1b116e762ff3e0deca8b715d14bf6ec17", + "sha256:ceb917a50cd35882b57600709dd5421a418c29ddc852da8bcdab1f0db33406b0", + "sha256:e7d8db41c0181c80d76c982aacc442c0783a2c54d6400fe028954201a2e032fe" + ], + "markers": "python_version >= '3.8'", + "version": "==6.3.3" + }, + "traitlets": { + "hashes": [ + "sha256:07ab9c5bf8a0499fd7b088ba51be899c90ffc936ffc797d7b6907fc516bcd116", + "sha256:db9c4aa58139c3ba850101913915c042bdba86f7c8a0dda1c6f7f92c5da8e542" + ], + "markers": "python_version >= '3.8'", + "version": "==5.10.1" + }, + "wcwidth": { + "hashes": [ + "sha256:795b138f6875577cd91bba52baf9e445cd5118fd32723b460e30a0af30ea230e", + "sha256:a5220780a404dbe3353789870978e472cfe477761f06ee55077256e509b156d0" + ], + "version": "==0.2.6" + } + } +} diff --git a/README.md b/README.md new file mode 100644 index 0000000..80b5474 --- /dev/null +++ b/README.md @@ -0,0 +1,20 @@ +# LOGos + +Utilizing system logs to perform causal analysis. + +### Demo + +You can find a quick demo of the LOGos API at [demo.ipynb](demo.ipynb). + +### Documentation + +To view the documentation, run `mkdocs serve` from the root of this repo and open the corresponding page. + +You might need to install the following packages: +`pip install mkdocs-material mkdocs-gen-files mkdocs-literate-nav markdown_include pymdown-extensions markdown mkdocs-pymdownx Pygments mkdocs-jupyter mkdocstrings-python mkdocstrings mdx_include` + +### OpenAI integration + +Yo use the LLM-powered capabilites of LOGos, please add a `.env` file to the root of this repo and define `OPENAI_API_KEY` appropriately. + + diff --git a/dataset_files/README.md b/dataset_files/README.md new file mode 100644 index 0000000..9fa4d33 --- /dev/null +++ b/dataset_files/README.md @@ -0,0 +1,29 @@ +## `dataset_files/` + +This directory holds the following types of files, for each of the datasets `x` used in our evaluation: +- `x/datasets_raw/`: The raw logs. +- `x/datasets/`: The cached byproducts of processing the dataset with LogOS, in pickled form. +- `x/evaluation/`: The outputs produced by our experiment runners when processing the dataset in question. + +Some of these files are large, which is why we have hosted them on S3 instead of distributing them +inside this repository. If you would like to access any of these datasets, please email us at markakis[at]mit[dot]edu. + +Once you have been granted access, you can download the `PostgreSQL` dataset by running: +```sh +aws s3 sync s3://logos-dataset-postgresql postgresql/ +``` + +Once you have been granted access, you can download the `XYZ` dataset by running: +```sh +aws s3 sync s3://logos-dataset-xyz xyz/ +``` + +Once you have been granted access, you can download the datasets for the scaling microexperiments by running: +```sh +aws s3 sync s3://logos-dataset-scaling scaling/ +``` + +The `Proprietary` dataset is not publicly available for privacy reasons. If you have an extremely compelling reason to request access, please explain it when requesting access and we may review your request on a case-by-case basis. If you have been granted access, you can download the `Proprietary` dataset by running: +```sh +aws s3 sync s3://logos-dataset-proprietary proprietary/ +``` \ No newline at end of file diff --git a/dataset_files/pull.sh b/dataset_files/pull.sh new file mode 100755 index 0000000..606aee7 --- /dev/null +++ b/dataset_files/pull.sh @@ -0,0 +1,4 @@ +aws s3 sync s3://logos-dataset-postgresql postgresql/ --delete --exclude "repro_evaluation/*" +aws s3 sync s3://logos-dataset-proprietary proprietary/ --delete --exclude "repro_evaluation/*" +aws s3 sync s3://logos-dataset-xyz xyz/ --delete --exclude "repro_evaluation/*" +aws s3 sync s3://logos-dataset-scaling scaling/ --delete diff --git a/dataset_files/push.sh b/dataset_files/push.sh new file mode 100755 index 0000000..3518ba2 --- /dev/null +++ b/dataset_files/push.sh @@ -0,0 +1,5 @@ +# For internal use only - you won't have permissions for this. +aws s3 sync postgresql/ s3://logos-dataset-postgresql --delete --exclude "datasets_raw/*" --exclude "repro_evaluation/*" +aws s3 sync proprietary/ s3://logos-dataset-proprietary --delete --exclude "datasets_raw/*" --exclude "repro_evaluation/*" +aws s3 sync xyz/ s3://logos-dataset-xyz --delete --exclude "datasets_raw/*" --exclude "repro_evaluation/*" +aws s3 sync scaling/ s3://logos-dataset-scaling --delete diff --git a/demo.ipynb b/demo.ipynb new file mode 100644 index 0000000..2fc91b8 --- /dev/null +++ b/demo.ipynb @@ -0,0 +1,4280 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Welcome!\n", + "\n", + "This is a quick demo of Sawmill - a system for processing logs to help extract causal insights!\n", + "\n", + "As this work is currently in process, we're looking forward to any comments and/or suggestions." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%reload_ext autoreload\n", + "%autoreload 2\n", + "import sys\n", + "sys.path.append(\"../..\")\n", + "from src.sawmill.sawmill import Sawmill\n", + "import pandas as pd\n", + "pd.set_option('display.max_rows', None)\n", + "pd.set_option('display.max_columns', None)\n", + "pd.set_option('expand_frame_repr', False)\n", + "pd.set_option('display.max_colwidth', None)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Synthetic Example\n", + "\n", + "Let's start with a basic example of a synthetic log. This log contains three different log line *templates*, each of which reports the value of one of the variables `x`, `y` and `z`. Here is an example of each line:\n", + "\n", + "```\n", + "2023-03-14T20:55:49.234591Z DATA The current line will include the value of z = 100.0\n", + "2023-03-14T20:55:49.233591Z DATA Short message with x = 199.05342369055703\n", + "2023-03-14T20:55:49.232591Z DATA This is a log message that reports y = 399.82103707673997\n", + "```\n", + "\n", + "Each millisecond, we decide whether or not to \"flip\" the value of `z` between 100 and 200, with probability `1%`. If we end up flipping it, we print a log line that reports the new value (first template above).\n", + "\n", + "Each millisecond, we print the value of `x` (second template above), which is generated each time by taking the most recent value of `z` and adding random noise in `[-1,1]`.\n", + "\n", + "Finally, each millisecond we print the value of `y` with probability `50%`(third template above). The value of `y` is generated each time by taking the most recent value of `z`, multiplying it by `2` and adding random noise in `[-1,1]`.\n", + "\n", + "Let's create a Sawmill instance and initialize it with the path to this log:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initialized Sawmill with log file datasets_raw/xyzw_logs/log_2023-03-14_20:55:49.log\n", + "Work directory set to datasets/xyzw_logs/log_2023-03-14_20:55:49\n" + ] + } + ], + "source": [ + "s = Sawmill(\"datasets_raw/xyzw_logs/log_2023-03-14_20:55:49.log\", workdir='datasets/xyzw_logs/log_2023-03-14_20:55:49')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Parsing and tagging variables" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can call the `parse()` function to parse the log into a table using the [Drain](https://jiemingzhu.github.io/pub/pjhe_icws2017.pdf) algorithm. \n", + "\n", + "The Drain algorithm can first extract named variables from each log line using regular expressions. By default, Sawmill provides a single regular expression to capture timestamps in the format shown above, naming the resulting field `Timestamp`, but users can parse additional regular expressions to the `parse()` call as a dictionary, via the `regex_dict` parameter.\n", + "\n", + "Then, the Drain algorithm separated log lines into \"templates\" and \"variables\", based on the similarity of each new line to the lines seen before it. You can find more information in the paper." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parsing file: datasets_raw/xyzw_logs/log_2023-03-14_20:55:49.log\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9d8c7ce32a49452b9561f6728c8e8160", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Reading and tokenizing log lines...: 0%| | 0/15121 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TemplateIdDateTime43e6c5b5_7f2e46af4_11f98340b4_12
043e6c5b51.678827e+09100.002860NaNNaN
1f2e46af41.678827e+09NaN200.189963NaN
243e6c5b51.678827e+09100.812299NaNNaN
3f2e46af41.678827e+09NaN200.458986NaN
443e6c5b51.678827e+09100.260164NaNNaN
\n", + "" + ], + "text/plain": [ + " TemplateId DateTime 43e6c5b5_7 f2e46af4_11 f98340b4_12\n", + "0 43e6c5b5 1.678827e+09 100.002860 NaN NaN\n", + "1 f2e46af4 1.678827e+09 NaN 200.189963 NaN\n", + "2 43e6c5b5 1.678827e+09 100.812299 NaN NaN\n", + "3 f2e46af4 1.678827e+09 NaN 200.458986 NaN\n", + "4 43e6c5b5 1.678827e+09 100.260164 NaN NaN" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s.parse(force=True, regex_dict={'DateTime': r'\\d{4}-\\d{2}-\\d{2}T\\d{2}:\\d{2}:\\d{2}.\\d{6}Z'})\n", + "s.parsed_log.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's take a look at the extracted templates. Indeed, Drain has detected the three templates in the synthetic log. Each template is given a hash-based template ID. For each template, we see that a variable has been detected (at word indices 7, 11 and 12, respectively) and replaced with `<*>` in the template text. \n", + "\n", + "For each template, we also got a regular expression match at index 0, corresponding to the regular expression that matches timestamps. The timestamps were correspondingly replaced by `<*0>`, since that was the 0th (and only) regular expression we provided." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TemplateTextTemplateIdVariableIndicesRegexIndicesTemplateExampleOccurrences
0<*0> DATA Short message with x = <*>43e6c5b5[7][0]<*0> DATA Short message with x = 100.0028596780011710000
1<*0> DATA This is a log message that reports y = <*>f2e46af4[11][0]<*0> DATA This is a log message that reports y = 200.18996323410745006
2<*0> DATA The current line will include the value of z = <*>f98340b4[12][0]<*0> DATA The current line will include the value of z = 200.0115
\n", + "
" + ], + "text/plain": [ + " TemplateText TemplateId VariableIndices RegexIndices TemplateExample Occurrences\n", + "0 <*0> DATA Short message with x = <*> 43e6c5b5 [7] [0] <*0> DATA Short message with x = 100.00285967800117 10000\n", + "1 <*0> DATA This is a log message that reports y = <*> f2e46af4 [11] [0] <*0> DATA This is a log message that reports y = 200.1899632341074 5006\n", + "2 <*0> DATA The current line will include the value of z = <*> f98340b4 [12] [0] <*0> DATA The current line will include the value of z = 200.0 115" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s.parsed_templates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also look at the extracted variables. For variables that were extracted via a regular expression, like the timestamp, the user has already provided a name (in this case, `Timestamp`). For the rest, a variable name is generated from the corresponding template ID and the index that the variable appear in, within the template. For each variable, we also report the preceding 3 tokens and some example values. \n", + "\n", + "Since the automatically-generated names are not meaningful, we also allow for each variable to carry a tag. Initial values of these tags are guessed from the preceding tokens of each variable:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameTagTagOriginTypeIsUninterestingOccurrencesPreceding 3 tokensExamplesFrom regex
0DateTimeDateTime4numFalse15121[][2023-03-14T20:55:49.165591Z, 2023-03-14T20:55:49.166591Z, 2023-03-14T20:55:49.167591Z, 2023-03-14T20:55:49.168591Z, 2023-03-14T20:55:49.169591Z]True
143e6c5b5_7x0numFalse10000[with, x, =][100.00285967800117, 100.81229891323964, 100.26016363495995, 199.4482406365968, 200.98748260974]False
2f2e46af4_11y0numFalse5006[reports, y, =][200.1899632341074, 200.45898567905772, 399.6905765982258, 400.22712382793407, 400.08343040509993]False
3f98340b4_12z0numFalse115[of, z, =][200.0, 100.0]False
\n", + "
" + ], + "text/plain": [ + " Name Tag TagOrigin Type IsUninteresting Occurrences Preceding 3 tokens Examples From regex\n", + "0 DateTime DateTime 4 num False 15121 [] [2023-03-14T20:55:49.165591Z, 2023-03-14T20:55:49.166591Z, 2023-03-14T20:55:49.167591Z, 2023-03-14T20:55:49.168591Z, 2023-03-14T20:55:49.169591Z] True\n", + "1 43e6c5b5_7 x 0 num False 10000 [with, x, =] [100.00285967800117, 100.81229891323964, 100.26016363495995, 199.4482406365968, 200.98748260974] False\n", + "2 f2e46af4_11 y 0 num False 5006 [reports, y, =] [200.1899632341074, 200.45898567905772, 399.6905765982258, 400.22712382793407, 400.08343040509993] False\n", + "3 f98340b4_12 z 0 num False 115 [of, z, =] [200.0, 100.0] False" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s.parsed_variables" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "However, the user is free to change or provide the tag of a variable as they like:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Variable 43e6c5b5_7 tagged as X\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameTagTagOriginTypeIsUninterestingOccurrencesPreceding 3 tokensExamplesFrom regex
0DateTimeDateTime4numFalse15121[][2023-03-14T20:55:49.165591Z, 2023-03-14T20:55:49.166591Z, 2023-03-14T20:55:49.167591Z, 2023-03-14T20:55:49.168591Z, 2023-03-14T20:55:49.169591Z]True
143e6c5b5_7X0numFalse10000[with, x, =][100.00285967800117, 100.81229891323964, 100.26016363495995, 199.4482406365968, 200.98748260974]False
2f2e46af4_11y0numFalse5006[reports, y, =][200.1899632341074, 200.45898567905772, 399.6905765982258, 400.22712382793407, 400.08343040509993]False
3f98340b4_12z0numFalse115[of, z, =][200.0, 100.0]False
\n", + "
" + ], + "text/plain": [ + " Name Tag TagOrigin Type IsUninteresting Occurrences Preceding 3 tokens Examples From regex\n", + "0 DateTime DateTime 4 num False 15121 [] [2023-03-14T20:55:49.165591Z, 2023-03-14T20:55:49.166591Z, 2023-03-14T20:55:49.167591Z, 2023-03-14T20:55:49.168591Z, 2023-03-14T20:55:49.169591Z] True\n", + "1 43e6c5b5_7 X 0 num False 10000 [with, x, =] [100.00285967800117, 100.81229891323964, 100.26016363495995, 199.4482406365968, 200.98748260974] False\n", + "2 f2e46af4_11 y 0 num False 5006 [reports, y, =] [200.1899632341074, 200.45898567905772, 399.6905765982258, 400.22712382793407, 400.08343040509993] False\n", + "3 f98340b4_12 z 0 num False 115 [of, z, =] [200.0, 100.0] False" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s.tag_parsed_variable(\"43e6c5b5_7\", \"X\")\n", + "s.parsed_variables" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Defining the causal unit and aggregating" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To continue our analysis, we would like to structure and complete the parsed information to form \"causal units\", which will be the units on which our causal analysis will be performed. If we think of causality in other contexts, the causal units could be patients in a medical context, or individuals in an economic/social study.\n", + "\n", + "Causal units are defined by one of the available attributes. In a medical context, this could be \"patient name\". In a systems context, we could pick one of the variables parsed from the log. This decision should normally come from the user's domain knowledge.\n", + "\n", + "If the user is unsure of which causal unit to pick, the system can provide suggestions, based on minimizing the impact of any missing data in the log. This technique may or may not lead to semantically meaningful causal unit suggestions." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
VariableTypeNum UnitsIUS
0DateTimenum41.000000
1DateTimenum81.000000
2DateTimenum400.993734
343e6c5b5_7num40.330666
443e6c5b5_7num80.330666
543e6c5b5_7num400.330666
6f2e46af4_11num40.165531
7f2e46af4_11num80.165531
8f2e46af4_11num400.165531
\n", + "
" + ], + "text/plain": [ + " Variable Type Num Units IUS\n", + "0 DateTime num 4 1.000000\n", + "1 DateTime num 8 1.000000\n", + "2 DateTime num 40 0.993734\n", + "3 43e6c5b5_7 num 4 0.330666\n", + "4 43e6c5b5_7 num 8 0.330666\n", + "5 43e6c5b5_7 num 40 0.330666\n", + "6 f2e46af4_11 num 4 0.165531\n", + "7 f2e46af4_11 num 8 0.165531\n", + "8 f2e46af4_11 num 40 0.165531" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s.suggest_causal_unit_defs()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Based on the user's own domain knowledge or the system's suggestions, the user can then call `set_causal_unit()`. For example, the call below indicates that each causal unit should be a `1 ms`-long time interval (not that this choice may not be appropriate in every setting):" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Causal unit set to DateTime (tag: DateTime) with 10000 causal units.\n" + ] + } + ], + "source": [ + "s.set_causal_unit(\"DateTime\", num_units=10000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Given the causal unit, we can then ask Sawmill to perpare the log for analysis by using `prepare()`. Preparing the log involves two distinct tasks:\n", + "\n", + "1. Aggregation: Based on our choice of causal unit, there might be variables that take a multitude of values on different log lines associated with the same causal unit. For example, had we chosen a 10ms window as our causal unit, there would have been 10 lines reporting values of `x`. From this multitude of values, a fixed set of values must be derived (e.g. we could always keep the mean, or the last value seen). By default, Sawmill will generate the `min`, `max` and `mean` for numerical variables; the most recent value for string variables; and the least recent value for date-typed variables.\n", + "\n", + "2. Imputation: On the other end of the spectrum, there might be variables that are never observed within some causal unit. For example, `z` is only reported every approximately `100 ms`, so it should be missing most of the time, if our causal unit is a `1 ms` window. Whether and how to impute such missing values is application-dependent, since we must avoid information leakage from one causal unit to another or risk violating SUTVA. In this case, we know that `z` should be interpreted as a \"sticky\" value, but `x` and `y` should not be imputed.\n", + "\n", + "After aggregating and imputing, we drop any causal units that still have missing values." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Determining the causal unit assignment...\n", + "Dropped 0 uninteresting columns, out of an original total of 4.\n", + "Calculating aggregates for each causal unit...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cb12b743590f4ab9a804f8e896c15493", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Imputing missing values...: 0%| | 0/9 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
43e6c5b5_7+meanf2e46af4_11+meanf98340b4_12+mean
DateTime+max
1678827349.170591199.659262399.690577200.0
1678827349.173591199.755998400.227124200.0
1678827349.175591200.098576400.083430200.0
1678827349.178591200.158634399.188180200.0
1678827349.179591200.934658400.514334200.0
1678827349.181591199.626578399.894171200.0
1678827349.182591200.937334400.577257200.0
1678827349.183591199.831092399.077464200.0
1678827349.188591199.372097399.650472200.0
1678827349.193591200.476665400.613001200.0
\n", + "" + ], + "text/plain": [ + " 43e6c5b5_7+mean f2e46af4_11+mean f98340b4_12+mean\n", + "DateTime+max \n", + "1678827349.170591 199.659262 399.690577 200.0\n", + "1678827349.173591 199.755998 400.227124 200.0\n", + "1678827349.175591 200.098576 400.083430 200.0\n", + "1678827349.178591 200.158634 399.188180 200.0\n", + "1678827349.179591 200.934658 400.514334 200.0\n", + "1678827349.181591 199.626578 399.894171 200.0\n", + "1678827349.182591 200.937334 400.577257 200.0\n", + "1678827349.183591 199.831092 399.077464 200.0\n", + "1678827349.188591 199.372097 399.650472 200.0\n", + "1678827349.193591 200.476665 400.613001 200.0" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "imputation_functions = {'z': 'ffill_imp'}\n", + "aggregation_functions = {'DateTime': ['max']}\n", + "s.prepare(custom_agg=aggregation_functions, custom_imp=imputation_functions, force=True)\n", + "s.prepared_log.head(10)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameBasePre-agg ValueAggPost-agg ValueTagBase Variable OccurencesTypeExamplesFrom regexTemplateText
043e6c5b5_7+mean43e6c5b5_7meanX mean10000num[100.00285967800117, 100.81229891323964, 100.26016363495995, 199.4482406365968, 200.98748260974]False<*0> DATA Short message with x = <*>
1f2e46af4_11+meanf2e46af4_11meany mean5006num[200.1899632341074, 200.45898567905772, 399.6905765982258, 400.22712382793407, 400.08343040509993]False<*0> DATA This is a log message that reports y = <*>
2f98340b4_12+meanf98340b4_12meanz mean115num[200.0, 100.0]False<*0> DATA The current line will include the value of z = <*>
\n", + "
" + ], + "text/plain": [ + " Name Base Pre-agg Value Agg Post-agg Value Tag Base Variable Occurences Type Examples From regex TemplateText\n", + "0 43e6c5b5_7+mean 43e6c5b5_7 mean X mean 10000 num [100.00285967800117, 100.81229891323964, 100.26016363495995, 199.4482406365968, 200.98748260974] False <*0> DATA Short message with x = <*>\n", + "1 f2e46af4_11+mean f2e46af4_11 mean y mean 5006 num [200.1899632341074, 200.45898567905772, 399.6905765982258, 400.22712382793407, 400.08343040509993] False <*0> DATA This is a log message that reports y = <*>\n", + "2 f98340b4_12+mean f98340b4_12 mean z mean 115 num [200.0, 100.0] False <*0> DATA The current line will include the value of z = <*>" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s.prepared_variables" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Obtaining a causal graph" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Along with data organized along the lines of causal units, performing causal analysis also requires a causal graph. Our system provides a few different methods for obtaining such a graph, which we will now describe. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Obtaining a graph through exploration" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this variable, we iteratively pick the variable that interests us and ask the system for candidate causes for it. Remember from our data generation process, that `y` appears to be roughly equal to `2x`, but that both `x` and `y` are in fact driven by the value of `z`:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Candidate cause exploration complete in 0.908403 seconds!\n" + ] + }, + { + "data": { + "text/plain": [ + "( Candidate Candidate Tag Target Slope P-value Candidate->Target Edge Status Target->Candidate Edge Status\n", + " 0 43e6c5b5_7+mean X mean f2e46af4_11+mean 1.999968 0.0 Undecided Undecided\n", + " 1 f98340b4_12+mean z mean f2e46af4_11+mean 2.000228 0.0 Undecided Undecided,\n", + " '0.908403')" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s.explore_candidate_causes(\"y mean\") " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected, the system cannot meaningfully distinguish between the impact of `X` and `z` on `y`, since `X` is essentially a slightly noisy version of `z`. Both are reported with similar relationship strengths, so let's accept both edges into the causal graph." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "(0.6666666666666666, '43e6c5b5_7+mean', '')" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s.accept('X mean', 'y mean', interactive=False)\n", + "s.accept('z mean', 'y mean')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "However, let's now assume that we are (thankfully) not yet fully convinced, and would like to look for any possible confounding. Let's ask the system for candidates causes of `X`, which is also the candidate that the system suggested we explore next after our most recent call to `accept()`:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Candidate cause exploration complete in 0.897520 seconds!\n" + ] + }, + { + "data": { + "text/plain": [ + "( Candidate Candidate Tag Target Slope P-value Candidate->Target Edge Status Target->Candidate Edge Status\n", + " 0 f2e46af4_11+mean y mean 43e6c5b5_7+mean 0.498826 0.0 Rejected Accepted\n", + " 1 f98340b4_12+mean z mean 43e6c5b5_7+mean 0.997800 0.0 Undecided Undecided,\n", + " '0.897520')" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s.explore_candidate_causes(\"X mean\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`z` is successfully detected once more, and we can use domain knowledge to judge that `z` influencing `X` is the correct direction. Indeed, let's see what happens if we add it to the graph:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "(1.0, None, '')" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s.accept('z mean', 'X mean')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Our graph creation is now complete. If the system had suggested further candidate causes that were not already rejected, we could make sure they are marked as such." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "(1.0, None, '')" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s.reject_undecided_incoming('z mean')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Obtaining a graph through automatic causal discovery" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For instances of the problem with few prepared variables, we could also attempt to use an off-the-shelf causal discovery algorithm to find a causal graph." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "s.clear_graph()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6c2f7447f80149c1adaa3e0ffc431d54", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/10000 [00:00" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "s.display_graph()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As we see, this is almost correct, but the edge between `X` and `y` is flipped. We can correct this by just accepting the right edge." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "(1.0, None, '')" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s.accept('X mean', 'y mean')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Calculating and refining the ATE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we are in posession of both a transformed view of the log data and a causal graph, it is time to calculate the ATE we are interested in. We can ask the system to either adjust for the right variables based on the causal graph we have created, or not." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMUAAAAPCAYAAABUSwsiAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAG80lEQVRoBe2a7ZEWNwyAX24ogI8KAh3w0QF0AEkFQAfJ8I9/DOkgUAEfHQAVJFwH0AHkOrg8j9/V4t317mq5neFPNOPXtizLkizJ9t5dOj8/P/wPyxZ49uzZDSjuUd7QPluiZvwW5bSmoX+F/jXqLzV+zza80zLuuW7wYv203ltog/8eddZGl/dYTB4s+KLj9ZX6JuUFuLQTZOfvSQcvHelJJ7eOa1+5P3S4qG7R+MvCWODq+gz81Q7xkba8IjBsC7eP1fffju7pd8xB2rfgx+sfwK3Zd4uM/ZIV38C9Bheyu642+aMbvEP9zX5N042l9YZ+C60yqNtbym3aZ916zYrxsFOM1/qkbLRLUCDIJyR4Tv1OSajd3E/U9ymrgQFNav6edPBSRjc3guJA+wG499QPKUUX+sJdio7a0sUTJJyGZnEaazdAevlom9ZmGoD9+tAd6BsUVyj9+rQz9tki4wGeOruOpg1KEFLbt5jUgsZEcN++QFuni72tg9dgETJ6r9KyjvvziiKtwai8swD9qj5MTtnowkGBMI9ZbLyJZk431ezaG5T2BLLz96ZDEOV+DF+DIBwwNtnsHbgiMzQTPcCVjarmS3tK/2GZtPADjevr7GN4BOIjpazf0aXsC21WRtfU+c2iobM4HbEOfANgHLQGkbI7P05Hmjm9JQRWbcQaJpFiR9q/0zbYliCjzwFeqzY6WVolOabgpw3av8HdQwgNvQTZ+XvTKbOGtxRA1r4duK5WlxZMMn2LaAZnNp5sUIM2q3daRvT0RNTJXtbr6TCWCucp+BnceA8NJAO1JIWK/qc0kSOrT8pGewSFhovjsDZKZBzHlyA7f1c6DPmBctU6hOuMa9cTrgfwg1PDAXBm0ec90faGG/QAPp5UtdPJt14/pTc8tsho9vc0n0sCoY22+bJAV8sdc35GndIna6PLF9GARTJGuTa3Rnb+3nQteVhD5yvXBdqDDDqmZ9wM6deW+i3Rk4EvV0oQ1ynS+qYYnKb031kYM8v9S1tenh79dQ7cD9uXuUsyekfX2T0tfqN8pbj24JHPuKdUC8pVhvGxTqt6BzPmpmljzkKd0mc8HxmaNjoZE27sh8MvZZyljc3O35uuVxPD6NzeWc02bvI//eB8w+CxtEB9/XT7J0VHt/gwNegGAE6niwCUnzS1o2X1HvDtOmsySnZHGSnKqv4GhUE6C4zfYlBnUq8a0nozaQttvcZcO3xsqz5NG100KOaErPFmy4tAdv4P0bHJPvp0Ch30NUUHnnUMxnQI30r9tatWDrz38rPA0fYaKW19JSrDjLmOtGZpaeTtHX52fcbHMNGb+bMyMhYOZDKIgAyeb2i8qmgCX9dv6XjK/Vkj6W/RO01br9FqV7Ju0od5sza63DH1a0cYq7X2GOcnSzPat/FA1Y8s59E8B9n5e9M15UEnN1snNWP63rA9BjNqvJfGY3N96Q2kG5Qyl9rrg9/d5SfoKAaDTqdjGiRZvSEdQEbGlg5+DVOuO5RJ0COTge21a+5axfAAJnoPRoedLbTDmcfeVn1mbWRQuPG3W6us4ZxLkawVUIFrCVtYZ+fvTefi8PQaYH1qXYHXJ68xlsnjFZyO29QJXu8Zu0Y9Z8+wCWTl+vWLjQDmGZSeGp8pBpF9h+t59oXAtWRZkjH27OzIpvlrFh0Achgs6lZ/nSo04NJ6b6EdCDDTgd8P6QO7WRudzKy1BR3H/nhOnBSTjDMizM7fm86s6FUpnGsk1rTb0eowcw5lhm3xK7ZgfgnAjs8V6gkfcDq5wVjbb+Kko3G6R+h4L8koobZsyXlkMgp6eOpAN6n7E4K2p17IldK7Y76FNuRZq7fqo+6zNjpZWy0x7nGvomMwW3pfn2z8iDA7f2865YrrUi1S6KKhxxBjc9eal+hrph+Dp07Pr7OJGS6cakzvpgV9Vu/gsSajdF6DWmu7Z8oVax9oe6LepR4/rB+ADzuk9IZe2EJ7nLH+m9anY7VoowsHBcbysfaNWiMVoO2m/kp5dMSUa4qZ8Zxihu6Bfnb+rnQI4CZ77PeALOqg7E9oGzRjcExojYn3XyIGD2r6ftkS+ix77JZ++ZeOrl8q6L2m+Fm2XIuoU3pXPNZkPMDTk8i/0/j1pQBt5433zMAxKN27olvU4GobbdF7Cy3LFLje1XF6dt1jhUwpfapJiza6tMd/yXYG1cA6iw/ru5TWt3nvym5GPC7pHgOGKjNfZfakM4PXzqoT+FfqPlPS7wG84wb1I9qt98aho4ms6iaaTf3sqW0GAM4s/JQSGdfxwd8KRECX0rujXZVROgG+2lLegrIO9oxx90t+LfAW0L+daEuX1TtFC08DUnCflPOUYrIwaZgsBgBuUZ8g7mSd3cf/AHq/WNDWVpI7AAAAAElFTkSuQmCC", + "text/latex": [ + "$\\displaystyle -0.0003758076255167$" + ], + "text/plain": [ + "-0.00037580762551669977" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s.get_adjusted_ate('X mean', 'y mean')" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJUAAAAOCAYAAAAmA17PAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAFeUlEQVRoBcWZ23EUOxBAxy4HYEwE+GYAJgOTAVwiADKA4sv+oyADIAKuyQBuBDwywBlgNgNzjlYttLuzO5pdytNVcrd6Wq1+qUez3ru+vu4Czs/P70JfMO5Bz4LfgpF/W8kdQT/p0zGVXNjG/q+DzvgDvO/Bgz6EfhlzsPML+J8rXiHhD8YMmWMWPMuL1Of8dZ9OeGHfT2T+yXKX4F6o5OP5gj8yK5m1OpEZ5XdslvUbg2foSD7unZ2dqew944pxwlDgFgIz8CBkY74h+Bb6jQvA6vifYXGmgIDd58bl2DMB+5tID8wL6FQgYOd3wSYvAbR+RAEETzmT9VEGuDlmWdYCKjqhH6JGnY+gk86s1/i8Ch44YvYAeqGwmLf606QTfYN+a2MfsPYH/O/gRz7fh5g5Yej0B5kjwYI8Yn0qKNdCe/K/MuruNZWcJglRGHXHMWklWdj9lLlJWIYnMEr3Qm5MzNT5lDUWUkDYUOtU7hC5ushm8JzXcQwdrf4M6mz1OzauMWuf13Pp/WXGFnODVRJTrbewTtnUxAlTyXXY4N52z3caEgDfDvAg5mA7Vj2vHm1NGgeLw5GAPQsdPLCnXNll+AKjjmPH+lZ/WnVu5Td2GNMF3zR+p6JC6aFKgKs5Wvj7M89OppKrrLEL2136klmJdSbwIXKfKpt97j2nr1v4bCOg5zPD60R0pw7aohBqnafM++IYB9bnAa3+tOrc1u/H+LJwUDXwIKzcBqPQRLn0qGf97cw7RsbAOr1Ruby/6IRxiQ2erMcMC97TuXAB5/lHB3yT/gv6RZazyMprCd7WgB4TbZF6sU0JAcfh3KS3jt2gP2N0Ijvab9b42qsPRbF9p06VtRjs46LxD2EChQjYVHK1DXZNL+pvGJ52iyq6hnIdc18ZcfpMvkXQ91qC3Q7o9YPARLiv+r5Wq6NgNnXSiKPLgt7kzyidY/xG1nzbUKKLVq7s+PrLmrzEdmxg8BNAW1ARoNh4EjlsiQSY1CiWbGn3H8T7SqaDtsi03U7mK8sA/sh8yO2A9X4dWcwWrR9E30bqTJ2fNaP8GbA23iZdtqXV79Jl+/Tv3KkwRkPuMPyCfM7wdJsI39NCKqqp5OYm/LGjmkv6pWeSfJ102OgXmJd3u5mvSy/tFoGwUHxz1nZ/0WvXNm52Svfvu0uF8ug4cUcNfhzWmItrf5p1YkOz31m297UXhhwEsQtmIwNkWy8Az+ISivNTyLknQzu0cR14CARt9oAUYK33DbuWv8XYjS2IZmCtXbsDL79Cff2p75Rn7gGZClxcg0UnlMOZZTf6g0zcY2P9XMv8b/AiN01+o9M4HYJjXa2z0AeF+vuEwdSxTc67603IxWtsnZd2JQNtwFbsNYgMiym6xjo9fXy7R8f6oR+U19kYe5avR9Stk439I+nr5IpO7Brjt0V1nzUXsVHG5tAPMvmXOxcViryD+MPmHeiUELCGegrvMRJMJZe3t10vB8JH2mcnSwnTfobBiaQoE6BPdWKDP4SNSd/hSq/cSqf2RXevdWqj97EU2/ygyR9km3S2+o2c/q/EAP4v+eB0VdjPRgaKi1tUcvA7FniKrxnp5JUH8/vT8vtbZ7zM1S3fKp9CrsMOu4xOl6RBWyT/MtIHBFgwKHHPSQz/IOudw58V+optbcyyAn+W+JTphNDjQXR/Y5SKBexHxFV+FnJ9NnbINPkzQuc2ficb8x/tdCTY8x/KbB6n2O7iQ4vBABrI8sUE7b3C5Ky7P4Xihd9/WJOAdZHUG5Vb2j/29uC8wqa68DvmtvKXjPoArPiDXFPM3BtZ4xoXflkesJV/KCOnbcZoxvBifp+xYiO8BMgrO+RPk050Nfmdt4797Zj6on+Cxf7lNyqPuSZsQOoLAAAAAElFTkSuQmCC", + "text/latex": [ + "$\\displaystyle 1.9999681306084$" + ], + "text/plain": [ + "1.9999681306083983" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s.get_unadjusted_ate('X mean', 'y mean')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected, adjusting for the right variables based on the causal graph is crucial in this case, since `Z` is by design a confounder of the causal effect of interest. Beacuse of this, we may be interested in exactly which edges of the causal graph make the biggest ATE impact, so that we can think twice about the assumptions that they encode. We can ask the system which changes to the graph would swing the ATE by the most." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The system can either answer by considering simple one-edge changes to the current graph, which suggests that graph changes that would have big ATE impact all remove `z` as a confounder..." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Enumerated 9 graphs with 3 nodes.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0df0c1f459b64cb3b1ada87c467e5e3e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SourceSource TagTargetTarget TagChangeATEBaseline ATEATE Ratio
0f98340b4_12+meanz meanf2e46af4_11+meany meanRemove1.999968-0.0003765321.786986
2f98340b4_12+meanz mean43e6c5b5_7+meanX meanReverse1.999968-0.0003765321.786986
1f98340b4_12+meanz mean43e6c5b5_7+meanX meanRemove0.265125-0.000376705.479462
\n", + "
" + ], + "text/plain": [ + " Source Source Tag Target Target Tag Change ATE Baseline ATE ATE Ratio\n", + "0 f98340b4_12+mean z mean f2e46af4_11+mean y mean Remove 1.999968 -0.000376 5321.786986\n", + "2 f98340b4_12+mean z mean 43e6c5b5_7+mean X mean Reverse 1.999968 -0.000376 5321.786986\n", + "1 f98340b4_12+mean z mean 43e6c5b5_7+mean X mean Remove 0.265125 -0.000376 705.479462" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s.challenge_ate('X mean', 'y mean', method='step')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "...or we can ask the system to take a step back and consider a broader set of possible graphs and the ATEs they lead to. This approach can accept a large number of configuration parameters through `ClusteringParams` and is generally more time-consuming. In this case, it also comes down to whether or not we assume `z` is a confounder." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2a0df030c69f44d0b7ce1b3756cddafb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Loading existing pkl file datasets/xyzw_logs/log_2023-03-14_20:55:49/pickles/effects/43e6c5b5_7+mean_f2e46af4_…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found 2 clusters\n", + "For ate = 1.999968130608398, the following edges are key assumptions made of the causal graph.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Edge% ExpectancyStatus
1(z mean, y mean)-0.555556DOES NOT EXIST
0(z mean, X mean)-0.333333DOES NOT EXIST
\n", + "
" + ], + "text/plain": [ + " Edge % Expectancy Status\n", + "1 (z mean, y mean) -0.555556 DOES NOT EXIST\n", + "0 (z mean, X mean) -0.333333 DOES NOT EXIST" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For ate = 0.13237437690649756, the following edges are key assumptions made of the causal graph.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Edge% ExpectancyStatus
1(z mean, y mean)1.666667EXISTS
0(z mean, X mean)1.000000EXISTS
\n", + "
" + ], + "text/plain": [ + " Edge % Expectancy Status\n", + "1 (z mean, y mean) 1.666667 EXISTS\n", + "0 (z mean, X mean) 1.000000 EXISTS" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAAHWCAYAAACFVIFSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZbklEQVR4nO3deXxM9/7H8fcImcSSoEQSUmKL2ndijaIoira22i/dLr9SXdNN0TbtVVtbRVukrbV2V9Uu3BZtbVVuq6haE0rJhiD5/v7wyFwjCUnMyST6ej4e59HO93zPOZ9zZObMe85mM8YYAQAAAAAAl8rn7gIAAAAAALgbEbgBAAAAALAAgRsAAAAAAAsQuAEAAAAAsACBGwAAAAAACxC4AQAAAACwAIEbAAAAAAALELgBAAAAALAAgRsAAAAAAAsQuJFrvfnmm7LZbDmyrLCwMIWFhTleR0VFyWazadGiRTmy/IEDB6pcuXI5sqzsSkhI0JAhQ+Tv7y+bzaYRI0a4uyS3yQv/XgCQU8qVK6eBAwe6u4xsSf2ucfbs2dv2tXo9bTab3nzzzVw3r5yWk9//7sTq1atVu3ZteXl5yWaz6cKFC+4uCbkUgRs5IjIyUjabzTF4eXkpMDBQ7dq10wcffKD4+HiXLOfUqVN68803tWfPHpfMz5Vyc22Z8c477ygyMlJPP/20vvzyS/Xr1++20yQnJyswMFA2m03ffPONo/3mv4eMhtRQm7rzzWiIiYlJd/m7du2SzWbTa6+9lmGNBw8elM1m08iRI7O2QQDgLpT6+bxjx450x4eFhal69eo5XBVyk7z+fcYVzp07px49esjb21tTpkzRl19+qUKFCt12uo8//lg2m02NGjVyai9XrlymvhdFRkZK0i37PPXUU1asMu5AfncXgL+XMWPGKDg4WFevXlVMTIyioqI0YsQITZgwQStWrFDNmjUdfV977TW9/PLLWZr/qVOnNHr0aJUrV061a9fO9HRr167N0nKy41a1ffrpp0pJSbG8hjuxceNGNW7cWKNGjcrSNNHR0SpXrpzmzJmjDh06SJJatGihL7/80qnvkCFD1LBhQz3xxBOOtsKFCzv1mTp1apo2SSpatGi6y69bt66qVKmiefPm6a233kq3z9y5cyVJffv2zfR6AQD+58CBA8qX7+4/hvN3Wc/bye53rczKzve/nPbjjz8qPj5eY8eOVZs2bTI93Zw5c1SuXDn98MMPOnTokCpWrChJmjRpkhISEhz9Vq1apXnz5mnixIkqUaKEo71JkyaO/2/btq369++fZhmVK1fOzirBQgRu5KgOHTqofv36jtfh4eHauHGjOnXqpIceeki//PKLvL29JUn58+dX/vzW/olevHhRBQsWlKenp6XLuZ0CBQq4dfmZcebMGVWtWjVL08yePVt169bVgAED9MorrygxMVGFChVS+fLlVb58eae+Tz31lMqXL3/L4Pvoo4867Xgyo0+fPnr99de1fft2NW7cOM34efPmqUqVKqpbt26W5gsAuM5ut7tsXteuXVNKSsod7ZddMY/0uHI9kVbqd4Sc+P53p86cOSMp4x/803PkyBFt3bpVS5Ys0ZNPPqk5c+Y4DmJ07drVqW9MTIzmzZunrl27ZngJW+XKlTlYkEfwMx3c7v7779frr7+uo0ePavbs2Y729K7hWbdunZo1a6aiRYuqcOHCCgkJ0SuvvCLp+nXXDRo0kCQNGjQozek3qafB7dy5Uy1atFDBggUd0958DXeq5ORkvfLKK/L391ehQoX00EMP6fjx4059Mrqm68Z53q629K4JTkxM1HPPPaegoCDZ7XaFhITo/ffflzHGqZ/NZtOwYcO0bNkyVa9eXXa7XdWqVdPq1avT3+A3OXPmjAYPHqxSpUrJy8tLtWrV0ueff+4Yn3o9+5EjR/T11187av/jjz9uOd9Lly5p6dKl6tWrl3r06KFLly5p+fLlmarJlfr06SPpf0eyb7Rz504dOHDA0Wf58uXq2LGjAgMDZbfbVaFCBY0dO1bJycm3XEbqNoqKinJq/+OPP5z+nVP9+uuvevTRR1W8eHF5eXmpfv36WrFihVOfq1evavTo0apUqZK8vLx0zz33qFmzZlq3bl0WtwAAWCu9/eCFCxc0YsQIxz6sYsWKeu+995zO5kr9jHz//fc1adIkVahQQXa7Xf/973915coVvfHGG6pXr558fX1VqFAhNW/eXJs2bXJazq3mIV3/vO3Ro4dKliwpb29vhYSE6NVXX02zDhcuXNDAgQNVtGhR+fr6atCgQbp48WKm1vPZZ59VuXLlZLfbVaZMGfXv399xTXhm1yMrLl++rDfffFOVK1eWl5eXAgIC9PDDD+vw4cMZTpPRvUdc/V1Lkr7//nu1b99evr6+KliwoFq2bKnvvvsu3eX+97//1WOPPaZixYqpWbNmGdaUle86UVFRql+/vry8vFShQgVNnz49S9eFL1y4UPXq1ZO3t7dKlCihvn376uTJk47xYWFhGjBggCSpQYMGstlsmbq2f86cOSpWrJg6duyoRx99VHPmzMlUPcj7cvfPR/jb6Nevn1555RWtXbtWjz/+eLp99u/fr06dOqlmzZoaM2aM7Ha7Dh065PgQv++++zRmzBi98cYbeuKJJ9S8eXNJzqffnDt3Th06dFCvXr3Ut29flSpV6pZ1vf3227LZbHrppZd05swZTZo0SW3atNGePXscR+IzIzO13cgYo4ceekibNm3S4MGDVbt2ba1Zs0YvvPCCTp48qYkTJzr1//bbb7VkyRL985//VJEiRfTBBx/okUce0bFjx3TPPfdkWNelS5cUFhamQ4cOadiwYQoODtbChQs1cOBAXbhwQcOHD9d9992nL7/8Us8++6zKlCmj5557TpJUsmTJW67zihUrlJCQoF69esnf319hYWGaM2eOHnvssUxvt5v99ddfadry589/y1+Yg4OD1aRJE3311VeaOHGiPDw8HONSQ3hqTZGRkSpcuLBGjhypwoULa+PGjXrjjTcUFxencePGZbvuG+3fv19NmzZV6dKl9fLLL6tQoUL66quv1LVrVy1evFjdunWTdP0LR0REhONU+7i4OO3YsUO7du1S27ZtXVILAGQkNjY23RuJXb169bbTXrx4US1bttTJkyf15JNP6t5779XWrVsVHh6u6OhoTZo0yan/rFmzdPnyZT3xxBOy2+0qXry44uLi9Nlnn6l37956/PHHFR8frxkzZqhdu3b64Ycf0pzKnN489u7dq+bNm6tAgQJ64oknVK5cOR0+fFj//ve/9fbbbztN36NHDwUHBysiIkK7du3SZ599Jj8/P7333nsZrmdCQoKaN2+uX375Rf/4xz9Ut25dnT17VitWrNCJEydUokSJLK/H7SQnJ6tTp07asGGDevXqpeHDhys+Pl7r1q3Tvn37VKFChSzN72Z3+l1r48aN6tChg+rVq6dRo0YpX758mjVrlu6//3795z//UcOGDZ2W1717d1WqVEnvvPNOmgMKN8vMd53du3erffv2CggI0OjRo5WcnKwxY8bc9jtLqsjISA0aNEgNGjRQRESETp8+rcmTJ+u7777T7t27VbRoUb366qsKCQnRJ5984rhUMjPbfc6cOXr44Yfl6emp3r17a+rUqfrxxx8dP2Bk1eXLl9N9j/r4+Lj9zE3cxAA5YNasWUaS+fHHHzPs4+vra+rUqeN4PWrUKHPjn+jEiRONJPPnn39mOI8ff/zRSDKzZs1KM65ly5ZGkpk2bVq641q2bOl4vWnTJiPJlC5d2sTFxTnav/rqKyPJTJ482dFWtmxZM2DAgNvO81a1DRgwwJQtW9bxetmyZUaSeeutt5z6Pfroo8Zms5lDhw452iQZT09Pp7affvrJSDIffvhhmmXdaNKkSUaSmT17tqPtypUrJjQ01BQuXNhp3cuWLWs6dux4y/ndqFOnTqZp06aO15988onJnz+/OXPmTLr9CxUqlO52NOZ/fwvpDSEhIbetZcqUKUaSWbNmjaMtOTnZlC5d2oSGhjraLl68mGbaJ5980hQsWNBcvnzZ0Xbzv1fq38umTZucpj1y5Eiaf/PWrVubGjVqOM0vJSXFNGnSxFSqVMnRVqtWrSxtbwBwhdT99a2GatWqOU1z835w7NixplChQua3335z6vfyyy8bDw8Pc+zYMWPM/z4jfXx80uwbrl27ZpKSkpzazp8/b0qVKmX+8Y9/ONpuNY8WLVqYIkWKmKNHjzq1p6SkOP4/df9y4zyNMaZbt27mnnvuueV6vvHGG0aSWbJkiblZ6jIyux7GXN+fjxo1Ks28bjRz5kwjyUyYMCHDZaY3r5v3W6lc+V0rJSXFVKpUybRr186plosXL5rg4GDTtm3bNMvt3bv3bWtKXZ/MfNfp3LmzKViwoDl58qSj7eDBgyZ//vxp5nmzK1euGD8/P1O9enVz6dIlR/vKlSuNJPPGG2842jLzvfZGO3bsMJLMunXrjDHXt1WZMmXM8OHD0+0/btw4I8kcOXIk3fG3en/OmzcvUzUh53BKOXKNwoUL3/Ju5alHMZcvX57tG4zZ7XYNGjQo0/379++vIkWKOF4/+uijCggI0KpVq7K1/MxatWqVPDw89Mwzzzi1P/fcczLGON3xW5LatGnj9OtqzZo15ePjo99///22y/H391fv3r0dbQUKFNAzzzyjhIQEbd68OVv1nzt3TmvWrHGa7yOPPCKbzaavvvoqW/OUpMWLF2vdunVOw6xZs247Xc+ePVWgQAGn08o3b96skydPOk4nl+R01kJ8fLzOnj2r5s2b6+LFi/r111+zXXeqv/76Sxs3blSPHj0c8z979qzOnTundu3a6eDBg47T1ooWLar9+/fr4MGDd7xcAMiqKVOmpPm8XbdundPNTTOycOFCNW/eXMWKFXN8zp09e1Zt2rRRcnKytmzZ4tT/kUceSXME0sPDw3GULiUlRX/99ZeuXbum+vXra9euXWmWefM8/vzzT23ZskX/+Mc/dO+99zr1Te/U4pvv7Ny8eXOdO3dOcXFxGa7n4sWLVatWLceZSektI6vrcTuLFy9WiRIl9H//938ZLvNO3Ml3rT179ujgwYN67LHHdO7cOce/e2Jiolq3bq0tW7akmWdW7qh9u+86ycnJWr9+vbp27arAwEBHv4oVKzpu2norO3bs0JkzZ/TPf/5TXl5ejvaOHTuqSpUq+vrrrzNd683mzJmjUqVKqVWrVpKu/1v17NlT8+fPv+1laxnp0qVLuu/R1GUg9+CUcuQaCQkJ8vPzy3B8z5499dlnn2nIkCF6+eWX1bp1az388MN69NFHM33X0NKlS2fpNJtKlSo5vbbZbKpYseJtr1++U0ePHlVgYKBT2Jeun8qVOv5GN3+ZkKRixYrp/Pnzt11OpUqV0my/jJaTWQsWLNDVq1dVp04dHTp0yNHeqFEjzZkzR0OHDs3WfFu0aJHlm6ZJ0j333KN27dpp6dKlmjZtmry8vDR37lzlz59fPXr0cPTbv3+/XnvtNW3cuDHNl6zY2Nhs1XyjQ4cOyRij119/Xa+//nq6fc6cOaPSpUtrzJgx6tKliypXrqzq1aurffv26tevX6a+7ALAnWrYsKHTTU5TpYboWzl48KD27t2b4Wm8qTecShUcHJxuv88//1zjx4/Xr7/+6nQqe3r9b25LDWGZfYTZzfvRYsWKSZLOnz8vHx+fdKc5fPiwHnnkkdvOOyvrcTuHDx9WSEiIZTcVu5PvWqk/EKde35ye2NhYx7aVsrYNbvdd58yZM7p06ZLjzt83Sq/tZqnfeUJCQtKMq1Klir799ttM13qj5ORkzZ8/X61atdKRI0cc7Y0aNdL48eO1YcMGPfDAA1meb5kyZbJ0h3S4D4EbucKJEycUGxt7yw9Eb29vbdmyRZs2bdLXX3+t1atXa8GCBbr//vu1du1ap2tzbzUPV8voF+Xk5ORM1eQKGS3H3OZ6KKuk3gikadOm6Y7//fff09yl3Gp9+/bVypUrtXLlSj300ENavHixHnjgAccXwgsXLqhly5by8fHRmDFjVKFCBXl5eWnXrl166aWXbvlL/63+Bm6UOo/nn39e7dq1S3ea1PdAixYtdPjwYS1fvlxr167VZ599pokTJ2ratGkaMmRIltcfAHJKSkqK2rZtqxdffDHd8Tc/tii9ffPs2bM1cOBAde3aVS+88IL8/Pzk4eGhiIiIdG8Odqf7d6v2o1ldD6tkdj91J9+1Uvdx48aNy/Da9Jsf7ZmVf7fc9l0ns1IfkTp//nzNnz8/zfg5c+ZkK3Aj7yBwI1dIfSZzRiEkVb58+dS6dWu1bt1aEyZM0DvvvKNXX31VmzZtUps2bVxyOtWNbj6d1xijQ4cOOR1lLFasmC5cuJBm2qNHjzqFyqzUVrZsWa1fv17x8fFOR7lTT2suW7Zspud1u+Xs3btXKSkpTr9c38lyUh97MWzYMLVs2dJpXEpKivr166e5c+fqtddeu7Pis+ihhx5SkSJFNHfuXBUoUEDnz593Op08KipK586d05IlS9SiRQtH+42/Rmck9df6m/8Obj5DIPXvoUCBApn6Vbp48eIaNGiQBg0apISEBLVo0UJvvvkmgRtArlahQgUlJCTc0dG3RYsWqXz58lqyZInT/jP1MUq3k/p5u2/fvmzXcDsVKlS47fzvdD3SW+b333+vq1evZumRorf6rnKz7H7XSj3d28fHxy1HXv38/OTl5eV0Zl2q9Npulvqd58CBA7r//vudxh04cCDb373mzJkjPz8/TZkyJc24JUuWOM6+s+KgEHIHruGG223cuFFjx45VcHCwUwC6WXp3qE79BTUpKUmSVKhQIUlpg092ffHFF07XlS9atEjR0dFO1wJVqFBB27dv15UrVxxtK1euTPP4sKzU9uCDDyo5OVkfffSRU/vEiRNls9kydS1SZjz44IOKiYnRggULHG3Xrl3Thx9+qMKFC6cJzJmRenT7xRdf1KOPPuo09OjRQy1btnTLozC8vb3VrVs3rVq1SlOnTlWhQoXUpUsXx/jUX85v/KX8ypUr+vjjj28777Jly8rDwyPNdYk3T+vn56ewsDBNnz5d0dHRaebz559/Ov7/3LlzTuMKFy6sihUrOv7WASC36tGjh7Zt26Y1a9akGXfhwgVdu3bttvNI7zP5+++/17Zt2zJVQ8mSJdWiRQvNnDlTx44dcxrnqiOijzzyiH766SctXbo0zbjUZdzpeqS3zLNnz6b5fnDzMm5WoUIFxcbGau/evY626OjoNLXfyXetevXqqUKFCnr//feVkJCQZj437uOs4OHhoTZt2mjZsmU6deqUo/3QoUNp7n2Tnvr168vPz0/Tpk1z2td+8803+uWXX9SxY8cs13Tp0iUtWbJEnTp1SvOd6NFHH9WwYcMUHx+f5tGguLtwhBs56ptvvtGvv/6qa9eu6fTp09q4caPWrVunsmXLasWKFU43qbjZmDFjtGXLFnXs2FFly5bVmTNn9PHHH6tMmTKOZzdWqFBBRYsW1bRp01SkSBEVKlRIjRo1ytZ1UtL1I4zNmjXToEGDdPr0aU2aNEkVK1Z0enTZkCFDtGjRIrVv3149evTQ4cOHNXv27DSPiMhKbZ07d1arVq306quv6o8//lCtWrW0du1aLV++XCNGjLjjx36keuKJJzR9+nQNHDhQO3fuVLly5bRo0SJ99913mjRpUppryDNjzpw5ql27toKCgtId/9BDD+n//u//tGvXLtWtWzdL8160aFGa09EkqW3btrd9xJt0/bTyL774QmvWrFGfPn0cXxqk6480KVasmAYMGKBnnnlGNptNX375Zaa+mPn6+qp79+768MMPZbPZVKFCBa1cuTLNdYrS9RsRNWvWTDVq1NDjjz+u8uXL6/Tp09q2bZtOnDihn376SZJUtWpVhYWFqV69eipevLh27NihRYsWadiwYbetBwDc6YUXXtCKFSvUqVMnDRw4UPXq1VNiYqJ+/vlnLVq0SH/88cdt78fRqVMnLVmyRN26dVPHjh115MgRTZs2TVWrVk03zKXngw8+ULNmzVS3bl098cQTCg4O1h9//KGvv/5ae/bsccl6Llq0SN27d9c//vEP1atXT3/99ZdWrFihadOmqVatWi5Zjxv1799fX3zxhUaOHKkffvhBzZs3V2JiotavX69//vOfTj8k36hXr1566aWX1K1bNz3zzDO6ePGipk6dqsqVKzvdvO1Ov2t99tln6tChg6pVq6ZBgwapdOnSOnnypDZt2iQfHx/9+9//zt7GzqQ333xTa9euVdOmTfX00087Dl5Ur179tv/mBQoU0HvvvadBgwapZcuW6t27t+OxYOXKldOzzz6b5XpWrFih+Ph4PfTQQ+mOb9y4sUqWLKk5c+aoZ8+eWZr3b7/9ptmzZ6dpL1WqFI8PzW3ccm90/O3c/JgRT09P4+/vb9q2bWsmT57s9PipVDc/FmLDhg2mS5cuJjAw0Hh6eprAwEDTu3fvNI8dWb58ualatarjERCpj61o2bJlmkeZpMrosWDz5s0z4eHhxs/Pz3h7e5uOHTumebyIMcaMHz/elC5d2tjtdtO0aVOzY8eONPO8VW3pPa4jPj7ePPvssyYwMNAUKFDAVKpUyYwbN87pURvGXH80xNChQ9PUlNHjym52+vRpM2jQIFOiRAnj6elpatSoke6jyzLzWLCdO3caSeb111/PsM8ff/xhJJlnn33WqT27jwVTOo/jysi1a9dMQECAkWRWrVqVZvx3331nGjdubLy9vU1gYKB58cUXzZo1a9IsI71/rz///NM88sgjpmDBgqZYsWLmySefNPv27Uv30SmHDx82/fv3N/7+/qZAgQKmdOnSplOnTmbRokWOPm+99ZZp2LChKVq0qPH29jZVqlQxb7/9trly5Uqm1hUAsuN2jztKb1+a3v4mPj7ehIeHm4oVKxpPT09TokQJ06RJE/P+++87PsdSH+k1bty4NMtJSUkx77zzjilbtqyx2+2mTp06ZuXKlWk+f281D2OM2bdvn+nWrZspWrSo8fLyMiEhIU77qNT9y82PwUrdDjc+lim99Tx37pwZNmyYKV26tPH09DRlypQxAwYMMGfPns3SehiTuceCGXP9MVuvvvqqCQ4ONgUKFDD+/v7m0UcfNYcPH77lvNauXWuqV69uPD09TUhIiJk9e7bLv2sZY8zu3bvNww8/bO655x5jt9tN2bJlTY8ePcyGDRscfTLa7jeOu3nbZPa7zoYNG0ydOnWMp6enqVChgvnss8/Mc889Z7y8vDLcpjdasGCBqVOnjrHb7aZ48eKmT58+5sSJE059MvtYsM6dOxsvLy+TmJiYYZ+BAweaAgUKOP5mjLmzx4Ld/N0T7mczJpffaQAAAAAAsqlr1648ahNuwzXcAAAAAO4Kly5dcnp98OBBrVq1SmFhYe4pCH97HOEGAAAAcFcICAjQwIEDVb58eR09elRTp05VUlKSdu/erUqVKrm7PPwNcdM0AAAAAHeF9u3ba968eYqJiZHdbldoaKjeeecdwjbchiPcAAAAAABYgGu4AQAAAACwAIEbAAAAAAAL5OlruFNSUnTq1CkVKVJENpvN3eUAACBjjOLj4xUYGKh8+fhd+06xrwcA5DZZ2dfn6cB96tQpBQUFubsMAADSOH78uMqUKePuMvI89vUAgNwqM/v6PB24ixQpIun6ivr4+Li5GgAApLi4OAUFBTn2Ubgz7OsBALlNVvb1eTpwp55a5uPjw04YAJCrcPqza7CvBwDkVpnZ13NxGQAAAAAAFiBwAwAAAABgAQI3AAAAAAAWIHADAAAAAGABAjcAAAAAABYgcAMAAAAAYAECNwAAAAAAFiBwAwAAAABgAQI3AAAAAAAWIHADAAAAAGABAjcAAAAAABZwe+A+efKk+vbtq3vuuUfe3t6qUaOGduzY4e6yAAAAAAC4I/ndufDz58+radOmatWqlb755huVLFlSBw8eVLFixdxZFgAAAAAAd8ytgfu9995TUFCQZs2a5WgLDg52Y0UAAADIKmOMLl1NdncZwF3Bu4CHbDabu8uAi7g1cK9YsULt2rVT9+7dtXnzZpUuXVr//Oc/9fjjj6fbPykpSUlJSY7XcXFxOVUqAAAA0mGM0aPTtmnn0fPuLgW4K9QvW0wLnwoldN8l3Bq4f//9d02dOlUjR47UK6+8oh9//FHPPPOMPD09NWDAgDT9IyIiNHr0aDdUCgBwhXIvf+3uEjL0x7sd3V0CkCdduppM2AZcaMfR87p0NVkFPd0a1eAibv1XTElJUf369fXOO+9IkurUqaN9+/Zp2rRp6Qbu8PBwjRw50vE6Li5OQUFBOVYvAAAAMrbjtTYq6Onh7jKAPOnilWTVf2u9u8uAi7k1cAcEBKhq1apObffdd58WL16cbn+73S673Z4TpQEAACCLCnp6cFQOAG7g1seCNW3aVAcOHHBq++2331S2bFk3VQQAAAAAgGu4NXA/++yz2r59u9555x0dOnRIc+fO1SeffKKhQ4e6sywAAAAAAO6YWwN3gwYNtHTpUs2bN0/Vq1fX2LFjNWnSJPXp08edZQEAAAAAcMfcfpFNp06d1KlTJ3eXAQAAAACAS7n1CDcAAAAAAHcrAjcAAAAAABYgcAMAAAAAYAECNwAAAAAAFiBwAwAAAABgAQI3AAAAAAAWIHADAAAAAGABAjcAAAAAABYgcAMAAAAAYAECNwAAAAAAFiBwAwAAAABgAQI3AAAAAAAWIHADAAAAAGABAjcAAAAAABYgcAMAAAAAYAECNwAAAAAAFiBwAwCATJk6dapq1qwpHx8f+fj4KDQ0VN98880tp1m4cKGqVKkiLy8v1ahRQ6tWrcqhagEAcD8CNwAAyJQyZcro3Xff1c6dO7Vjxw7df//96tKli/bv359u/61bt6p3794aPHiwdu/era5du6pr167at29fDlcOAIB7ELgBAECmdO7cWQ8++KAqVaqkypUr6+2331bhwoW1ffv2dPtPnjxZ7du31wsvvKD77rtPY8eOVd26dfXRRx/lcOUAALgHgRsAAGRZcnKy5s+fr8TERIWGhqbbZ9u2bWrTpo1TW7t27bRt27YM55uUlKS4uDinAQCAvIrADQAAMu3nn39W4cKFZbfb9dRTT2np0qWqWrVqun1jYmJUqlQpp7ZSpUopJiYmw/lHRETI19fXMQQFBbm0fgAAchKBGwAAZFpISIj27Nmj77//Xk8//bQGDBig//73vy6bf3h4uGJjYx3D8ePHXTZvAAByWn53FwAAAPIOT09PVaxYUZJUr149/fjjj5o8ebKmT5+epq+/v79Onz7t1Hb69Gn5+/tnOH+73S673e7aogEAcBOOcAMAgGxLSUlRUlJSuuNCQ0O1YcMGp7Z169ZleM03AAB3G45wAwCATAkPD1eHDh107733Kj4+XnPnzlVUVJTWrFkjSerfv79Kly6tiIgISdLw4cPVsmVLjR8/Xh07dtT8+fO1Y8cOffLJJ+5cDQAAcgyBGwAAZMqZM2fUv39/RUdHy9fXVzVr1tSaNWvUtm1bSdKxY8eUL9//Tp5r0qSJ5s6dq9dee02vvPKKKlWqpGXLlql69eruWgUAAHIUgRsAAGTKjBkzbjk+KioqTVv37t3VvXt3iyoCACB34xpuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALODWwP3mm2/KZrM5DVWqVHFnSQAAAAAAuER+dxdQrVo1rV+/3vE6f363lwQAAAAAwB1ze7rNnz+//P393V0GAAAAAAAu5fZruA8ePKjAwECVL19effr00bFjxzLsm5SUpLi4OKcBAAAAAIDcyK2Bu1GjRoqMjNTq1as1depUHTlyRM2bN1d8fHy6/SMiIuTr6+sYgoKCcrhiAAAAAAAyx62Bu0OHDurevbtq1qypdu3aadWqVbpw4YK++uqrdPuHh4crNjbWMRw/fjyHKwYAAAAAIHPcfg33jYoWLarKlSvr0KFD6Y632+2y2+05XBUAAAAAAFnn9mu4b5SQkKDDhw8rICDA3aUAAAAAAHBH3Bq4n3/+eW3evFl//PGHtm7dqm7dusnDw0O9e/d2Z1kAAAAAANwxt55SfuLECfXu3Vvnzp1TyZIl1axZM23fvl0lS5Z0Z1kAAAAAANwxtwbu+fPnu3PxAAAAAABYJlddww0AAAAAwN2CwA0AAAAAgAUI3AAAAAAAWIDADQAAAACABQjcAAAAAABYgMANAAAAAIAFCNwAAAAAAFiAwA0AAAAAgAUI3AAAAAAAWIDADQAAAACABQjcAAAAAABYgMANAAAyJSIiQg0aNFCRIkXk5+enrl276sCBA7ecJjIyUjabzWnw8vLKoYoBAHAvAjcAAMiUzZs3a+jQodq+fbvWrVunq1ev6oEHHlBiYuItp/Px8VF0dLRjOHr0aA5VDACAe+V3dwEAACBvWL16tdPryMhI+fn5aefOnWrRokWG09lsNvn7+1tdHgAAuQ5HuAEAQLbExsZKkooXL37LfgkJCSpbtqyCgoLUpUsX7d+/P8O+SUlJiouLcxoAAMirCNwAACDLUlJSNGLECDVt2lTVq1fPsF9ISIhmzpyp5cuXa/bs2UpJSVGTJk104sSJdPtHRETI19fXMQQFBVm1CgAAWI7ADQAAsmzo0KHat2+f5s+ff8t+oaGh6t+/v2rXrq2WLVtqyZIlKlmypKZPn55u//DwcMXGxjqG48ePW1E+AAA5gmu4AQBAlgwbNkwrV67Uli1bVKZMmSxNW6BAAdWpU0eHDh1Kd7zdbpfdbndFmQAAuB1HuAEAQKYYYzRs2DAtXbpUGzduVHBwcJbnkZycrJ9//lkBAQEWVAgAQO7CEW4AAJApQ4cO1dy5c7V8+XIVKVJEMTExkiRfX195e3tLkvr376/SpUsrIiJCkjRmzBg1btxYFStW1IULFzRu3DgdPXpUQ4YMcdt6AACQUwjcAAAgU6ZOnSpJCgsLc2qfNWuWBg4cKEk6duyY8uX73wl058+f1+OPP66YmBgVK1ZM9erV09atW1W1atWcKhsAALchcAMAgEwxxty2T1RUlNPriRMnauLEiRZVBABA7sY13AAAAAAAWIDADQAAAACABQjcAAAAAABYgMANAAAAAIAFCNwAAAAAAFiAwA0AAAAAgAUI3AAAAAAAWIDADQAAAACABQjcAAAAAABYgMANAAAAAIAFCNwAAAAAAFiAwA0AAAAAgAUI3AAAAAAAWIDADQAAAACABQjcAAAAAABYgMANAAAAAIAFCNwAAAAAAFiAwA0AAAAAgAUI3AAAAAAAWIDADQAAAACABQjcAAAAAABYgMANAAAAAIAFCNwAAAAAAFiAwA0AAAAAgAUI3AAAAAAAWIDADQAAAACABQjcAAAAAABYgMANAAAAAIAFck3gfvfdd2Wz2TRixAh3lwIAAAAAwB3LFYH7xx9/1PTp01WzZk13lwIAAAAAgEu4PXAnJCSoT58++vTTT1WsWDF3lwMAAAAAgEu4PXAPHTpUHTt2VJs2bW7bNykpSXFxcU4DAAAAAAC5UX53Lnz+/PnatWuXfvzxx0z1j4iI0OjRoy2uCgAAAACAO+e2I9zHjx/X8OHDNWfOHHl5eWVqmvDwcMXGxjqG48ePW1wlAAAAAADZ47Yj3Dt37tSZM2dUt25dR1tycrK2bNmijz76SElJSfLw8HCaxm63y26353SpAAAAAABkmdsCd+vWrfXzzz87tQ0aNEhVqlTRSy+9lCZsAwAAAACQl7gtcBcpUkTVq1d3aitUqJDuueeeNO0AAAAAAOQ1br9LOQAAAAAAdyO33qX8ZlFRUe4uAQAAAAAAl+AINwAAAAAAFiBwAwAAAABgAQI3AAAAAAAWIHADAAAAAGABAjcAAAAAABYgcAMAAAAAYAECNwAAAAAAFiBwAwCATImIiFCDBg1UpEgR+fn5qWvXrjpw4MBtp1u4cKGqVKkiLy8v1ahRQ6tWrcqBagEAcD8CNwAAyJTNmzdr6NCh2r59u9atW6erV6/qgQceUGJiYobTbN26Vb1799bgwYO1e/dude3aVV27dtW+fftysHIAANwjv7sLAAAAecPq1audXkdGRsrPz087d+5UixYt0p1m8uTJat++vV544QVJ0tixY7Vu3Tp99NFHmjZtmuU1AwDgThzhBgAA2RIbGytJKl68eIZ9tm3bpjZt2ji1tWvXTtu2bUu3f1JSkuLi4pwGAADyKgI3AADIspSUFI0YMUJNmzZV9erVM+wXExOjUqVKObWVKlVKMTEx6faPiIiQr6+vYwgKCnJp3QAA5CQCNwAAyLKhQ4dq3759mj9/vkvnGx4ertjYWMdw/Phxl84fAICclK1ruH///XeVL1/e1bUAAIA8YNiwYVq5cqW2bNmiMmXK3LKvv7+/Tp8+7dR2+vRp+fv7p9vfbrfLbre7rFYAANwpW0e4K1asqFatWmn27Nm6fPmyq2sCAAC5kDFGw4YN09KlS7Vx40YFBwffdprQ0FBt2LDBqW3dunUKDQ21qkwAAHKNbAXuXbt2qWbNmho5cqT8/f315JNP6ocffnB1bQAAIBcZOnSoZs+erblz56pIkSKKiYlRTEyMLl265OjTv39/hYeHO14PHz5cq1ev1vjx4/Xrr7/qzTff1I4dOzRs2DB3rAIAADkqW4G7du3amjx5sk6dOqWZM2cqOjpazZo1U/Xq1TVhwgT9+eefrq4TAAC42dSpUxUbG6uwsDAFBAQ4hgULFjj6HDt2TNHR0Y7XTZo00dy5c/XJJ5+oVq1aWrRokZYtW3bLG60BAHC3uKPncOfPn18PP/ywOnbsqI8//ljh4eF6/vnn9corr6hHjx567733FBAQ4KpaAQCAGxljbtsnKioqTVv37t3VvXt3CyoCACB3u6O7lO/YsUP//Oc/FRAQoAkTJuj555/X4cOHtW7dOp06dUpdunRxVZ0AAAAAAOQp2TrCPWHCBM2aNUsHDhzQgw8+qC+++EIPPvig8uW7nt+Dg4MVGRmpcuXKubJWAAAAAADyjGwF7qlTp+of//iHBg4cmOEp435+fpoxY8YdFQcAAAAAQF6VrcB98ODB2/bx9PTUgAEDsjN7AAAAAADyvGxdwz1r1iwtXLgwTfvChQv1+eef33FRAAAAAADkddkK3BERESpRokSadj8/P73zzjt3XBQAAAAAAHldtgL3sWPHFBwcnKa9bNmyOnbs2B0XBQAAAABAXpetwO3n56e9e/emaf/pp590zz333HFRAAAAAADkddkK3L1799YzzzyjTZs2KTk5WcnJydq4caOGDx+uXr16ubpGAAAAAADynGzdpXzs2LH6448/1Lp1a+XPf30WKSkp6t+/P9dwAwAAAACgbAZuT09PLViwQGPHjtVPP/0kb29v1ahRQ2XLlnV1fQAAAAAA5EnZCtypKleurMqVK7uqFgAAAAAA7hrZCtzJycmKjIzUhg0bdObMGaWkpDiN37hxo0uKAwAAAAAgr8pW4B4+fLgiIyPVsWNHVa9eXTabzdV1AQAAAACQp2UrcM+fP19fffWVHnzwQVfXAwAAAADAXSFbjwXz9PRUxYoVXV0LAAAAAAB3jWwF7ueee06TJ0+WMcbV9QAAAAAAcFfI1inl3377rTZt2qRvvvlG1apVU4ECBZzGL1myxCXFAQAAAACQV2UrcBctWlTdunVzdS0AAAAAANw1shW4Z82a5eo6AAAAAAC4q2TrGm5JunbtmtavX6/p06crPj5eknTq1CklJCS4rDgAAAAAAPKqbB3hPnr0qNq3b69jx44pKSlJbdu2VZEiRfTee+8pKSlJ06ZNc3WdAAAAAADkKdk6wj18+HDVr19f58+fl7e3t6O9W7du2rBhg8uKAwAAAAAgr8rWEe7//Oc/2rp1qzw9PZ3ay5Urp5MnT7qkMAAAAAAA8rJsHeFOSUlRcnJymvYTJ06oSJEid1wUAAAAAAB5XbYC9wMPPKBJkyY5XttsNiUkJGjUqFF68MEHXVUbAAAAAAB5VrZOKR8/frzatWunqlWr6vLly3rsscd08OBBlShRQvPmzXN1jQAAAAAA5DnZCtxlypTRTz/9pPnz52vv3r1KSEjQ4MGD1adPH6ebqAEAAAAA8HeVrcAtSfnz51ffvn1dWQsAAAAAAHeNbAXuL7744pbj+/fvn61iAAAAAAC4W2QrcA8fPtzp9dWrV3Xx4kV5enqqYMGCBG4AAAAAwN9etu5Sfv78eachISFBBw4cULNmzbhpGgAAAAAAymbgTk+lSpX07rvvpjn6fStTp05VzZo15ePjIx8fH4WGhuqbb75xVUkAAAAAALiNywK3dP1GaqdOncp0/zJlyujdd9/Vzp07tWPHDt1///3q0qWL9u/f78qyAAAAAADIcdm6hnvFihVOr40xio6O1kcffaSmTZtmej6dO3d2ev32229r6tSp2r59u6pVq5ad0gAAAAAAyBWyFbi7du3q9Npms6lkyZK6//77NX78+GwVkpycrIULFyoxMVGhoaHp9klKSlJSUpLjdVxcXLaWBQAAAACA1bIVuFNSUlxWwM8//6zQ0FBdvnxZhQsX1tKlS1W1atV0+0ZERGj06NEuWzYAAAAAAFZx6TXc2RESEqI9e/bo+++/19NPP60BAwbov//9b7p9w8PDFRsb6xiOHz+ew9UCAAAAAJA52TrCPXLkyEz3nTBhwi3He3p6qmLFipKkevXq6ccff9TkyZM1ffr0NH3tdrvsdnvWigUAAAAAwA2yFbh3796t3bt36+rVqwoJCZEk/fbbb/Lw8FDdunUd/Ww2W5bnnZKS4nSdNgAAAAAAeVG2Anfnzp1VpEgRff755ypWrJgk6fz58xo0aJCaN2+u5557LlPzCQ8PV4cOHXTvvfcqPj5ec+fOVVRUlNasWZOdsgAAAAAAyDWyFbjHjx+vtWvXOsK2JBUrVkxvvfWWHnjggUwH7jNnzqh///6Kjo6Wr6+vatasqTVr1qht27bZKQsAAAAAgFwjW4E7Li5Of/75Z5r2P//8U/Hx8Zmez4wZM7KzeAAAAAAAcr1s3aW8W7duGjRokJYsWaITJ07oxIkTWrx4sQYPHqyHH37Y1TUCAAAAAJDnZOsI97Rp0/T888/rscce09WrV6/PKH9+DR48WOPGjXNpgQAAAAAA5EXZCtwFCxbUxx9/rHHjxunw4cOSpAoVKqhQoUIuLQ4AAAAAgLwqW6eUp4qOjlZ0dLQqVaqkQoUKyRjjqroAAEAus2XLFnXu3FmBgYGy2WxatmzZLftHRUXJZrOlGWJiYnKmYAAA3CxbgfvcuXNq3bq1KleurAcffFDR0dGSpMGDB2f6DuUAACBvSUxMVK1atTRlypQsTXfgwAHHj/TR0dHy8/OzqEIAAHKXbJ1S/uyzz6pAgQI6duyY7rvvPkd7z549NXLkSI0fP95lBQIAgNyhQ4cO6tChQ5an8/PzU9GiRV1fEAAAuVy2jnCvXbtW7733nsqUKePUXqlSJR09etQlhQEAgLtD7dq1FRAQoLZt2+q77767Zd+kpCTFxcU5DQAA5FXZCtyJiYkqWLBgmva//vpLdrv9josCAAB5X0BAgKZNm6bFixdr8eLFCgoKUlhYmHbt2pXhNBEREfL19XUMQUFBOVgxAACula3A3bx5c33xxReO1zabTSkpKfrXv/6lVq1auaw4AACQd4WEhOjJJ59UvXr11KRJE82cOVNNmjTRxIkTM5wmPDxcsbGxjuH48eM5WDEAAK6VrWu4//Wvf6l169basWOHrly5ohdffFH79+/XX3/9ddtTxQAAwN9Xw4YN9e2332Y43m63c7YcAOCuka0j3NWrV9dvv/2mZs2aqUuXLkpMTNTDDz+s3bt3q0KFCq6uEQAA3CX27NmjgIAAd5cBAECOyPIR7qtXr6p9+/aaNm2aXn31VStqAgAAuVBCQoIOHTrkeH3kyBHt2bNHxYsX17333qvw8HCdPHnScdnZpEmTFBwcrGrVquny5cv67LPPtHHjRq1du9ZdqwAAQI7KcuAuUKCA9u7da0UtAAAgF9uxY4fTvVpGjhwpSRowYIAiIyMVHR2tY8eOOcZfuXJFzz33nE6ePKmCBQuqZs2aWr9+Pfd7AQD8bWTrGu6+fftqxowZevfdd11dDwAAyKXCwsJkjMlwfGRkpNPrF198US+++KLFVQEAkHtlK3Bfu3ZNM2fO1Pr161WvXj0VKlTIafyECRNcUhwAAAAAAHlVlgL377//rnLlymnfvn2qW7euJOm3335z6mOz2VxXHQAAAAAAeVSWAnelSpUUHR2tTZs2SZJ69uypDz74QKVKlbKkOAAAAAAA8qosPRbs5uu2vvnmGyUmJrq0IAAAAAAA7gbZeg53qlvdOAUAAAAAgL+zLAVum82W5hptrtkGAAAAACCtLF3DbYzRwIEDZbfbJUmXL1/WU089leYu5UuWLHFdhQAAAAAA5EFZCtwDBgxwet23b1+XFgMAAAAAwN0iS4F71qxZVtUBAAAAAMBd5Y5umgYAAAAAANJH4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAm4N3BEREWrQoIGKFCkiPz8/de3aVQcOHHBnSQAAAAAAuIRbA/fmzZs1dOhQbd++XevWrdPVq1f1wAMPKDEx0Z1lAQAAAABwx/K7c+GrV692eh0ZGSk/Pz/t3LlTLVq0cFNVAAAAAADcObcG7pvFxsZKkooXL57u+KSkJCUlJTlex8XF5UhdAAAAAABkVa65aVpKSopGjBihpk2bqnr16un2iYiIkK+vr2MICgrK4SoBAAAAAMicXBO4hw4dqn379mn+/PkZ9gkPD1dsbKxjOH78eA5WCAAAAABA5uWKU8qHDRumlStXasuWLSpTpkyG/ex2u+x2ew5WBgAAAABA9rg1cBtj9H//939aunSpoqKiFBwc7M5yAAAAAABwGbeeUj506FDNnj1bc+fOVZEiRRQTE6OYmBhdunTJnWUBAIB0bNmyRZ07d1ZgYKBsNpuWLVt222mioqJUt25d2e12VaxYUZGRkZbXCQBAbuHWwD116lTFxsYqLCxMAQEBjmHBggXuLAsAAKQjMTFRtWrV0pQpUzLV/8iRI+rYsaNatWqlPXv2aMSIERoyZIjWrFljcaUAAOQObj+lHAAA5A0dOnRQhw4dMt1/2rRpCg4O1vjx4yVJ9913n7799ltNnDhR7dq1s6pMAAByjVxzl3IAAHB32bZtm9q0aePU1q5dO23bti3DaZKSkhQXF+c0AACQVxG4AQCAJWJiYlSqVCmntlKlSikuLi7D+7VERETI19fXMQQFBeVEqQAAWILADQAAco3w8HDFxsY6huPHj7u7JAAAsi1XPIcbAADcffz9/XX69GmnttOnT8vHx0fe3t7pTmO322W323OiPAAALMcRbgAAYInQ0FBt2LDBqW3dunUKDQ11U0UAAOQsAjcAAMiUhIQE7dmzR3v27JF0/bFfe/bs0bFjxyRdPx28f//+jv5PPfWUfv/9d7344ov69ddf9fHHH+urr77Ss88+647yAQDIcQRuAACQKTt27FCdOnVUp04dSdLIkSNVp04dvfHGG5Kk6OhoR/iWpODgYH399ddat26datWqpfHjx+uzzz7jkWAAgL8NruEGAACZEhYWJmNMhuMjIyPTnWb37t0WVgUAQO7FEW4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACbg3cW7ZsUefOnRUYGCibzaZly5a5sxwAAAAAAFzGrYE7MTFRtWrV0pQpU9xZBgAAAAAALpffnQvv0KGDOnTo4M4SAAAAAACwhFsDd1YlJSUpKSnJ8TouLs6N1QAAAAAAkLE8FbgjIiI0evRoy+Zf7uWvLZv33eqPdzu6uwQAQA6bMmWKxo0bp5iYGNWqVUsffvihGjZsmG7fyMhIDRo0yKnNbrfr8uXLOVEqAABulafuUh4eHq7Y2FjHcPz4cXeXBADA38qCBQs0cuRIjRo1Srt27VKtWrXUrl07nTlzJsNpfHx8FB0d7RiOHj2agxUDAOA+eSpw2+12+fj4OA0AACDnTJgwQY8//rgGDRqkqlWratq0aSpYsKBmzpyZ4TQ2m03+/v6OoVSpUjlYMQAA7pOnAjcAAHCfK1euaOfOnWrTpo2jLV++fGrTpo22bduW4XQJCQkqW7asgoKC1KVLF+3fvz/DvklJSYqLi3MaAADIq9wauBMSErRnzx7t2bNHknTkyBHt2bNHx44dc2dZAAAgHWfPnlVycnKaI9SlSpVSTExMutOEhIRo5syZWr58uWbPnq2UlBQ1adJEJ06cSLd/RESEfH19HUNQUJDL1wMAgJzi1sC9Y8cO1alTR3Xq1JEkjRw5UnXq1NEbb7zhzrIAAICLhIaGqn///qpdu7ZatmypJUuWqGTJkpo+fXq6/blfCwDgbuLWu5SHhYXJGOPOEgAAQCaVKFFCHh4eOn36tFP76dOn5e/vn6l5FChQQHXq1NGhQ4fSHW+322W32++4VgAAcgOu4QYAAJni6empevXqacOGDY62lJQUbdiwQaGhoZmaR3Jysn7++WcFBARYVSYAALlGnnoONwAAcK+RI0dqwIABql+/vho2bKhJkyYpMTHR8azt/v37q3Tp0oqIiJAkjRkzRo0bN1bFihV14cIFjRs3TkePHtWQIUPcuRoAAOQIAjcAAMi0nj176s8//9Qbb7yhmJgY1a5dW6tXr3bcSO3YsWPKl+9/J9CdP39ejz/+uGJiYlSsWDHVq1dPW7duVdWqVd21CgAA5BgCNwAAyJJhw4Zp2LBh6Y6Liopyej1x4kRNnDgxB6oCACD34RpuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAIEbgAAAAAALEDgBgAAAADAAgRuAAAAAAAsQOAGAAAAAMACBG4AAAAAACxA4AYAAAAAwAK5InBPmTJF5cqVk5eXlxo1aqQffvjB3SUBAIAMZHW/vXDhQlWpUkVeXl6qUaOGVq1alUOVAgDgXm4P3AsWLNDIkSM1atQo7dq1S7Vq1VK7du105swZd5cGAABuktX99tatW9W7d28NHjxYu3fvVteuXdW1a1ft27cvhysHACDnuT1wT5gwQY8//rgGDRqkqlWratq0aSpYsKBmzpzp7tIAAMBNsrrfnjx5stq3b68XXnhB9913n8aOHau6devqo48+yuHKAQDIefndufArV65o586dCg8Pd7Tly5dPbdq00bZt29L0T0pKUlJSkuN1bGysJCkuLs4l9aQkXXTJfP5OXLXtAfw95ObPWVd9nqXOxxjjkvnlJlndb0vStm3bNHLkSKe2du3aadmyZen2t3pfD9e7eOWa470dFxena55u/XoJ5Fm8l/KOrOzr3fqvePbsWSUnJ6tUqVJO7aVKldKvv/6apn9ERIRGjx6dpj0oKMiyGnFrvpPcXQEAuIarP8/i4+Pl6+vr2pm6WVb325IUExOTbv+YmJh0+7Ovz9sCJrm7AuDuwHspb8jMvj5P/WwSHh7u9Ct5SkqK/vrrL91zzz2y2Wx3NO+4uDgFBQXp+PHj8vHxudNScxz1u19eXwfqdy/qdy9X1m+MUXx8vAIDA11U3d+Llft6AABcISv7ercG7hIlSsjDw0OnT592aj99+rT8/f3T9Lfb7bLb7U5tRYsWdWlNPj4+efLLYirqd7+8vg7U717U716uqv9uO7KdKqv7bUny9/fPUv+c2NcDAHCnMruvd+tN0zw9PVWvXj1t2LDB0ZaSkqINGzYoNDTUjZUBAICbZWe/HRoa6tRfktatW8d+HgDwt+D2U8pHjhypAQMGqH79+mrYsKEmTZqkxMREDRo0yN2lAQCAm9xuv92/f3+VLl1aERERkqThw4erZcuWGj9+vDp27Kj58+drx44d+uSTT9y5GgAA5Ai3B+6ePXvqzz//1BtvvKGYmBjVrl1bq1evTnODFavZ7XaNGjUqzWlseQX1u19eXwfqdy/qd6+8Xn9Out1++9ixY8qX738n0DVp0kRz587Va6+9pldeeUWVKlXSsmXLVL16dXetAgAAOcZm7sbnlgAAAAAA4GZuvYYbAAAAAIC7FYEbAAAAAAALELgBAAAAALAAgRsAAOAu9scff8hms2nTpk2SpCtXrqhYsWL66KOPLFtm586d1axZMzVr1ky7d+9OM37hwoVq0qSJWrdurRMnTkiSfv31V7Vo0UJNmjRxPEouMTFRDz/8sJo1a6Z//etfltULZIY73kvffvutmjRpombNmunnn39OM75///4qWbKkUw1vvfWWWrRooQYNGujDDz+UJP373/9Wo0aN1KxZMw0fPtyyepHWXR24p0yZonLlysnLy0uNGjXSDz/8cMv+CxcuVJUqVeTl5aUaNWpo1apVTuONMXrjjTcUEBAgb29vtWnTRgcPHswV9X/66adq3ry5ihUrpmLFiqlNmzZp+g8cOFA2m81paN++fa6oPzIyMk1tXl5eTn1y8/YPCwtLU7/NZlPHjh0dfXJy+2/ZskWdO3dWYGCgbDabli1bdttpoqKiVLduXdntdlWsWFGRkZFp+mT1PZVdWa1/yZIlatu2rUqWLCkfHx+FhoZqzZo1Tn3efPPNNNu/SpUquaL+qKiodP9+YmJinPrl1u2f3t+2zWZTtWrVHH1yavtHRESoQYMGKlKkiPz8/NS1a1cdOHDgttPlts9/wNXq16+vJUuWSJLWr1+vSpUqWbq8yZMn69tvv9WMGTP0+uuvO427du2aJkyYoKioKI0ZM0Zjx46VJL3yyiuaMWOGVq9erTfeeEOS9Nlnn+nBBx/Ut99+q40bN+rkyZOW1g3cTk6/l1599VV9/fXXmjt3rl566aU04999912NGzfOqe3FF1/Uli1btG3bNk2dOlXJycmqVauWvvvuO3377bc6c+aMduzYYWnd+J+7NnAvWLBAI0eO1KhRo7Rr1y7VqlVL7dq105kzZ9Ltv3XrVvXu3VuDBw/W7t271bVrV3Xt2lX79u1z9PnXv/6lDz74QNOmTdP333+vQoUKqV27drp8+bLb64+KilLv3r21adMmbdu2TUFBQXrggQfS7Jjat2+v6OhoxzBv3jyX156d+iXJx8fHqbajR486jc/N23/JkiVOte/bt08eHh7q3r27U7+c2v6JiYmqVauWpkyZkqn+R44cUceOHdWqVSvt2bNHI0aM0JAhQ5xCa3b+TXOq/i1btqht27ZatWqVdu7cqVatWqlz585pjqpUq1bNaft/++23Lq9dynr9qQ4cOOBUn5+fn2Ncbt7+kydPdqr7+PHjKl68eJq//5zY/ps3b9bQoUO1fft2rVu3TlevXtUDDzygxMTEDKfJbZ//gBXKli2rY8eOyRijpUuX6uGHH3aMi4yMVPPmzdWkSRNt3LhRkjRu3DiFhYWpbt26WrdunaTrP6499dRTatu2rbp27arUB908+eSTaZZXvnx5SZKnp6fTY+Ik6eDBg7rvvvvk6emppk2bau/evZKkU6dOqVKlSvLx8VHx4sV19uxZbd26VQ888IAkqW3bttq2bZuLtwyQNTn5Xrp06ZI8PDxUrFgx3Xvvvfrrr7/S1BMYGJimzdPTU5KUlJSkChUqyMPDQ/fee6/y58/vGH/z+xIWMnephg0bmqFDhzpeJycnm8DAQBMREZFu/x49epiOHTs6tTVq1Mg8+eSTxhhjUlJSjL+/vxk3bpxj/IULF4zdbjfz5s1ze/03u3btmilSpIj5/PPPHW0DBgwwXbp0cXWp6cpq/bNmzTK+vr4Zzi+vbf+JEyeaIkWKmISEBEdbTm7/G0kyS5cuvWWfF1980VSrVs2prWfPnqZdu3aO13e6TbIrM/Wnp2rVqmb06NGO16NGjTK1atVyXWGZlJn6N23aZCSZ8+fPZ9gnL23/pUuXGpvNZv744w9Hm7u2/5kzZ4wks3nz5gz75LbPf8DVjhw5Yh555BETERFhoqKiTJcuXcysWbPMhx9+aM6ePWvatWtnUlJSTEJCgmnZsqUxxpjExERjjDGnT582LVq0MMZc34+lfq/o0aOH+emnn2677IcffjjN+++7774zw4cPd7xu0KCB03+NMaZPnz7mwIEDpm3bto7Pxk8//dRMnz49W9sAcIWcfi+dPHnS6btj06ZNTVJSUpp+qTXcaPjw4SYgIMC89dZbTu0//PCDad++fbbWH9lzV/60ceXKFe3cuVNt2rRxtOXLl09t2rTJ8JfRbdu2OfWXpHbt2jn6HzlyRDExMU59fH191ahRI5f/2pqd+m928eJFXb16VcWLF3dqj4qKkp+fn0JCQvT000/r3LlzLq1dyn79CQkJKlu2rIKCgtSlSxft37/fMS6vbf8ZM2aoV69eKlSokFN7Tmz/7Ljd378rtklOSklJUXx8fJq//4MHDyowMFDly5dXnz59dOzYMTdVmL7atWsrICBAbdu21Xfffedoz2vbf8aMGWrTpo3Kli3r1O6O7R8bGytJaf4WbpSbPv8BKz3yyCN69tlnFRYW5mg7fPiw9u/fr1atWqljx476888/JUlffvmlWrRooR49eig6OtrRv06dOpKkoKAgnT9//pbLGzVqlBo3bqwWLVo4tRctWlRxcXGO1x4eHpLkdMQtNjZWxYsXd+qb2ga4W069l25+r1y7ds1x9Pp2Jk2apN9//11Lly51LPfEiRMaMWKEPv/88yytL+7MXRm4z549q+TkZJUqVcqpvVSpUmmuiUwVExNzy/6p/83KPLMrO/Xf7KWXXlJgYKDTF8T27dvriy++0IYNG/Tee+9p8+bN6tChg5KTk91ef0hIiGbOnKnly5dr9uzZSklJUZMmTRw3UslL2/+HH37Qvn37NGTIEKf2nNr+2ZHR339cXJwuXbrkkr/JnPT+++8rISFBPXr0cLQ1atRIkZGRWr16taZOnaojR46oefPmio+Pd2Ol1wUEBGjatGlavHixFi9erKCgIIWFhWnXrl2SXPOZkFNOnTqlb775Js3fvzu2f0pKikaMGKGmTZuqevXqGfbLTZ//gJUqVaqkZs2a6dFHH3W0lS9fXjVr1tSmTZsUFRWlPXv2SJI+/PBDbdq0SQsWLHCc7ipJNpvN8f83tt8sMjJSJ06c0AsvvJBuHb/88ouuXLmirVu3qmbNmpKufxYePnxY8fHx+uuvv1SiRAk1adJE69evl3T9etnGjRvf0TYAXCGn3ksFCxbUtWvXdOHCBcflWpmRlJQkSbLb7SpYsKC8vLwUHx+vXr16afr06U6XrMF6+d1dAFzv3Xff1fz58xUVFeV047FevXo5/r9GjRqqWbOmKlSooKioKLVu3dodpTqEhoYqNDTU8bpJkya67777NH36dMfNVPKKGTNmqEaNGmrYsKFTe27e/neTuXPnavTo0Vq+fLnTDqVDhw6O/69Zs6YaNWqksmXL6quvvtLgwYPdUapDSEiIQkJCHK+bNGmiw4cPa+LEifryyy/dWFnWff755ypatKi6du3q1O6O7T906FDt27fPsmv1gbzogw8+cHpdokQJ9erVSy1btpSHh4dq1KihDz74wHGH8caNG6tw4cK3nOeTTz6p6dOnO14nJyfriSeeUIMGDRQWFqbg4GDNmjVLkZGRCgkJUWhoqEaMGKGwsDB5eXk5jra9/fbbGjhwoJKTkzV69GhJ0pAhQ9S3b1/NnDlTnTp1UpkyZVy8RYDsyYn3knT9juMPPvigbDabPv74Y0lyei+Fh4drxYoVSk5Odnx3GD58uH799VdduXJFffv2VbFixTR27FgdOXJEw4YNkySNHj1aLVu2dOEWQUbuysBdokQJeXh46PTp007tp0+flr+/f7rT+Pv737J/6n9Pnz6tgIAApz61a9d2YfXZqz/V+++/r3fffVfr1693/GKckfLly6tEiRI6dOiQSwPfndSfqkCBAqpTp44OHTokKe9s/8TERM2fP19jxoy57XKs2v7ZkdHfv4+Pj7y9veXh4XHH/6Y5Yf78+RoyZIgWLlyY5hThmxUtWlSVK1d2/I3lNg0bNnQERVe8p3KCMUYzZ85Uv379bnvKm9Xbf9iwYVq5cqW2bNly2y/ouenzH7BCuXLltGjRIqe2gQMHOv6/X79+6tevn9P4adOmpZnPjU+veP/99x3/f3NA8PDw0JUrV9JMf+Mye/bsqZ49ezqNr1q1qv7zn/84tRUuXDhTT9oAckJOv5ckqUWLFtq6dWuGy4yIiFBERMRtl/n666+neWIAcsZdeUq5p6en6tWr53iGo3T91MINGzY4HUW9UWhoqFN/SVq3bp2jf3BwsPz9/Z36xMXF6fvvv89wnjlZv3T9Lrpjx47V6tWrVb9+/dsu58SJEzp37pzTF0hXyG79N0pOTtbPP//sqC0vbH/p+qOFkpKS1Ldv39sux6rtnx23+/t3xb+p1ebNm6dBgwZp3rx5To9jy0hCQoIOHz6cK7Z/evbs2eOoLS9sf+n6HcIPHTqUqSPWVm1/Y4yGDRumpUuXauPGjQoODr7tNLnp8x8AANxl3HnHNivNnz/f2O12ExkZaf773/+aJ554whQtWtTExMQYY4zp16+fefnllx39v/vuO5M/f37z/vvvm19++cWMGjXKFChQwPz888+OPu+++64pWrSoWb58udm7d6/p0qWLCQ4ONpcuXXJ7/e+++67x9PQ0ixYtMtHR0Y4hPj7eGGNMfHy8ef755822bdvMkSNHzPr1603dunVNpUqVzOXLl91e/+jRo82aNWvM4cOHzc6dO02vXr2Ml5eX2b9/v9M65tbtn6pZs2amZ8+eadpzevvHx8eb3bt3m927dxtJZsKECWb37t3m6NGjxhhjXn75ZdOvXz9H/99//90ULFjQvPDCC+aXX34xU6ZMMR4eHmb16tWOPrfbJu6sf86cOSZ//vxmypQpTn//Fy5ccPR57rnnTFRUlDly5Ij57rvvTJs2bUyJEiXMmTNn3F7/xIkTzbJly8zBgwfNzz//bIYPH27y5ctn1q9f7+iTm7d/qr59+5pGjRqlO8+c2v5PP/208fX1NVFRUU5/CxcvXnT0ye2f/wAA4O5x1wZuY4z58MMPzb333ms8PT1Nw4YNzfbt2x3jWrZsaQYMGODU/6uvvjKVK1c2np6eplq1aubrr792Gp+SkmJef/11U6pUKWO3203r1q3NgQMHckX9ZcuWNZLSDKNGjTLGGHPx4kXzwAMPmJIlS5oCBQqYsmXLmscff9ySL+vZqX/EiBGOvqVKlTIPPvig2bVrl9P8cvP2N8aYX3/91Ugya9euTTOvnN7+qY+ZunlIrXnAgAGOx1XcOE3t2rWNp6enKV++vJk1a1aa+d5qm7iz/pYtW96yvzHXH3MWEBBgPD09TenSpU3Pnj3NoUOHckX97733nqlQoYLx8vIyxYsXN2FhYWbjxo1p5ptbt78x1x+T5e3tbT755JN055lT2z+9uiU5/T3nhc9/wB2Sk5PN2LFjTdOmTU3z5s1Nv3790n0EUVZl5lFemzZtMvfff78JCwszS5YsueNlAu7krvfS999/bxo3bmyaN29uevXqZa5cuXLHy8Sdsxlzi1tMAgAA4G9h5syZ2r59u6ZPny6bzabt27erVq1a8vb2vqP51q9fXzt27Mhw/KVLl9SjRw8tXrw40488AnIzd72XoqOjVbRoUXl7eys8PFz16tVzupM63OOuvIYbAAAAWTNnzhyFh4c7HlfUuHFjeXt7a9OmTWrcuLEaN26sL774QtL1mzbt27dPkvT8888rKipKUVFRat++vbp166ZatWpp3759Wrp0qQ4cOKCwsDDNnTtXq1ev1tKlS52Wu23bNnl7e6tz587q1q0bj9tDnueu91JAQIAj1Ht6ejo92x7uc1fepRwAAABZc+rUKQUGBqZpDw8P18qVK+Xr66vQ0FB17949w3lcvXpVq1ev1jfffKOZM2dqwoQJCgkJUVRUVIbTnD59WocOHdL27du1fv16vfnmm+neZRnIK9z1Xkp19OhRrV27Vq+99tqdrAZchJ89AAAAoMDAQJ08eTJNe3JyskqUKKECBQqoYsWKOnXqlOPInXT96QCpUh+VFxQUpPPnz2dquUWLFlXTpk3l6emp1q1ba//+/Xe2IoCbueu9JF1/ika/fv0UGRmpAgUKZH8l4DIEbgAAAKhPnz567733HF/6v//+e126dEn58uXT2bNndfXqVR08eFCBgYEqVqyYTpw4IUnau3evYx7phYcb29LToEED/fLLLzLGaM+ePSpfvryrVw3IUe56L127dk29evXSqFGjFBIS4urVQjZxSjkAAAA0cOBAnTp1Ss2aNVO+fPkUHBysGTNm6J133lHHjh1ls9k0bNgweXt7a+DAgerXr58+/fRTFSxY8JbzbdWqlbp06aJBgwbJy8tLly5dUrdu3RzjS5QooW7duqlly5ay2WyaOXOm1asKWMpd76V58+bp+++/19ixYzV27Fg9/fTT6tmzp9Wri9vgLuUAAAAAAFiAU8oBAAAAALAAgRsAAAAAAAsQuAEAAAAAsACBG/gb2LZtmzw8PNSxY0dJ12/mYbPZMhzKlSsnSQoLC0t3/FNPPeXGtQEAAADyBm6aBvwNDBkyRIULF9aMGTN04MABFSpUSJcuXXKMDwgI0KxZs9S+fXtJkoeHh0qWLKmwsDBVrlxZY8aMcZpfwYIF5ePjk6PrAAAAAOQ1PBYMuMslJCRowYIF2rFjh2JiYhQZGalXXnlFvr6+Tv2KFi0qf3//NNMXLFgw3XYAAAAAt8Yp5cBd7quvvlKVKlUUEhKivn37aubMmeLEFgAAAMB6BG7gLjdjxgz17dtXktS+fXvFxsZq8+bNmZ7+448/VuHChZ2GOXPmWFUuAAAAcNfglHLgLnbgwAH98MMPWrp0qSQpf/786tmzp2bMmKGwsLBMzaNPnz569dVXndpKlSrl6lIBAACAuw6BG7iLzZgxQ9euXVNgYKCjzRgju92ujz76KM113Onx9fVVxYoVrSwTAAAAuCtxSjlwl7p27Zq++OILjR8/Xnv27HEMP/30kwIDAzVv3jx3lwgAAADc1TjCDdylVq5cqfPnz2vw4MFpjmQ/8sgjmjFjRqaep33x4kXFxMQ4tdntdhUrVsyl9QIAAAB3G45wA3epGTNmqE2bNumeNv7II49ox44d2rt3723n8+mnnyogIMBp6N27txUlAwAAAHcVm+H5QAAAAAAAuBxHuAEAAAAAsACBGwAAAAAACxC4AQAAAACwAIEbAAAAAAALELgBAAAAALAAgRsAAAAAAAsQuAEAAAAAsACBGwAAAAAACxC4AQAAAACwAIEbAAAAAAALELgBAAAAALDA/wPMkF7J42vC5wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHpCAYAAABTH4/7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABurUlEQVR4nO3deVwVdfv/8fcBZXEBNWVTUlxyV3Ij3E0Sl9uyMs1uA0lt0zu9ySxbNFukzaXuLNoUrUyz1O42FVE0c8uF0hZTb3cBrRQEFRXm90c/z7cToICcOcC8no/HPOp8zmfmXMPFcC6vM2fGZhiGIQAAAAAAAMBEbq4OAAAAAAAAANZDUwoAAAAAAACmoykFAAAAAAAA09GUAgAAAAAAgOloSgEAAAAAAMB0NKUAAAAAAABgOppSAAAAAAAAMB1NKQAAAAAAAJiOphQAAAAAAABMR1MKZdKBAwdks9mUkJDg6lAs4+WXX1bDhg3l7u6u0NBQV4ejp59+WjabzdVhwMnIMwA4FzWV+aip4ArkGeUVTSk4RUJCgmw2W6HLpk2bXB1iufXTTz/p6aef1oEDB0ptmytXrtTEiRPVpUsXzZ07V9OmTSu1bZdVCxYs0KxZs1wdhimmTZumZcuWuToMU3z11Vd6+umnizQ3Ly9PCQkJuvnmmxUcHKyqVauqVatWeu6553Tu3Lkiv+aGDRvUtWtXValSRQEBAXrooYeUlZWVb15OTo4effRRBQUFydvbW2FhYUpMTLyqbQKo+KipnIeaqnRQU1VMxampLvn555/Vt29fVatWTbVq1dLdd9+tEydOFGndRYsWafjw4WrSpIlsNpt69uxZ4Lwff/xRd9xxhxo2bKgqVaqodu3a6t69uz7//HOHeaVV58H5Krk6AFRszzzzjEJCQvKNN27c2AXRVAw//fSTpk6dqp49e6pBgwalss3Vq1fLzc1N7733njw8PEplm2XdggULtGvXLo0fP97VoTjdtGnTNHjwYA0aNMjVoTjdV199pdmzZxepiDpz5oxiYmJ0ww036P7775efn582btyoKVOmKCkpSatXr77iJ44pKSnq3bu3mjdvrhkzZujIkSN65ZVXtGfPHn399dcOc0eMGKFPPvlE48ePV5MmTZSQkKD+/ftrzZo16tq1a4m2CcA6qKlKHzVV6aCmqpiKU1NJ0pEjR9S9e3f5+vpq2rRpysrK0iuvvKKdO3dqy5YtVzwe3nzzTW3btk0dO3bU77//Xui8gwcP6vTp04qOjlZQUJDOnDmjTz/9VDfffLPeeust3XvvvZJKp86DOWhKwan69eunDh06uDoMXMHx48fl7e1dasWTYRg6d+6cvL29S2V75UVeXp7Onz8vLy8vV4fidOfOnZOHh4fc3MrvCbceHh769ttv1blzZ/vY6NGj1aBBA3vBEhERcdltPP7446pZs6aSk5Pl4+MjSWrQoIFGjx6tlStXqk+fPpKkLVu2aOHChXr55Zc1YcIESVJUVJRatWqliRMnasOGDcXeJgBroaYqH6ipSgc1Vfkzbdo0ZWdna9u2bbr22mslSZ06ddJNN92khIQEe7OoMO+//77q1q0rNzc3tWrVqtB5/fv3V//+/R3Gxo4dq/bt22vGjBn21ymNOg/mKN+/+agQTp06pREjRsjX11c1atRQdHS0Tp06VeDcxYsXq0WLFvLy8lKrVq20dOlSjRgxIt+nW3l5eZo1a5ZatmwpLy8v+fv767777tPJkyeLFNMvv/yiIUOGqE6dOvL29lbTpk31xBNPOMzZsWOH+vXrJx8fH1WrVk29e/fOdwp9Yd/tvnQq/l9PF2/QoIH+8Y9/aP369erUqZO8vLzUsGFDzZ8/32G9O+64Q5LUq1cv+6n7ycnJkqStW7cqMjJStWvXlre3t0JCQnTPPfdcdl9tNpvmzp2r7Oxs+/YuXXfi4sWLevbZZ9WoUSN5enqqQYMGevzxx5WTk+OwjUuxr1ixQh06dJC3t7feeuuty77u5s2b1b9/f9WsWVNVq1ZVmzZt9OqrrxY6/3LXxLDZbA6f4pw+fVrjx49XgwYN5OnpKT8/P910003avn27JKlnz5768ssvdfDgQfs+//V3KCcnR1OmTFHjxo3l6emp4OBgTZw4Md9+22w2jR07Vh9++KFatmwpT09PLV++/LL7/fXXX6tHjx6qXr26fHx81LFjRy1YsCDfz6Zv377y9fVVlSpV1KNHD3377bcOcy79bu3du1cjRoxQjRo15Ovrq5iYGJ05c8YhxuzsbM2bN8++ryNGjLA/f/ToUd1zzz3y9/eXp6enWrZsqTlz5ji8VnJysmw2mxYuXKgnn3xSdevWVZUqVZSZmVnkeCVp/fr16tixo7y8vNSoUaMr/o781TfffKM77rhD1157rT0n//73v3X27Fn7nBEjRmj27Nn2/b60FMbDw8OhULnk1ltvlfTnKeiXk5mZqcTERA0fPtzePJL+bDZVq1ZNH3/8sX3sk08+kbu7u0NB5uXlpZEjR2rjxo06fPhwsbcJAH9HTfUnaipqqr/+bKipHDmjppKkTz/9VP/4xz/sDSlJioiI0HXXXVek+iU4OLjEjTl3d3cFBwc7/L272joP5uFMKThVRkaGfvvtN4cxm82ma665RtKfn/7ccsstWr9+ve6//341b95cS5cuVXR0dL5tffnllxo6dKhat26tuLg4nTx5UiNHjlTdunXzzb3vvvuUkJCgmJgYPfTQQ9q/f79ef/117dixQ99++60qV65caMw//PCDunXrpsqVK+vee+9VgwYNtG/fPn3++ed6/vnnJf35XeZu3brJx8dHEydOVOXKlfXWW2+pZ8+eWrt2rcLCwkr089q7d68GDx6skSNHKjo6WnPmzNGIESPUvn17tWzZUt27d9dDDz2k1157TY8//riaN28uSWrevLmOHz+uPn36qE6dOnrsscdUo0YNHThwQEuWLLnsa77//vt6++23tWXLFr377ruSZP8DPmrUKM2bN0+DBw/Www8/rM2bNysuLk4///yzli5d6rCd3bt3a9iwYbrvvvs0evRoNW3atNDXTExM1D/+8Q8FBgZq3LhxCggI0M8//6wvvvhC48aNK9HP7q/uv/9+ffLJJxo7dqxatGih33//XevXr9fPP/+sdu3a6YknnlBGRoaOHDmimTNnSpKqVasm6c/i++abb9b69et17733qnnz5tq5c6dmzpypX3/9Nd91BFavXq2PP/5YY8eOVe3atS97+n9CQoLuuecetWzZUpMmTVKNGjW0Y8cOLV++XHfddZd9e/369VP79u01ZcoUubm5ae7cubrxxhv1zTffqFOnTg7bHDJkiEJCQhQXF6ft27fr3XfflZ+fn1588UVJf+Z31KhR6tSpk70h0qhRI0lSenq6brjhBnshWKdOHX399dcaOXKkMjMz852G/+yzz8rDw0MTJkxQTk6OPDw8ihzvzp077b+fTz/9tC5evKgpU6bI39+/SDldvHixzpw5owceeEDXXHONtmzZov/85z86cuSIFi9eLOnP4/7YsWNKTEzU+++/X6TtFiQtLU2SVLt27cvO27lzpy5evJjvzAUPDw+FhoZqx44d9rEdO3bouuuuc2g0SbL/fFJSUhQcHFysbQKwFmqq4qGmoqaipiqYM2qqo0eP6vjx4wWezdmpUyd99dVXRYqtOLKzs3X27FllZGTov//9r77++msNHTr0iusVtc6DiQzACebOnWtIKnDx9PS0z1u2bJkhyXjppZfsYxcvXjS6detmSDLmzp1rH2/durVRr1494/Tp0/ax5ORkQ5JRv359+9g333xjSDI+/PBDh5iWL19e4Pjfde/e3ahevbpx8OBBh/G8vDz7/w8aNMjw8PAw9u3bZx87duyYUb16daN79+72sSlTphgFHWaXfj779++3j9WvX9+QZKxbt84+dvz4ccPT09N4+OGH7WOLFy82JBlr1qxx2ObSpUsNScZ333132f0rSHR0tFG1alWHsZSUFEOSMWrUKIfxCRMmGJKM1atX54t9+fLlV3ytixcvGiEhIUb9+vWNkydPOjz315/x3392+/fvz/c7cYkkY8qUKfbHvr6+xpgxYy4bx4ABAxx+by55//33DTc3N+Obb75xGI+PjzckGd9++63D67q5uRk//vjjZV/LMAzj1KlTRvXq1Y2wsDDj7NmzDs9d2u+8vDyjSZMmRmRkpMPP4syZM0ZISIhx00032ccu/Xzuueceh23deuutxjXXXOMwVrVqVSM6OjpfTCNHjjQCAwON3377zWH8zjvvNHx9fY0zZ84YhmEYa9asMSQZDRs2tI8VN95BgwYZXl5eDsfVTz/9ZLi7uxd4jPzdX1/3kri4OMNmszlsc8yYMUXa3uVEREQYPj4++X4//+7SsfjXY/aSO+64wwgICLA/btmypXHjjTfmm/fjjz8akoz4+PhibxOANVBT/YmaKj9qKmqqS1xdU3333XeGJGP+/Pn5nnvkkUcMSca5c+eKtC3D+LNu6tGjx2Xn3Hffffa/hW5ubsbgwYONP/7444rbLmqdB/Pw9T041ezZs5WYmOiw/PVCvV999ZUqVaqkBx54wD7m7u6uf/3rXw7bOXbsmHbu3Gn/CsslPXr0UOvWrR3mLl68WL6+vrrpppv022+/2Zf27durWrVqWrNmTaHxnjhxQuvWrdM999zjcOqpJPspq7m5uVq5cqUGDRqkhg0b2p8PDAzUXXfdpfXr19tPwS2uFi1aqFu3bvbHderUUdOmTfW///3viuvWqFFDkvTFF1/owoULJXr9v7r0iUZsbKzD+MMPPyzpz09Z/yokJESRkZFX3O6OHTu0f/9+jR8/3h7zJaV1scEaNWpo8+bNOnbsWLHXXbx4sZo3b65mzZo5/P7ceOONkpTv96dHjx5q0aLFFbebmJio06dP67HHHst3fYRL+52SkqI9e/borrvu0u+//25/7ezsbPXu3Vvr1q1TXl6ew7r333+/w+Nu3brp999/v+LvoGEY+vTTTzVw4EAZhuGwr5GRkcrIyLCfmn9JdHS0wzUtihpvbm6uVqxYoUGDBjkcV82bNy/S74wkh9fNzs7Wb7/9ps6dO8swjFI9e2jatGlatWqVXnjhhXy/n3936TR3T0/PfM95eXk5nAZ/9uzZQuf9dVvF2SYAa6GmKh5qKmoqaqqCOaOmulL98tc5pWX8+PFKTEzUvHnz1K9fP+Xm5ur8+fOXXac4dR7Mw9f34FSdOnW67EU5Dx48qMDAQIeiSFK+05QPHjwoqeA7zDRu3NjhD/2ePXuUkZEhPz+/Al/z+PHjhcZzqVC53MX1Tpw4oTNnzhR4KnXz5s2Vl5enw4cPq2XLloVuozB/L9okqWbNmkW6bkOPHj10++23a+rUqZo5c6Z69uypQYMG6a677irwDeJKDh48KDc3t3w/84CAANWoUcOek0sKuiNQQfbt2yfp8j/jq/XSSy8pOjpawcHBat++vfr376+oqCiHgrcwe/bs0c8//6w6deoU+Pzff39Kc7/37NkjSQV+1eKSjIwM1axZ0/74778zl547efJkvq+K/dWJEyd06tQpvf3223r77bcLnHOlfS1qvDk5OTp79qyaNGmS7/mmTZsW6ZTuQ4cOafLkyfrvf/+b73jIyMi44vpFsWjRIj355JMaOXKkwz/qCnOpqPv7dTEk5bsorbe3d6Hz/rqt4mwTgLVQUxUPNVXpoKaipiqKK9Uvf51TWpo1a6ZmzZpJ+vPam3369NHAgQO1efPmApuyxa3zYB6aUqhw8vLy5Ofnpw8//LDA5wt7Y3SGwj6lys3NLXDc3d29wHHDMIr0Wp988ok2bdqkzz//XCtWrNA999yj6dOna9OmTfmK1KIq6idtzv7HcnF+lkOGDFG3bt20dOlSrVy5Ui+//LJefPFFLVmyRP369bvs6+Tl5al169aaMWNGgc8HBwc7PC7N/b70id3LL7+s0NDQAuf8PY8l/Z259FrDhw8vtABq06aNw+O/72tR4y2oQCmO3Nxc3XTTTfrjjz/06KOPqlmzZqpataqOHj2qESNG5PuksyQSExMVFRWlAQMGKD4+vkjrBAYGSpJSU1PzPZeamqqgoCCHuUePHi1wniT73OJsEwCcjZqKmoqaipqqKK5Uv9SqVatEDd3iGDx4sO677z79+uuv+RrdJanzYB6aUnCp+vXrKykpSVlZWQ5vDLt37843T/rzopV/9/exRo0aadWqVerSpUux39wufeqza9euQufUqVNHVapUyRej9OcdZtzc3Oxvspc+YTl16pTDKaJ//0SsOK5U0Nxwww264YYb9Pzzz2vBggX65z//qYULF2rUqFHFep369esrLy9Pe/bssV/8U/rzQo6nTp2y56S4Ll0QcteuXcW6Detff5Z/VdjPMjAwUA8++KAefPBBHT9+XO3atdPzzz9vL6AK+zk2atRI33//vXr37l1qp75f2q70534X9On0X+f4+PiU6i1qC9qPOnXqqHr16srNzS3xaxU13kt3XLr0KeBfFXQc/d3OnTv166+/at68eYqKirKPJyYm5ptbkpxt3rxZt956qzp06KCPP/5YlSoV7a2xVatWqlSpkrZu3aohQ4bYx8+fP6+UlBSHsdDQUK1Zs0aZmZkOn7Zu3rzZ/nxxtwkAf0VNVXzUVKccxqmproyaqmB169ZVnTp1tHXr1nzPbdmypdBGW2m69PXAv5/tVdI6D+bhmlJwqf79++vixYt688037WO5ubn6z3/+4zAvKChIrVq10vz585WVlWUfX7t2rXbu3Okwd8iQIcrNzdWzzz6b7/UuXrxY6K2RpT//0Hfv3l1z5szRoUOHHJ679CmJu7u7+vTpo88++8zh9sPp6elasGCBunbtav9H56U3mHXr1tnnXbqVbElVrVpVUv5C4uTJk/k+ybn0BlCST1X69+8vSZo1a5bD+KVPuwYMGFDsbUpSu3btFBISolmzZuXbh8t9EuXj46PatWs7/Cwl6Y033nB4nJubm+/NyM/PT0FBQQ4/h6pVqxZ4ivKQIUN09OhRvfPOO/meO3v2rLKzswuN8XL69Omj6tWrKy4uzn4a8yWX9rt9+/Zq1KiRXnnlFYff80tOnDhRoteuWrVqvp+1u7u7br/9dn366acF/oOhKK9V1Hjd3d0VGRmpZcuWORxXP//8s1asWHHF17n0yeVffz8MwyjwdteFHR+F+fnnnzVgwAA1aNBAX3zxxWX/0fXLL784xO/r66uIiAh98MEHOn36tH38/fffV1ZWlv1W49Kfn97l5uY6nNafk5OjuXPnKiwszP6PruJsEwD+ipqq+KipqKmKi5qqcLfffru++OILHT582D6WlJSkX3/91aF+uXDhgn755ZcCz6oqioK+NnzhwgXNnz9f3t7eDtclK06dB9ehTQin+vrrr/XLL7/kG+/cubMaNmyogQMHqkuXLnrsscd04MABtWjRQkuWLCnwjW3atGm65ZZb1KVLF8XExOjkyZN6/fXX1apVK4c/3j169NB9992nuLg4paSkqE+fPqpcubL27NmjxYsX69VXX9XgwYMLjfm1115T165d1a5dO917770KCQnRgQMH9OWXXyolJUWS9NxzzykxMVFdu3bVgw8+qEqVKumtt95STk6OXnrpJfu2+vTpo2uvvVYjR47UI488Ind3d82ZM0d16tTJV6AVVWhoqNzd3fXiiy8qIyNDnp6euvHGG7VgwQK98cYbuvXWW9WoUSOdPn1a77zzjnx8fOzFUHG0bdtW0dHRevvtt3Xq1Cn16NFDW7Zs0bx58zRo0CD16tWrRPG7ubnpzTff1MCBAxUaGqqYmBgFBgbql19+0Y8//njZN9RRo0bphRde0KhRo9ShQwetW7dOv/76q8Oc06dPq169eho8eLDatm2ratWqadWqVfruu+80ffp0+7z27dtr0aJFio2NVceOHVWtWjUNHDhQd999tz7++GPdf//9WrNmjbp06aLc3Fz98ssv+vjjj7VixYrLXtOjMD4+Ppo5c6ZGjRqljh076q677lLNmjX1/fff68yZM5o3b57c3Nz07rvvql+/fmrZsqViYmJUt25dHT16VGvWrJGPj48+//zzYr92+/bttWrVKs2YMUNBQUEKCQlRWFiYXnjhBa1Zs0ZhYWEaPXq0WrRooT/++EPbt2/XqlWr9Mcff1x2u8WJd+rUqVq+fLm6deumBx98UBcvXtR//vMftWzZUj/88MNlX6dZs2Zq1KiRJkyYoKNHj8rHx0effvppgdcFad++vSTpoYceUmRkpNzd3XXnnXcWuN3Tp08rMjJSJ0+e1COPPJLvQrONGjVSeHi4/XHz5s3Vo0cPJScn28eef/55de7cWT169NC9996rI0eOaPr06erTp4/69u1rnxcWFqY77rhDkyZN0vHjx9W4cWPNmzdPBw4c0HvvvefwukXdJgBroaaipvo7aipqqrJSU0nS448/rsWLF6tXr14aN26csrKy9PLLL6t169aKiYmxzzt69KiaN2+u6OhoJSQk2MfXrVtnb5SeOHFC2dnZeu655yRJ3bt3V/fu3SVJ9913nzIzM9W9e3fVrVtXaWlp+vDDD/XLL79o+vTp9jNFi1vnwYXMvNUfrONyty/W325B+/vvvxt333234ePjY/j6+hp33323sWPHjgJvVbtw4UKjWbNmhqenp9GqVSvjv//9r3H77bcbzZo1yxfD22+/bbRv397w9vY2qlevbrRu3dqYOHGicezYsSvGv2vXLuPWW281atSoYXh5eRlNmzY1nnrqKYc527dvNyIjI41q1aoZVapUMXr16mVs2LAh37a2bdtmhIWFGR4eHsa1115rzJgxo9DbFw8YMCDf+j169Mh3S9R33nnHaNiwof3Wr2vWrDG2b99uDBs2zLj22msNT09Pw8/Pz/jHP/5hbN269Yr7W9Dtiw3DMC5cuGBMnTrVCAkJMSpXrmwEBwcbkyZNyndL18Jiv5z169cbN910k1G9enWjatWqRps2bYz//Oc/9ucLuvXzmTNnjJEjRxq+vr5G9erVjSFDhhjHjx93uH1xTk6O8cgjjxht27a1b7tt27bGG2+84bCtrKws46677jJq1KiR7xbY58+fN1588UWjZcuWhqenp1GzZk2jffv2xtSpU42MjAz7PElXvE3y3/33v/81OnfubHh7exs+Pj5Gp06djI8++shhzo4dO4zbbrvNuOaaawxPT0+jfv36xpAhQ4ykpKR8P58TJ044rFvQ79Yvv/xidO/e3fD29jYkOdzKOD093RgzZowRHBxsVK5c2QgICDB69+5tvP322/Y5l25fvHjx4gL3qSjxGoZhrF271mjfvr3h4eFhNGzY0IiPjy/0Ft9/99NPPxkRERFGtWrVjNq1axujR482vv/++3x/Jy5evGj861//MurUqWPYbLbLbvvSLbELW/5+y2dJBd6e+JtvvjE6d+5seHl5GXXq1DHGjBljZGZm5pt39uxZY8KECUZAQIDh6elpdOzYsdBbfhd1mwAqPmqq/0NNVTBqKmoqV9dUl+zatcvo06ePUaVKFaNGjRrGP//5TyMtLc1hzqX66+911qX4C1ou/U4ahmF89NFHRkREhOHv729UqlTJqFmzphEREWF89tlnBb5OUes8uI7NMIpwtT+gDAsNDVWdOnUK/C40AAAAioaaCgBgNq4phXLjwoULunjxosNYcnKyvv/+e/Xs2dM1QQEAAJQz1FQAgLKCM6VQbhw4cEAREREaPny4goKC9Msvvyg+Pl6+vr7atWuXrrnmGleHCAAAUOZRUwEAygoudI5yo2bNmmrfvr3effddnThxQlWrVtWAAQP0wgsvUDwBAAAUETUVAKCs4EwpAAAAAAAAmI5rSgEAAAAAAMB0lvv6Xl5eno4dO6bq1avLZrO5OhwAAFCGGIah06dPKygoSG5ufHZ3OdRUAACgMEWtqSzXlDp27JiCg4NdHQYAACjDDh8+rHr16rk6jDKNmgoAAFzJlWoqyzWlqlevLunPH4yPj4+LowEAAGVJZmamgoOD7fUCCkdNBQAAClPUmspyTalLp5f7+PhQQAEAgALxdbQro6YCAABXcqWaioslAAAAAAAAwHQ0pQAAAAAAAGA6mlIAAAAAAAAwHU0pAAAAAAAAmI6mFAAAAAAAAExHUwoAAAAAAACmoykFAAAAAAAA09GUAgAAAAAAgOlc2pR688031aZNG/n4+MjHx0fh4eH6+uuvL7vO4sWL1axZM3l5eal169b66quvTIoWAADAfHFxcerYsaOqV68uPz8/DRo0SLt3777ieleqmQzD0OTJkxUYGChvb29FRERoz549ztoNAACAfFzalKpXr55eeOEFbdu2TVu3btWNN96oW265RT/++GOB8zds2KBhw4Zp5MiR2rFjhwYNGqRBgwZp165dJkcOAABgjrVr12rMmDHatGmTEhMTdeHCBfXp00fZ2dmFrlOUmumll17Sa6+9pvj4eG3evFlVq1ZVZGSkzp07Z8ZuAQAAyGYYhuHqIP6qVq1aevnllzVy5Mh8zw0dOlTZ2dn64osv7GM33HCDQkNDFR8fX6TtZ2ZmytfXVxkZGfLx8Sm1uAEAQPlXHuqEEydOyM/PT2vXrlX37t0LnHOlmskwDAUFBenhhx/WhAkTJEkZGRny9/dXQkKC7rzzzivGUR5+VgAAwDWKWieUmWtK5ebmauHChcrOzlZ4eHiBczZu3KiIiAiHscjISG3cuLHQ7ebk5CgzM9NhAQAAKK8yMjIk/flBXmGuVDPt379faWlpDnN8fX0VFhZWaF1FTQUAAEpbJVcHsHPnToWHh+vcuXOqVq2ali5dqhYtWhQ4Ny0tTf7+/g5j/v7+SktLK3T7cXFxmjp1aqnGDACwngaPfenqEPD/HXhhgKtDcJm8vDyNHz9eXbp0UatWrQqdd6Wa6dJ/i1NXuaKm4rgrW6x87AEAnMPlZ0o1bdpUKSkp2rx5sx544AFFR0frp59+KrXtT5o0SRkZGfbl8OHDpbZtAAAAM40ZM0a7du3SwoULTX9taioAAFDaXH6mlIeHhxo3bixJat++vb777ju9+uqreuutt/LNDQgIUHp6usNYenq6AgICCt2+p6enPD09SzdoAAAAk40dO1ZffPGF1q1bp3r16l127pVqpkv/TU9PV2BgoMOc0NDQArdJTQUAAEqby8+U+ru8vDzl5OQU+Fx4eLiSkpIcxhITEwu9BhUAAEB5ZxiGxo4dq6VLl2r16tUKCQm54jpXqplCQkIUEBDgMCczM1ObN2+mrgIAAKZx6ZlSkyZNUr9+/XTttdfq9OnTWrBggZKTk7VixQpJUlRUlOrWrau4uDhJ0rhx49SjRw9Nnz5dAwYM0MKFC7V161a9/fbbrtwNAAAApxkzZowWLFigzz77TNWrV7df88nX11fe3t6Sil8z2Ww2jR8/Xs8995yaNGmikJAQPfXUUwoKCtKgQYNcsp8AAMB6XNqUOn78uKKiopSamipfX1+1adNGK1as0E033SRJOnTokNzc/u9krs6dO2vBggV68skn9fjjj6tJkyZatmzZZS/0CQAAUJ69+eabkqSePXs6jM+dO1cjRoyQVLKaaeLEicrOzta9996rU6dOqWvXrlq+fLm8vLycvk8AAACSZDMMw3B1EGbKzMyUr6+vMjIy5OPj4+pwAADlBHcBKzuceQcw6oSiM+NnxXFXtnD3PQBAURW1Tihz15QCAAAAAABAxUdTCgAAAAAAAKajKQUAAAAAAADT0ZQCAAAAAACA6WhKAQAAAAAAwHQ0pQAAAAAAAGA6mlIAAAAAAAAwHU0pAAAAAAAAmI6mFAAAAAAAAExHUwoAAAAAAACmoykFAAAAAAAA09GUAgAAAAAAgOloSgEAAAAAAMB0NKUAAAAAAABgOppSAAAAAAAAMB1NKQAAAAAAAJiOphQAAAAAAABMR1MKAAAAAAAApqMpBQAAAAAAANPRlAIAAAAAAIDpaEoBAAAAAADAdDSlAAAAAAAAYDqaUgAAAAAAADAdTSkAAAAAAACYjqYUAAAAAAAATEdTCgAAAAAAAKajKQUAAFCGrVu3TgMHDlRQUJBsNpuWLVt22fkjRoyQzWbLt7Rs2dI+5+mnn873fLNmzZy8JwAAAI5oSgEAAJRh2dnZatu2rWbPnl2k+a+++qpSU1Pty+HDh1WrVi3dcccdDvNatmzpMG/9+vXOCB8AAKBQlVwdAAAAAArXr18/9evXr8jzfX195evra3+8bNkynTx5UjExMQ7zKlWqpICAgCJvNycnRzk5OfbHmZmZRV4XAACgIJwpBQAAUIG99957ioiIUP369R3G9+zZo6CgIDVs2FD//Oc/dejQoctuJy4uzt7w8vX1VXBwsDPDBgAAFkBTCgAAoII6duyYvv76a40aNcphPCwsTAkJCVq+fLnefPNN7d+/X926ddPp06cL3dakSZOUkZFhXw4fPuzs8AEAQAXH1/cAAAAqqHnz5qlGjRoaNGiQw/hfvw7Ypk0bhYWFqX79+vr44481cuTIArfl6ekpT09PZ4YLAAAshjOlAAAAKiDDMDRnzhzdfffd8vDwuOzcGjVq6LrrrtPevXtNig4AAICmFAAAQIW0du1a7d27t9Azn/4qKytL+/btU2BgoAmRAQAA/ImmFAAAQBmWlZWllJQUpaSkSJL279+vlJQU+4XJJ02apKioqHzrvffeewoLC1OrVq3yPTdhwgStXbtWBw4c0IYNG3TrrbfK3d1dw4YNc+q+AAAA/BXXlAIAACjDtm7dql69etkfx8bGSpKio6OVkJCg1NTUfHfOy8jI0KeffqpXX321wG0eOXJEw4YN0++//646deqoa9eu2rRpk+rUqeO8HQEAAPgbmlIAAABlWM+ePWUYRqHPJyQk5Bvz9fXVmTNnCl1n4cKFpREaAADAVeHrewAAAAAAADCdS5tScXFx6tixo6pXry4/Pz8NGjRIu3fvvuw6CQkJstlsDouXl5dJEQMAAAAAAKA0uLQptXbtWo0ZM0abNm1SYmKiLly4oD59+ig7O/uy6/n4+Cg1NdW+HDx40KSIAQAAAAAAUBpcek2p5cuXOzxOSEiQn5+ftm3bpu7duxe6ns1mU0BAgLPDAwAAAAAAgJOUqWtKZWRkSJJq1ap12XlZWVmqX7++goODdcstt+jHH38sdG5OTo4yMzMdFgAAAAAAALhWmWlK5eXlafz48erSpYtatWpV6LymTZtqzpw5+uyzz/TBBx8oLy9PnTt31pEjRwqcHxcXJ19fX/sSHBzsrF0AAAAAAABAEZWZptSYMWO0a9euK96iODw8XFFRUQoNDVWPHj20ZMkS1alTR2+99VaB8ydNmqSMjAz7cvjwYWeEDwAAAAAAgGJw6TWlLhk7dqy++OILrVu3TvXq1SvWupUrV9b111+vvXv3Fvi8p6enPD09SyNMAAAAAAAAlBKXnillGIbGjh2rpUuXavXq1QoJCSn2NnJzc7Vz504FBgY6IUIAAAAAAAA4g0vPlBozZowWLFigzz77TNWrV1daWpokydfXV97e3pKkqKgo1a1bV3FxcZKkZ555RjfccIMaN26sU6dO6eWXX9bBgwc1atQol+0HAAAAAAAAiselTak333xTktSzZ0+H8blz52rEiBGSpEOHDsnN7f9O6Dp58qRGjx6ttLQ01axZU+3bt9eGDRvUokULs8IGAAAAAADAVXJpU8owjCvOSU5Odng8c+ZMzZw500kRAQAAAAAAwAxl5u57AAAAAAAAsA6aUgAAAAAAADAdTSkAAAAAAACYjqYUAAAAAAAATEdTCgAAAAAAAKajKQUAAAAAAADT0ZQCAAAAAACA6WhKAQAAAAAAwHQ0pQAAAAAAAGA6mlIAAAAAAAAwHU0pAAAAAAAAmI6mFAAAAAAAAExHUwoAAAAAAACmoykFAABQhq1bt04DBw5UUFCQbDabli1bdtn5ycnJstls+Za0tDSHebNnz1aDBg3k5eWlsLAwbdmyxYl7AQAAkB9NKQAAgDIsOztbbdu21ezZs4u13u7du5Wammpf/Pz87M8tWrRIsbGxmjJlirZv3662bdsqMjJSx48fL+3wAQAAClXJ1QEAAACgcP369VO/fv2KvZ6fn59q1KhR4HMzZszQ6NGjFRMTI0mKj4/Xl19+qTlz5uixxx67mnABAACKjDOlAAAAKqDQ0FAFBgbqpptu0rfffmsfP3/+vLZt26aIiAj7mJubmyIiIrRx48ZCt5eTk6PMzEyHBQAA4GrQlAIAAKhAAgMDFR8fr08//VSffvqpgoOD1bNnT23fvl2S9Ntvvyk3N1f+/v4O6/n7++e77tRfxcXFydfX174EBwc7dT8AAEDFx9f3AAAAKpCmTZuqadOm9sedO3fWvn37NHPmTL3//vsl3u6kSZMUGxtrf5yZmUljCgAAXBWaUgAAABVcp06dtH79eklS7dq15e7urvT0dIc56enpCggIKHQbnp6e8vT0dGqcAADAWvj6HgAAQAWXkpKiwMBASZKHh4fat2+vpKQk+/N5eXlKSkpSeHi4q0IEAAAWxJlSAAAAZVhWVpb27t1rf7x//36lpKSoVq1auvbaazVp0iQdPXpU8+fPlyTNmjVLISEhatmypc6dO6d3331Xq1ev1sqVK+3biI2NVXR0tDp06KBOnTpp1qxZys7Ott+NDwAAwAw0pQAAAMqwrVu3qlevXvbHl67rFB0drYSEBKWmpurQoUP258+fP6+HH35YR48eVZUqVdSmTRutWrXKYRtDhw7ViRMnNHnyZKWlpSk0NFTLly/Pd/FzAAAAZ7IZhmG4OggzZWZmytfXVxkZGfLx8XF1OACAcqLBY1+6OgT8fwdeGOC0bVMnFJ0ZPyuOu7LFmcceAKBiKWqdwDWlAAAAAAAAYDqaUgAAAAAAADAdTSkAAAAAAACYjqYUAAAAAAAATEdTCgAAAAAAAKajKQUAAAAAAADT0ZQCAAAAAACA6WhKAQAAAAAAwHQ0pQAAAAAAAGA6mlIAAAAAAAAwHU0pAAAAAAAAmI6mFAAAAAAAAExHUwoAAAAAAACmoykFAAAAAAAA07m0KRUXF6eOHTuqevXq8vPz06BBg7R79+4rrrd48WI1a9ZMXl5eat26tb766isTogUAAAAAAEBpcWlTau3atRozZow2bdqkxMREXbhwQX369FF2dnah62zYsEHDhg3TyJEjtWPHDg0aNEiDBg3Srl27TIwcAAAAAAAAV6OSK198+fLlDo8TEhLk5+enbdu2qXv37gWu8+qrr6pv37565JFHJEnPPvusEhMT9frrrys+Pj7f/JycHOXk5NgfZ2ZmluIeAAAAAAAAoCRc2pT6u4yMDElSrVq1Cp2zceNGxcbGOoxFRkZq2bJlBc6Pi4vT1KlTSy1GAJCkBo996eoQ8BcHXhjg6hAAAAAAFFOZudB5Xl6exo8fry5duqhVq1aFzktLS5O/v7/DmL+/v9LS0gqcP2nSJGVkZNiXw4cPl2rcAAAAAAAAKL4yc6bUmDFjtGvXLq1fv75Ut+vp6SlPT89S3SYAAAAAAACuTploSo0dO1ZffPGF1q1bp3r16l12bkBAgNLT0x3G0tPTFRAQ4MwQAQAAAAAAUIpc+vU9wzA0duxYLV26VKtXr1ZISMgV1wkPD1dSUpLDWGJiosLDw50VJgAAAAAAAEqZS8+UGjNmjBYsWKDPPvtM1atXt18XytfXV97e3pKkqKgo1a1bV3FxcZKkcePGqUePHpo+fboGDBighQsXauvWrXr77bddth8AAAAAAAAoHpeeKfXmm28qIyNDPXv2VGBgoH1ZtGiRfc6hQ4eUmppqf9y5c2ctWLBAb7/9ttq2batPPvlEy5Ytu+zF0QEAAAAAAFC2uPRMKcMwrjgnOTk539gdd9yhO+64wwkRAQAAAAAAwAwuPVMKAAAAAAAA1lSiptT//ve/0o4DAACgwimNmmndunUaOHCggoKCZLPZtGzZssvOX7JkiW666SbVqVNHPj4+Cg8P14oVKxzmPP3007LZbA5Ls2bNrjpWAACA4ihRU6px48bq1auXPvjgA507d660YwIAAKgQSqNmys7OVtu2bTV79uwizV+3bp1uuukmffXVV9q2bZt69eqlgQMHaseOHQ7zWrZsqdTUVPuyfv36EsUHAABQUiVqSm3fvl1t2rRRbGysAgICdN9992nLli2lHRsAAEC5Vho1U79+/fTcc8/p1ltvLdL8WbNmaeLEierYsaOaNGmiadOmqUmTJvr8888d5lWqVEkBAQH2pXbt2pfdbk5OjjIzMx0WAACAq1GiplRoaKheffVVHTt2THPmzFFqaqq6du2qVq1aacaMGTpx4kRpxwkAAFDulIWaKS8vT6dPn1atWrUcxvfs2aOgoCA1bNhQ//znP3Xo0KHLbicuLk6+vr72JTg42JlhAwAAC7iqC51XqlRJt912mxYvXqwXX3xRe/fu1YQJExQcHKyoqCilpqaWVpwAAADllitrpldeeUVZWVkaMmSIfSwsLEwJCQlavny53nzzTe3fv1/dunXT6dOnC93OpEmTlJGRYV8OHz7stJgBAIA1XFVTauvWrXrwwQcVGBioGTNmaMKECdq3b58SExN17Ngx3XLLLaUVJwAAQLnlqpppwYIFmjp1qj7++GP5+fnZx/v166c77rhDbdq0UWRkpL766iudOnVKH3/8caHb8vT0lI+Pj8MCAABwNSqVZKUZM2Zo7ty52r17t/r376/58+erf//+cnP7s8cVEhKihIQENWjQoDRjBQAAKFdcWTMtXLhQo0aN0uLFixUREXHZuTVq1NB1112nvXv3lnocAAAAhSlRU+rNN9/UPffcoxEjRigwMLDAOX5+fnrvvfeuKjgAAIDyzFU100cffaR77rlHCxcu1IABA644PysrS/v27dPdd99dqnEAAABcTomaUnv27LniHA8PD0VHR5dk8wAAABVCadRMWVlZDmcw7d+/XykpKapVq5auvfZaTZo0SUePHtX8+fMl/fmVvejoaL366qsKCwtTWlqaJMnb21u+vr6SpAkTJmjgwIGqX7++jh07pilTpsjd3V3Dhg27mt0FAAAolhJdU2ru3LlavHhxvvHFixdr3rx5Vx0UAABARVAaNdPWrVt1/fXX6/rrr5ckxcbG6vrrr9fkyZMlSampqQ53znv77bd18eJFjRkzRoGBgfZl3Lhx9jlHjhzRsGHD1LRpUw0ZMkTXXHONNm3apDp16lzN7gIAABRLic6UiouL01tvvZVv3M/PT/feey9nSAEAAKh0aqaePXvKMIxCn09ISHB4nJycfMVtLly48IpzAAAAnK1EZ0odOnRIISEh+cbr16/v8EkdAACAlVEzAQAAFK5ETSk/Pz/98MMP+ca///57XXPNNVcdFAAAQEVAzQQAAFC4EjWlhg0bpoceekhr1qxRbm6ucnNztXr1ao0bN0533nlnaccIAABQLlEzAQAAFK5E15R69tlndeDAAfXu3VuVKv25iby8PEVFRWnatGmlGiAAAEB5Rc0EAABQuBI1pTw8PLRo0SI9++yz+v777+Xt7a3WrVurfv36pR0fAABAuUXNBAAAULgSNaUuue6663TdddeVViwAAAAVEjUTAABAfiVqSuXm5iohIUFJSUk6fvy48vLyHJ5fvXp1qQQHAABQnlEzAQAAFK5ETalx48YpISFBAwYMUKtWrWSz2Uo7LgAAgHKPmgkAAKBwJWpKLVy4UB9//LH69+9f2vEAAABUGNRMAAAAhXMryUoeHh5q3LhxaccCAABQoVAzAQAAFK5ETamHH35Yr776qgzDKO14AAAAKgxqJgAAgMKV6Ot769ev15o1a/T111+rZcuWqly5ssPzS5YsKZXgAAAAyjNqJgAAgMKVqClVo0YN3XrrraUdCwAAQIVCzQQAAFC4EjWl5s6dW9pxAAAAVDjUTAAAAIUr0TWlJOnixYtatWqV3nrrLZ0+fVqSdOzYMWVlZZVacAAAAOUdNRMAAEDBSnSm1MGDB9W3b18dOnRIOTk5uummm1S9enW9+OKLysnJUXx8fGnHCQAAUO5QMwEAABSuRGdKjRs3Th06dNDJkyfl7e1tH7/11luVlJRUasEBAACUZ9RMAAAAhSvRmVLffPONNmzYIA8PD4fxBg0a6OjRo6USGAAAQHlHzQQAAFC4Ep0plZeXp9zc3HzjR44cUfXq1a86KAAAgIqAmgkAAKBwJWpK9enTR7NmzbI/ttlsysrK0pQpU9S/f//Sig0AAKBco2YCAAAoXIm+vjd9+nRFRkaqRYsWOnfunO666y7t2bNHtWvX1kcffVTaMQIAAJRL1EwAAACFK1FTql69evr++++1cOFC/fDDD8rKytLIkSP1z3/+0+EingAAAFZGzQQAAFC4EjWlJKlSpUoaPnx4acYCAABQ4VAzAQAAFKxETan58+df9vmoqKgSBQMAAFCRUDMBAAAUrkRNqXHjxjk8vnDhgs6cOSMPDw9VqVKFAgsAAEDUTAAAAJdTorvvnTx50mHJysrS7t271bVr12JdtHPdunUaOHCggoKCZLPZtGzZssvOT05Ols1my7ekpaWVZDcAAACcqjRqpuLWS9KfNVO7du3k6empxo0bKyEhId+c2bNnq0GDBvLy8lJYWJi2bNlSzL0DAAC4OiVqShWkSZMmeuGFF/J9Ing52dnZatu2rWbPnl2s19q9e7dSU1Pti5+fX3HDBQAAcIni1kzFrZf279+vAQMGqFevXkpJSdH48eM1atQorVixwj5n0aJFio2N1ZQpU7R9+3a1bdtWkZGROn78eIn2CQAAoCRKfKHzAjdWqZKOHTtW5Pn9+vVTv379iv06fn5+qlGjRrHXAwAAKAuKUzMVt16Kj49XSEiIpk+fLklq3ry51q9fr5kzZyoyMlKSNGPGDI0ePVoxMTH2db788kvNmTNHjz32WDH3BgAAoGRK1JT673//6/DYMAylpqbq9ddfV5cuXUolsMsJDQ1VTk6OWrVqpaeffvqyr5mTk6OcnBz748zMTKfHBwAAILmmZtq4caMiIiIcxiIjIzV+/HhJ0vnz57Vt2zZNmjTJ/rybm5siIiK0cePGQrdLTQUAAEpbiZpSgwYNcnhss9lUp04d3XjjjfZP5ZwhMDBQ8fHx6tChg3JycvTuu++qZ8+e2rx5s9q1a1fgOnFxcZo6darTYgIAACiMK2qmtLQ0+fv7O4z5+/srMzNTZ8+e1cmTJ5Wbm1vgnF9++aXQ7VJTwQwNHvvS1SHgLw68MMDVIQCo4ErUlMrLyyvtOIqkadOmatq0qf1x586dtW/fPs2cOVPvv/9+getMmjRJsbGx9seZmZkKDg52eqwAAACuqpmcgZoKAACUtlK9ppQrdOrUSevXry/0eU9PT3l6epoYEQAAgOsEBAQoPT3dYSw9PV0+Pj7y9vaWu7u73N3dC5wTEBBQ6HapqQAAQGkrUVPqr5+SXcmMGTNK8hJFlpKSosDAQKe+BgAAQEm4omYKDw/XV1995TCWmJio8PBwSZKHh4fat2+vpKQk+9cL8/LylJSUpLFjx5ZKDAAAAEVRoqbUjh07tGPHDl24cMH+dbpff/1V7u7uDtd2stlsl91OVlaW9u7da3+8f/9+paSkqFatWrr22ms1adIkHT16VPPnz5ckzZo1SyEhIWrZsqXOnTund999V6tXr9bKlStLshsAAABOVRo1U3Hrpfvvv1+vv/66Jk6cqHvuuUerV6/Wxx9/rC+//L9r9cTGxio6OlodOnRQp06dNGvWLGVnZ9vvxgcAAGCGEjWlBg4cqOrVq2vevHmqWbOmJOnkyZOKiYlRt27d9PDDDxdpO1u3blWvXr3sjy99mhgdHa2EhASlpqbq0KFD9ufPnz+vhx9+WEePHlWVKlXUpk0brVq1ymEbAAAAZUVp1EzFrZdCQkL05Zdf6t///rdeffVV1atXT++++64iIyPtc4YOHaoTJ05o8uTJSktLU2hoqJYvX57v4ucAAADOZDMMwyjuSnXr1tXKlSvVsmVLh/Fdu3apT58+OnbsWKkFWNoyMzPl6+urjIwM+fj4uDocAOUUdwcqW8y4OxA5Lzucme/SrhPKc810JWbUVBx3ZQt/a62Hu+8BKKmi1gluJd34iRMn8o2fOHFCp0+fLskmAQAAKhxqJgAAgMKVqCl16623KiYmRkuWLNGRI0d05MgRffrppxo5cqRuu+220o4RAACgXKJmAgAAKFyJrikVHx+vCRMm6K677tKFCxf+3FClSho5cqRefvnlUg0QAACgvKJmAgAAKFyJmlJVqlTRG2+8oZdffln79u2TJDVq1EhVq1Yt1eAAAADKM2omAACAwpXo63uXpKamKjU1VU2aNFHVqlVVgmumAwAAVHjUTAAAAPmVqCn1+++/q3fv3rruuuvUv39/paamSpJGjhxZpFsbAwAAWAE1EwAAQOFK1JT697//rcqVK+vQoUOqUqWKfXzo0KFavnx5qQUHAABQnlEzAQAAFK5E15RauXKlVqxYoXr16jmMN2nSRAcPHiyVwAAAAMo7aiYAAIDClehMqezsbIdP+y75448/5OnpedVBAQAAVATUTAAAAIUrUVOqW7dumj9/vv2xzWZTXl6eXnrpJfXq1avUggMAACjPqJkAAAAKV6Kv77300kvq3bu3tm7dqvPnz2vixIn68ccf9ccff+jbb78t7RgBAADKJWomAACAwpXoTKlWrVrp119/VdeuXXXLLbcoOztbt912m3bs2KFGjRqVdowAAADlEjUTAABA4Yp9ptSFCxfUt29fxcfH64knnnBGTAAAAOUeNRMAAMDlFftMqcqVK+uHH35wRiwAAAAVBjUTAADA5ZXo63vDhw/Xe++9V9qxAAAAVCjUTAAAAIUr0YXOL168qDlz5mjVqlVq3769qlat6vD8jBkzSiU4AACA8oyaCQAAoHDFakr973//U4MGDbRr1y61a9dOkvTrr786zLHZbKUXHQAAQDlEzQQAAHBlxWpKNWnSRKmpqVqzZo0kaejQoXrttdfk7+/vlOAAAADKI2omAACAKyvWNaUMw3B4/PXXXys7O7tUAwIAACjvqJkAAACurEQXOr/k7wUXAAAA8qNmAgAAyK9YTSmbzZbv+gdcDwEAAMARNRMAAMCVFeuaUoZhaMSIEfL09JQknTt3Tvfff3++O8ksWbKk9CIEAAAoZ6iZAAAArqxYTano6GiHx8OHDy/VYAAAACoCaiYAAIArK1ZTau7cuc6KAwAAoMKgZgIAALiyq7rQOQAAAAAAAFASNKUAAAAAAABgOppSAAAA5cDs2bPVoEEDeXl5KSwsTFu2bCl0bs+ePe13APzrMmDAAPucESNG5Hu+b9++ZuwKAACApGJeUwoAAADmW7RokWJjYxUfH6+wsDDNmjVLkZGR2r17t/z8/PLNX7Jkic6fP29//Pvvv6tt27a64447HOb17dvX4fpXl+4WCAAAYAaaUgAAAGXcjBkzNHr0aMXExEiS4uPj9eWXX2rOnDl67LHH8s2vVauWw+OFCxeqSpUq+ZpSnp6eCggIKFIMOTk5ysnJsT/OzMws7m4AAAA44Ot7AAAAZdj58+e1bds2RURE2Mfc3NwUERGhjRs3Fmkb7733nu68805VrVrVYTw5OVl+fn5q2rSpHnjgAf3++++FbiMuLk6+vr72JTg4uGQ7BAAA8P/RlAIAACjDfvvtN+Xm5srf399h3N/fX2lpaVdcf8uWLdq1a5dGjRrlMN63b1/Nnz9fSUlJevHFF7V27Vr169dPubm5BW5n0qRJysjIsC+HDx8u+U4BAACIr+8BAABUaO+9955at26tTp06OYzfeeed9v9v3bq12rRpo0aNGik5OVm9e/fOtx1PT0+uOQUAAEoVZ0oBAACUYbVr15a7u7vS09MdxtPT0694Pajs7GwtXLhQI0eOvOLrNGzYULVr19bevXuvKl4AAICioikFAABQhnl4eKh9+/ZKSkqyj+Xl5SkpKUnh4eGXXXfx4sXKycnR8OHDr/g6R44c0e+//67AwMCrjhkAAKAoaEoBAACUcbGxsXrnnXc0b948/fzzz3rggQeUnZ1tvxtfVFSUJk2alG+99957T4MGDdI111zjMJ6VlaVHHnlEmzZt0oEDB5SUlKRbbrlFjRs3VmRkpCn7BAAAwDWlAAAAyrihQ4fqxIkTmjx5stLS0hQaGqrly5fbL35+6NAhubk5fta4e/durV+/XitXrsy3PXd3d/3www+aN2+eTp06paCgIPXp00fPPvss140CAACmoSkFAABQDowdO1Zjx44t8Lnk5OR8Y02bNpVhGAXO9/b21ooVK0ozPAAAgGLj63sAAAAAAAAwnUubUuvWrdPAgQMVFBQkm82mZcuWXXGd5ORktWvXTp6enmrcuLESEhKcHicAAAAAAABKl0ubUtnZ2Wrbtq1mz55dpPn79+/XgAED1KtXL6WkpGj8+PEaNWoUp58DAAAAAACUMy69plS/fv3Ur1+/Is+Pj49XSEiIpk+fLklq3ry51q9fr5kzZxZ6p5icnBzl5OTYH2dmZl5d0AAAAAAAALhq5epC5xs3blRERITDWGRkpMaPH1/oOnFxcZo6daqTI3PU4LEvTX09XN6BFwY4/TXIedliRs4BAAAAAFenXF3oPC0tzX7r40v8/f2VmZmps2fPFrjOpEmTlJGRYV8OHz5sRqgAAAAAAAC4jHJ1plRJeHp6ytPT09VhAAAAAAAA4C/K1ZlSAQEBSk9PdxhLT0+Xj4+PvL29XRQVAAAAAAAAiqtcNaXCw8OVlJTkMJaYmKjw8HAXRQQAAAAAAICScGlTKisrSykpKUpJSZEk7d+/XykpKTp06JCkP68HFRUVZZ9///3363//+58mTpyoX375RW+88YY+/vhj/fvf/3ZF+AAAAAAAACghlzaltm7dquuvv17XX3+9JCk2NlbXX3+9Jk+eLElKTU21N6gkKSQkRF9++aUSExPVtm1bTZ8+Xe+++64iIyNdEj8AAAAAAABKxqUXOu/Zs6cMwyj0+YSEhALX2bFjhxOjAgAAAAAAgLOVq2tKAQAAAAAAoGKgKQUAAAAAAADT0ZQCAAAAAACA6WhKAQAAAAAAwHQ0pQAAAAAAAGA6mlIAAAAAAAAwHU0pAAAAAAAAmI6mFAAAAAAAAExHUwoAAAAAAACmoykFAAAAAAAA09GUAgAAAAAAgOloSgEAAAAAAMB0NKUAAAAAAABgOppSAAAA5cDs2bPVoEEDeXl5KSwsTFu2bCl0bkJCgmw2m8Pi5eXlMMcwDE2ePFmBgYHy9vZWRESE9uzZ4+zdAAAAsKMpBQAAUMYtWrRIsbGxmjJlirZv3662bdsqMjJSx48fL3QdHx8fpaam2peDBw86PP/SSy/ptddeU3x8vDZv3qyqVasqMjJS586dc/buAAAASKIpBQAAUObNmDFDo0ePVkxMjFq0aKH4+HhVqVJFc+bMKXQdm82mgIAA++Lv729/zjAMzZo1S08++aRuueUWtWnTRvPnz9exY8e0bNkyE/YIAACAphQAAECZdv78eW3btk0RERH2MTc3N0VERGjjxo2FrpeVlaX69esrODhYt9xyi3788Uf7c/v371daWprDNn19fRUWFlboNnNycpSZmemwAAAAXA2aUgAAAGXYb7/9ptzcXIcznSTJ399faWlpBa7TtGlTzZkzR5999pk++OAD5eXlqXPnzjpy5Igk2dcrzjbj4uLk6+trX4KDg6921wAAgMXRlAIAAKhgwsPDFRUVpdDQUPXo0UNLlixRnTp19NZbb5V4m5MmTVJGRoZ9OXz4cClGDAAArIimFAAAQBlWu3Ztubu7Kz093WE8PT1dAQEBRdpG5cqVdf3112vv3r2SZF+vONv09PSUj4+PwwIAAHA1aEoBAACUYR4eHmrfvr2SkpLsY3l5eUpKSlJ4eHiRtpGbm6udO3cqMDBQkhQSEqKAgACHbWZmZmrz5s1F3iYAAMDVquTqAAAAAHB5sbGxio6OVocOHdSpUyfNmjVL2dnZiomJkSRFRUWpbt26iouLkyQ988wzuuGGG9S4cWOdOnVKL7/8sg4ePKhRo0ZJ+vPOfOPHj9dzzz2nJk2aKCQkRE899ZSCgoI0aNAgV+0mAACwGJpSAAAAZdzQoUN14sQJTZ48WWlpaQoNDdXy5cvtFyo/dOiQ3Nz+7wT4kydPavTo0UpLS1PNmjXVvn17bdiwQS1atLDPmThxorKzs3Xvvffq1KlT6tq1q5YvXy4vLy/T9w8AAFgTTSkAAIByYOzYsRo7dmyBzyUnJzs8njlzpmbOnHnZ7dlsNj3zzDN65plnSitEAACAYuGaUgAAAAAAADAdTSkAAAAAAACYjqYUAAAAAAAATEdTCgAAAAAAAKajKQUAAAAAAADT0ZQCAAAAAACA6WhKAQAAAAAAwHQ0pQAAAAAAAGA6mlIAAAAAAAAwHU0pAAAAAAAAmI6mFAAAAAAAAExHUwoAAAAAAACmoykFAAAAAAAA05WJptTs2bPVoEEDeXl5KSwsTFu2bCl0bkJCgmw2m8Pi5eVlYrQAAAAAAAC4Wi5vSi1atEixsbGaMmWKtm/frrZt2yoyMlLHjx8vdB0fHx+lpqbal4MHD5oYMQAAAAAAAK6Wy5tSM2bM0OjRoxUTE6MWLVooPj5eVapU0Zw5cwpdx2azKSAgwL74+/ubGDEAAAAAAACulkubUufPn9e2bdsUERFhH3Nzc1NERIQ2btxY6HpZWVmqX7++goODdcstt+jHH38sdG5OTo4yMzMdFgAAAAAAALiWS5tSv/32m3Jzc/Od6eTv76+0tLQC12natKnmzJmjzz77TB988IHy8vLUuXNnHTlypMD5cXFx8vX1tS/BwcGlvh8AAAAAAAAoHpd/fa+4wsPDFRUVpdDQUPXo0UNLlixRnTp19NZbbxU4f9KkScrIyLAvhw8fNjliAAAAAAAA/F0lV7547dq15e7urvT0dIfx9PR0BQQEFGkblStX1vXXX6+9e/cW+Lynp6c8PT2vOlYAAAAAAACUHpeeKeXh4aH27dsrKSnJPpaXl6ekpCSFh4cXaRu5ubnauXOnAgMDnRUmAAAAAAAASplLz5SSpNjYWEVHR6tDhw7q1KmTZs2apezsbMXExEiSoqKiVLduXcXFxUmSnnnmGd1www1q3LixTp06pZdfflkHDx7UqFGjXLkbAAAAAAAAKAaXN6WGDh2qEydOaPLkyUpLS1NoaKiWL19uv/j5oUOH5Ob2fyd0nTx5UqNHj1ZaWppq1qyp9u3ba8OGDWrRooWrdgEAAAAAAADF5PKmlCSNHTtWY8eOLfC55ORkh8czZ87UzJkzTYgKAAAAAAAAzlLu7r4HAAAAAACA8o+mFAAAAAAAAExHUwoAAKAcmD17tho0aCAvLy+FhYVpy5Ythc5955131K1bN9WsWVM1a9ZUREREvvkjRoyQzWZzWPr27evs3QAAALCjKQUAAFDGLVq0SLGxsZoyZYq2b9+utm3bKjIyUsePHy9wfnJysoYNG6Y1a9Zo48aNCg4OVp8+fXT06FGHeX379lVqaqp9+eijj8zYHQAAAEk0pQAAAMq8GTNmaPTo0YqJiVGLFi0UHx+vKlWqaM6cOQXO//DDD/Xggw8qNDRUzZo107vvvqu8vDwlJSU5zPP09FRAQIB9qVmzZqEx5OTkKDMz02EBAAC4GjSlAAAAyrDz589r27ZtioiIsI+5ubkpIiJCGzduLNI2zpw5owsXLqhWrVoO48nJyfLz81PTpk31wAMP6Pfffy90G3FxcfL19bUvwcHBJdshAACA/4+mFAAAQBn222+/KTc3V/7+/g7j/v7+SktLK9I2Hn30UQUFBTk0tvr27av58+crKSlJL774otauXat+/fopNze3wG1MmjRJGRkZ9uXw4cMl3ykAAABJlVwdAAAAAJznhRde0MKFC5WcnCwvLy/7+J133mn//9atW6tNmzZq1KiRkpOT1bt373zb8fT0lKenpykxAwAAa+BMKQAAgDKsdu3acnd3V3p6usN4enq6AgICLrvuK6+8ohdeeEErV65UmzZtLju3YcOGql27tvbu3XvVMQMAABQFTSkAAIAyzMPDQ+3bt3e4SPmli5aHh4cXut5LL72kZ599VsuXL1eHDh2u+DpHjhzR77//rsDAwFKJGwAA4EpoSgEAAJRxsbGxeueddzRv3jz9/PPPeuCBB5Sdna2YmBhJUlRUlCZNmmSf/+KLL+qpp57SnDlz1KBBA6WlpSktLU1ZWVmSpKysLD3yyCPatGmTDhw4oKSkJN1yyy1q3LixIiMjXbKPAADAerimFAAAQBk3dOhQnThxQpMnT1ZaWppCQ0O1fPly+8XPDx06JDe3//us8c0339T58+c1ePBgh+1MmTJFTz/9tNzd3fXDDz9o3rx5OnXqlIKCgtSnTx89++yzXDcKAACYhqYUAABAOTB27FiNHTu2wOeSk5MdHh84cOCy2/L29taKFStKKTIAAICS4et7AAAAAAAAMB1NKQAAAAAAAJiOphQAAAAAAABMR1MKAAAAAAAApqMpBQAAAAAAANPRlAIAAAAAAIDpaEoBAAAAAADAdDSlAAAAAAAAYDqaUgAAAAAAADAdTSkAAAAAAACYjqYUAAAAAAAATEdTCgAAAAAAAKajKQUAAAAAAADT0ZQCAAAAAACA6WhKAQAAAAAAwHQ0pQAAAAAAAGA6mlIAAAAAAAAwHU0pAAAAAAAAmI6mFAAAAAAAAExHUwoAAAAAAACmoykFAAAAAAAA09GUAgAAAAAAgOloSgEAAAAAAMB0NKUAAAAAAABgOppSAAAAAAAAMF2ZaErNnj1bDRo0kJeXl8LCwrRly5bLzl+8eLGaNWsmLy8vtW7dWl999ZVJkQIAALhGaddLhmFo8uTJCgwMlLe3tyIiIrRnzx5n7gIAAIADlzelFi1apNjYWE2ZMkXbt29X27ZtFRkZqePHjxc4f8OGDRo2bJhGjhypHTt2aNCgQRo0aJB27dplcuQAAADmcEa99NJLL+m1115TfHy8Nm/erKpVqyoyMlLnzp0za7cAAIDF2QzDMFwZQFhYmDp27KjXX39dkpSXl6fg4GD961//0mOPPZZv/tChQ5Wdna0vvvjCPnbDDTcoNDRU8fHx+ebn5OQoJyfH/jgjI0PXXnutDh8+LB8fHyfskdRqygqnbBcls2tqpNNfg5yXLeTcesi5tTgz35mZmQoODtapU6fk6+vrtNcprtKulwzDUFBQkB5++GFNmDBB0p81kr+/vxISEnTnnXfm2yY1Ffhbaz1m5BxAxVTkmspwoZycHMPd3d1YunSpw3hUVJRx8803F7hOcHCwMXPmTIexyZMnG23atClw/pQpUwxJLCwsLCwsLCxFXg4fPlwapU6pcEa9tG/fPkOSsWPHDoc53bt3Nx566KECt0lNxcLCwsLCwlLc5Uo1VSW50G+//abc3Fz5+/s7jPv7++uXX34pcJ20tLQC56elpRU4f9KkSYqNjbU/zsvL0x9//KFrrrlGNpvtKveg4rrU1XTmp58oW8i59ZBzayHfRWMYhk6fPq2goCBXh2LnjHrp0n+pqZyPY896yLm1kG/rIedFU9SayqVNKTN4enrK09PTYaxGjRquCaYc8vHx4UCzGHJuPeTcWsj3lZWlr+2VJdRUV4djz3rIubWQb+sh51dWlJrKpRc6r127ttzd3ZWenu4wnp6eroCAgALXCQgIKNZ8AACA8swZ9dKl/1JTAQAAV3JpU8rDw0Pt27dXUlKSfSwvL09JSUkKDw8vcJ3w8HCH+ZKUmJhY6HwAAIDyzBn1UkhIiAICAhzmZGZmavPmzdRUAADANC7/+l5sbKyio6PVoUMHderUSbNmzVJ2drZiYmIkSVFRUapbt67i4uIkSePGjVOPHj00ffp0DRgwQAsXLtTWrVv19ttvu3I3KhxPT09NmTIl32n6qLjIufWQc2sh3+VbaddLNptN48eP13PPPacmTZooJCRETz31lIKCgjRo0CBX7WaFxLFnPeTcWsi39ZDz0mUzDMNwdRCvv/66Xn75ZaWlpSk0NFSvvfaawsLCJEk9e/ZUgwYNlJCQYJ+/ePFiPfnkkzpw4ICaNGmil156Sf3793dR9AAAAM5X2vWSYRiaMmWK3n77bZ06dUpdu3bVG2+8oeuuu87sXQMAABZVJppSAAAAAAAAsBaXXlMKAAAAAAAA1kRTCgAAAAAAAKajKQUAAAAAAADT0ZQCAAAAAACA6Sq5OgCULT/99JOOHDkib29vtW7dWjVq1HB1SHAycm495Nx6yDlgPo476yHn1kK+rYm8lz6aUtDp06f1yiuv6J133lGVKlXk7++vc+fOad++ferUqZMeffRR9e7d29VhohSRc+sh59ZDzgHzcdxZDzm3FvJtTeTduWhKQb169VJUVJR27Nghf39/+3heXp6++eYbxcfHa+/evbrvvvtcGCVKEzm3HnJuPeQcMB/HnfWQc2sh39ZE3p3LZhiG4eog4Fo5OTny9PS86jkoP8i59ZBz6yHngPk47qyHnFsL+bYm8u5cNKUAAAAAAABgOr6+B/Xq1Us2m021atXSJ5984upwYAJybj3k3HrIOWA+jjvrIefWQr6tibw7F2dKQQcPHpQkubu7q169ei6OBmYg59ZDzq2HnAPm47izHnJuLeTbmsi7c9GUAgAAAAAAgOn4+h7sDhw4oBdffFH79u3TxYsX7eOrV692YVRwJnJuPeTcesg5YD6OO+sh59ZCvq2JvDsHZ0rBrlOnTurdu7fCw8Pl7u5uHx8wYIALo4IzkXPrIefWQ84B83HcWQ85txbybU3k3TloSsGuTZs2+uGHH1wdBkxEzq2HnFsPOQfMx3FnPeTcWsi3NZF353BzdQAoO1q1aqVDhw65OgyYiJxbDzm3HnIOmI/jznrIubWQb2si787BNaVgd+LECbVt21bh4eHy8vKyjy9ZssSFUcGZyLn1kHPrIeeA+TjurIecWwv5tiby7hw0pWA3fPhwDR8+3NVhwETk3HrIufWQc8B8HHfWQ86thXxbE3l3Dq4pBQAAAAAAANNxphQcfPzxx0pJSdG5c+fsYzNmzHBhRHA2cm495Nx6yDlgPo476yHn1kK+rYm8lz4udA67hx56SO+//74SEhJks9n0ySefKCMjw9VhwYnIufWQc+sh54D5OO6sh5xbC/m2JvLuHDSlYLdmzRp99tlnqlOnjqZPn64tW7boyJEjrg4LTkTOrYecWw85B8zHcWc95NxayLc1kXfnoCkFOy8vL7m5uclms+nChQsKCAjQsWPHXB0WnIicWw85tx5yDpiP4856yLm1kG9rIu/OwTWlYFe9enWdOXNGXbt21fDhwxUQEKAqVaq4Oiw4ETm3HnJuPeQcMB/HnfWQc2sh39ZE3p2Du+/BLj09XTVq1FBeXp5mzJihkydPaty4cQoODnZ1aHAScm495Nx6yDlgPo476yHn1kK+rYm8OwdNKTi4cOGCDh06pEaNGrk6FJiEnFsPObcecg6Yj+POesi5tZBvayLvpY9rSsEuOTlZ9evXV69evSRJ3333nYYPH+7iqOBM5Nx6yLn1kHPAfBx31kPOrYV8WxN5dw6aUrB77LHH9M033+iaa66RJHXs2FE7duxwcVRwJnJuPeTcesg5YD6OO+sh59ZCvq2JvDsHTSnY5ebm5jsN0cPDw0XRwAzk3HrIufWQc8B8HHfWQ86thXxbE3l3DppSsPPy8lJWVpZsNpskaefOnfL29nZxVHAmcm495Nx6yDlgPo476yHn1kK+rYm8O0clVweAsuOpp55Snz59dPToUQ0fPlyrVq3SggULXB0WnIicWw85tx5yDpiP4856yLm1kG9rIu/Owd334GD//v1avny5DMNQZGQkdxWwAHJuPeTcesg5YD6OO+sh59ZCvq2JvJc+mlIAAAAAAAAwHdeUgt26devUqVMn1apVSz4+Pqpevbp8fHxcHRaciJxbDzm3HnIOmI/jznrIubWQb2si787BmVKwa9q0qZ5//nl16tRJ7u7u9vG6deu6MCo4Ezm3HnJuPeQcMB/HnfWQc2sh39ZE3p2DC53DzsfHR4MHD3Z1GDARObcecm495BwwH8ed9ZBzayHf1kTenYOv78Hu9ttv1/vvv6/z58+7OhSYhJxbDzm3HnIOmI/jznrIubWQb2si785BUwp2zZs314MPPihvb2+5u7vLzc3N4bREVDzk3HrIufWQc8B8HHfWQ86thXxbE3l3Dq4pBbuGDRvq3XffVYcOHRwOrqpVq7owKjgTObcecm495BwwH8ed9ZBzayHf1kTenYNrSsHOz89PN954o6vDgInIufWQc+sh54D5OO6sh5xbC/m2JvLuHJwpBbtp06bJx8dHQ4YMkZeXl32c21xWXOTcesi59ZBzwHwcd9ZDzq2FfFsTeXcOmlKwc3P7v0uM2Ww2GYYhm82m3NxcF0YFZyLn1kPOrYecA+bjuLMecm4t5NuayLtz0JQCAAAAAACA6bj7HgAAAAAAAExHUwoAAAAAAACmoykFAAAAAAAA09GUgl1eXp6rQ0AZwO8BAABXh/dSSPweAEBR0JSCXYMGDTRt2jSdOHHC1aHAyWJiYnT69Ol84z/99JPCwsJcEBHM4u7urmnTpjmMtWvXzkXRwAzkHDAfNZV1UFNZE++t1kTenYOmFOwSExN1/PhxtWrVSnfffbc2b97s6pDgJNdcc41at26txMRESX9+kjdt2jRFRETooYcecnF0cKbGjRtr/fr1uvfee+2f4HIT1oqNnAPmo6ayDmoqa+K91ZrIu3PQlIJd06ZNNWvWLO3fv1/dunXTkCFD1LFjRy1YsICDrYJ55ZVX9P777+uBBx7QyJEjFR4erk2bNmnbtm26++67XR0enKhq1ar6/PPPZRiGBg4cqDNnzshms7k6LDgROQfMR01lHdRU1sR7qzWRd+egKQUHhmFo5cqVWrRokapVq6Zhw4bpo48+0m233ebq0FDKunXrpujoaL3//vtKS0vT66+/rsDAQFeHBSczDEPu7u565513dMMNN6h79+7KyMhwdVhwInIOuAY1lXVQU1kP763WRN6dg6YU7OLi4tSwYUO9++67evTRR/Xjjz8qNjZWn3/+uXbt2uXq8FCKDhw4oJ49e2rDhg363//+p0cffVTh4eF67733XB0anOyGG26w//9TTz2lf/3rX3xqX8GRc8B81FTWQU1lTby3WhN5dw6bwU8R/9+//vUv/etf/9J1112X77lt27apffv2LogKzhAUFKSnn35a9957r31s3759GjFihKpVq6avv/7ahdEBAFC+UVNZBzUVAFwdmlKABR04cEANGjTIN24YhqZPn64JEyaYHxScaurUqbLZbKpWrZpiY2NdHQ5MQM4BwPmoqayF91ZrIu/OVcnVAcD1evXqJZvNplq1aumTTz5xdTgwQUHFkyTZbDaKpwrqUs69vb1dGwhMQ84B81FTWQ81lbXw3mpN5N25OFMKOnjwoCTJ3d1d9erVc3E0MANFMwAApY+aynqoqQDg6tCUAiyIohkAAODqUVMBwNWhKQUAAAAAAADTubk6AAAAAAAAAFgPTSkAAAAAAACYjqYUCpWamqqcnBxXhwHAiSIiInTzzTdrw4YNrg4FJiHngPmoqYCKjfdWayLvpYNrSqFQzZs31x9//KFx48bp8ccfd3U4MEFqaqpq1aolT09PV4cCk3z33Xc6cOCA1q1bp//85z+uDgcmIOeA+aiprIeaylp4b7Um8l46aErhso4fP65169Zp8ODBrg4FJqBoBgDAOaiprIWaCgCKhqYUAAcUzRXT/PnzJUne3t664447XBwNzEDOAcC1qKkqHt5brYm8O1clVwcA14uJiZHNZpOvr69mzpzp6nDgYn5+fhRPFdD+/fslSdWrV3dxJDALOQfMR02Fv6Kmqnh4b7Um8u5cnCkFrV27VpLk4eGh8PBwF0cDM1A0AwBQ+qiprIeaCgCuDk0pwIIomq1t8+bN2rdvny5evGgfi4qKcmFEcDZyDgDOQU1lXby3WhN5L300pWB36tQpvfXWW/kOsjlz5rgwKgCl6YEHHtCKFSsUGhoqd3d3SZLNZtPHH3/s4sjgLOQcMB81FVCx8d5qTeTdObimFOwGDx6sOnXqKDw83H6QoWKjaLaeVatW6aeffpKXl5erQ4FJyDlgPmoq66GmshbeW62JvDsHTSnYpaamatWqVa4OAyaiaLaewMBAeXp6ujoMmIicA+ajprIeaipr4b3Vmsi7c9CUgl2jRo106tQp1ahRw9WhwCQUzdYTFhamwYMHa+jQoQ6f8tx8880ujArORM4B81FTWQ81lbXw3mpN5N05uKYU7O68805t2bJFffv2dTjIZsyY4cKo4Ew333yz5s+fT9FsIb169co3ZrPZtHr1ahdEAzOQc8B81FTWQ01lLby3WhN5dw7OlIJd8+bN1bx5c1eHARNVqVJF7dq1o2i2kDVr1rg6BJiMnAPmo6ayHmoqa+G91ZrIu3PQlILdlClTXB0CTEbRbE0XLlzQ/v37de7cOftYmzZtXBgRnI2cA+aiprIeairr4b3Vmsh76ePre3CwZcsWpaSkOBxkDz30kAsjAlCavvjiC40ePVonT55U1apVdfLkSdWvX1/79+93dWhwEnIOuAY1FVBx8d5qTeTdOThTCnbTpk3TJ598okOHDqlHjx5KTExU7969KaAqOIpma3nqqae0adMmDRo0SDt27NAHH3yg77//3tVhwYnIOWA+aiproqayDt5brYm8O4ebqwNA2bFgwQJt2LBB9erV06effqrvvvtObm78ilRk06ZN0/3336/HH39ca9eu1ZNPPsl3pSs4Nzc31a9fXxcvXpQkDR8+nIszVnDkHDAfNZX1UFNZC++t1kTenYN3R9h5eXnJy8tLeXl5MgxDTZs21b59+1wdFpyIotl6KleuLEmqV6+eli5dqh07dujkyZMujgrORM4B81FTWQ81lbXw3mpN5N05+Poe7Ly9vXXhwgWFhoZqwoQJqlevnnJzc10dFpyIotl6xo0bp5MnT+rZZ5/VsGHDdOrUKc2aNcvVYcGJyDlgPmoq66GmshbeW62JvDsHFzqH3a5duxQSEqIzZ87o8ccf18mTJ/Xkk08qNDTU1aHBSbp166bVq1dr5MiRqlOnjurVq6c5c+Zo586drg4NAIByi5rKeqipAKBkaEohn5ycHHl6ero6DJiAotl6MjIy9MQTT+jgwYP6/PPP9dNPP+n777/XsGHDXB0anIScA65DTWUd1FTWwnurNZF356ApBbsffvhBd911l06dOqUjR45o27ZtWrRokV566SVXhwYno2i2jjvvvFOtWrXSwoULtWvXLp09e1bh4eFKSUlxdWhwEnIOmI+ayrqoqayB91ZrIu/OwdX3YPfQQw8pPj5ederUkSS1a9dOX375pYujgjP98MMPatWqlRo1aiRJ2rZtmyZOnOjiqOBMv/76q5588kn7hRq9vb3FZxMVGzkHzEdNZT3UVNbCe6s1kXfnoCkFu6ysLHXt2tX+2GazycPDw4URwdkomq3n78f02bNneTOt4Mg5YD5qKuuhprIW3lutibw7B00p2FWqVEkXLlyQzWaTJB0+fFju7u4ujgrORNFsPb169dLzzz+vc+fOadWqVRo8eLBuu+02V4cFJyLngPmoqayHmspaeG+1JvLuHDSlYDd27FgNGjRIJ06c0JNPPqlu3bpx2nEFR9FsPc8++6zc3Nzk4+Ojxx9/XF26dNFTTz3l6rDgROQcMB81lfVQU1kL763WRN6dgwudw8GGDRv02WefyTAM3XzzzQ6f+KDi+eCDD/TRRx/phx9+UHR0tD744AO99NJLGjJkiKtDAwCgXKOmshZqKgAoGZpSgMVRNFvLmTNnNG/ePO3Zs0cXL160j7/22msujArORM4BwBzUVNbBe6s1kXfnqOTqAFB2/PTTT5o6dWq+g+yHH35wYVRwts6dO6tz586uDgMmue2221S5cmV17NiRrxVYBDkHzEdNZU3UVNbBe6s1kXfn4Ewp2LVp00ZRUVHq1KmTw0HWpUsXF0YFZ6Jotp4WLVrop59+cnUYMBE5B8xHTWU91FTWwnurNZF35+BMKdi5u7trwoQJrg4DJrrzzjsVFRWlMWPG0O23iGbNmum3335T7dq1XR0KTELOAfNRU1kPNZW18N5qTeTdOThTCnaxsbEaNGiQunfv7upQYJLrr79eO3bscHUYMNHPP/+sm2++WR07dpSXl5d9fM6cOS6MCs5EzgHzUVNZDzWVtfDeak3k3Tk4Uwp2gwcPVmRkpKpXry4vLy8ZhiGbzab//e9/rg4NTtKrVy+tW7eOotlCRo8erfDwcHXo0IFPci2CnAPmo6ayHmoqa+G91ZrIu3NwphTsmjZtqkcffTTfQdayZUsXRgVn2rBhA0WzxbRs2VI//vijq8OAicg5YD5qKuuhprIW3lutibw7B2dKwa5atWq65557XB0GTBQTE6NXX32Vbr+FtG3bVkePHlXdunVdHQpMQs4B81FTWQ81lbXw3mpN5N05aErBbsCAAfr88881cOBAV4cCk1A0W8+JEyfUqlUrhYeHO3wXfsmSJS6MCs5EzgHzUVNZDzWVtfDeak3k3Tn4+h7satasqYyMDHl7e8vT09N+2vEff/zh6tDgJJMnT1bHjh0pmi1k3rx5BY5HR0ebHAnMQs4B81FTWQ81lbXw3mpN5N05aErB7uDBgwWO169f3+RIYBaKZgAASh81lfVQUwFAydCUAiyMohkAAODqUVMBQMnQlAIAAAAAAIDp3FwdAAAAAAAAAKyHphQAWMikSZN05MgRV4cBEyQnJxf63KxZs0yLAwCAioZ6ylqoqZyLphTsGjVqpA8//NBh7B//+IeLogHgDDabTZ06ddKtt96qpKQkV4cDJxo1apTGjRuns2fP2sf27dun7t2766uvvnJhZEDFR00FVGzUU9ZCTeVcNKVgl5eXp1mzZikuLs4+dvToURdGBGejaLaeadOm6cCBA7r99tv11FNPqWXLlnrjjTeUnZ3t6tBQylJSUnTmzBmFhoZq/fr1evXVV9WlSxf985//1MqVK10dHlChUVNZDzWVtVBPWQs1lXPRlIJdzZo1lZycrG+++Ub333+/8vLyXB0SnIyi2Zo8PDw0dOhQPfDAAzp9+rTefPNNXXfddfrggw9cHRpKUbVq1fTOO+/o3//+t7p3764ZM2Zo8+bNuu+++1wdGlDhUVNZDzWV9VBPWQc1lXPRlIKDqlWr6vPPP1dubq5uvvlmnTt3ztUhwYkomq3n6NGjeuKJJ9SwYUMtX75cixcv1s6dO7VlyxY9/vjjrg4PpWzOnDl69tlnNW3aNNWrV0/jxo3T8ePHXR0WYAnUVNZCTWUt1FPWQ03lPDSlYBccHCxJcnd31zvvvKNOnTpp9+7dLo4KzkbRbC0dOnSQm5ubNm/erA8//FBhYWGSpLp16yomJsbF0aE0/eMf/9DcuXO1du1aPfbYY/rmm290ww03qF27dlq0aJGrwwMqNGoqa6Kmsg7qKWuhpnIum2EYhquDAOAat9xyiz777DP742eeeUZPP/00n+5VYDk5OfL09HR1GDDBK6+8oocfflg2m81hfOfOnYqOjtb27dtdFBkAVDzUVNZCPWUt1FTORVMKmj9/viTJ29tbd9xxh4ujAeAMHOf4q4sXL6pSpUquDgOocPhbC1RsHOP4O2qqq8dPD9q/f78kqXr16i6OBGbhDdV6OM6t53LHOcUT4Bz8rbUeaipr4Ri3Jmoq5+InCE2ZMsXVIcBkvKFaD8e59XCcA+bjb6318LfWWjjGrYnj3Ln4+h60efNm+8X5CnL27Fnt379fLVq0MDEqAKWJ4xwAnI+/tUDFxjEOlD7uvgdNnz5dN910k+bOnauffvpJv//+u44eParVq1dr4sSJCg8PV3p6uqvDRCnavHnzZZ8/e/asfvrpJ5OigRk4zq2H4xwwH39rrYe/tdbCMW5NHOfOxZlSkCR99913euutt5ScnKwjR46oatWqatOmjW6//XbFxMSoatWqrg4RpWjIkCE6efKk7rrrLoWFhcnf31/nzp3T7t27tXz5cq1cuVIzZ85Ur169XB0qShHHubVwnAOuwd9aa+FvrfVwjFsPx7lz0ZQCLIo3VKDi4zgHAOfjby1Q8XGcOw9NKQAAAAAAAJiOa0oBAAAAAADAdDSlAAAAAAAAYDqaUgAAAAAAADAdTSkAAAAAAACYjqYUAAAAAAAATEdTCoBl2Gw2LVu2zNVhAAAAlFvUUwBKE00pAOXSiBEjZLPZ8i19+/Z1dWgAAADlAvUUAFer5OoAAKCk+vbtq7lz5zqMeXp6uigaAACA8od6CoArcaYUgHLL09NTAQEBDkvNmjUlSXv27FH37t3l5eWlFi1aKDExMd/6GzZsUGhoqLy8vNShQwctW7ZMNptNKSkp9jm7du1Sv379VK1aNfn7++vuu+/Wb7/9Zn/+k08+UevWreXt7a1rrrlGERERys7Odvq+AwAAlAbqKQCuRFMKQIWTl5en2267TR4eHtq8ebPi4+P16KOPOszJzMzUwIED1bp1a23fvl3PPvtsvjmnTp3SjTfeqOuvv15bt27V8uXLlZ6eriFDhkiSUlNTNWzYMN1zzz36+eeflZycrNtuu02GYZi2rwAAAM5APQXADHx9D0C59cUXX6hatWoOY48//rg6dOigX375RStWrFBQUJAkadq0aerXr5993oIFC2Sz2fTOO+/YP/07evSoRo8ebZ/z+uuv6/rrr9e0adPsY3PmzFFwcLB+/fVXZWVl6eLFi7rttttUv359SVLr1q2ducsAAAClinoKgCvRlAJQbvXq1Utvvvmmw1itWrX0/vvvKzg42F5ASVJ4eLjDvN27d6tNmzby8vKyj3Xq1Mlhzvfff681a9bkK9Qkad++ferTp4969+6t1q1bKzIyUn369NHgwYPtp7wDAACUddRTAFyJphSAcqtq1apq3Lix07aflZWlgQMH6sUXX8z3XGBgoNzd3ZWYmKgNGzZo5cqV+s9//qMnnnhCmzdvVkhIiNPiAgAAKC3UUwBciWtKAahwmjdvrsOHDys1NdU+tmnTJoc5TZs21c6dO5WTk2Mf++677xzmtGvXTj/++KMaNGigxo0bOyxVq1aVJNlsNnXp0kVTp07Vjh075OHhoaVLlzpx7wAAAJyPegqAGWhKASi3cnJylJaW5rD89ttvioiI0HXXXafo6Gh9//33+uabb/TEE084rHvXXXcpLy9P9957r37++WetWLFCr7zyiqQ/CyNJGjNmjP744w8NGzZM3333nfbt26cVK1YoJiZGubm52rx5s6ZNm6atW7fq0KFDWrJkiU6cOKHmzZub/rMAAAAoCeopAK5EUwpAubV8+XIFBgY6LF27dpWbm5uWLl2qs2fPqlOnTho1apSef/55h3V9fHz0+eefKyUlRaGhoXriiSc0efJkSbJfFyEoKEjffvutcnNz1adPH7Vu3Vrjx49XjRo15ObmJh8fH61bt079+/fXddddpyeffFLTp093uAAoAABAWUY9BcCVbAb32gQASdKHH36omJgYZWRkyNvb29XhAAAAlDvUUwCKgwudA7Cs+fPnq2HDhqpbt66+//57PfrooxoyZAgFFAAAQBFRTwG4GjSlAFhWWlqaJk+erLS0NAUGBuqOO+7Id1o6AAAACkc9BeBq8PU9AAAAAAAAmI4LnQMAAAAAAMB0NKUAAAAAAABgOppSAAAAAAAAMB1NKQAAAAAAAJiOphQAAAAAAABMR1MKAAAAAAAApqMpBQAAAAAAANPRlAIAAAAAAIDp/h+vn59S+uGMDQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "s.challenge_ate('X mean', 'y mean', method='clustering', ignore_current_graph=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# PostgreSQL/TPC-DS Example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now that we saw the basics of the framework, let's try to apply it to logs from a real system. \n", + "\n", + "We set up a PostgreSQL instance and load it with the data from TPC-DS with scale factor 1. We then run a workload in which we issue the queries in the TPC-DS workload once each (except for 4 particularly long-running queries, to expedite development 😅). \n", + "\n", + "We use PostgreSQL's logging to capture the execution of this workload:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['2023-11-01 17:54:53.027 EDT [ 6542c92d.1f943 3/5186 ] postgres@tpcds1 LOG: statement: BEGIN',\n", + " '2023-11-01 17:54:53.027 EDT [ 6542c92d.1f943 3/5186 ] postgres@tpcds1 LOG: duration: 0.033 ms',\n", + " '2023-11-01 17:54:53.028 EDT [ 6542c92d.1f943 3/5186 ] postgres@tpcds1 LOG: statement: -- Filename: query080.sql',\n", + " '\\t',\n", + " '\\twith ssr as',\n", + " '\\t (select s_store_id as store_id,',\n", + " '\\t sum(ss_ext_sales_price) as sales,',\n", + " '\\t sum(coalesce(sr_return_amt, 0)) as returns,',\n", + " '\\t sum(ss_net_profit - coalesce(sr_net_loss, 0)) as profit',\n", + " '\\t from store_sales left outer join store_returns on']" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "with open(\"datasets_raw/tpc-ds/work_mem_2_256kB_2_128kB_parallel_1_2.log\", 'r') as f:\n", + " log = f.read().split('\\n')\n", + "log[15:25]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We configure logging to print out the latency of every query, and the prefix of each line is set to `%m [ %c %v ] %q%u@%d`, where:\n", + "- %m = timestamp with milliseconds\n", + "- %c = session ID\n", + "- %v = virtual transaction ID\n", + "- %q = stop here in non-session processes\n", + "- %u = user name\n", + "- %d = database name" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We run this workload 8 times total, each using a new connection - 2 runs each for each of 4 different parameter configurations. \n", + "\n", + "For each parameter configuration, we decide on a total memory budget (128 kB or 256 kB). We then set the number of `max_parallel_workers` to 1 or 2, and the amount of `work_mem` to the budget divided by the number of max parallel workers. For example:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['2023-11-01 17:54:53.018 EDT [ 6542c92d.1f943 3/5184 ] postgres@tpcds1 LOG: statement: BEGIN',\n", + " '2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/5184 ] postgres@tpcds1 LOG: duration: 0.076 ms',\n", + " '2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/5184 ] postgres@tpcds1 LOG: statement: SET max_parallel_workers = 1;',\n", + " '2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/5184 ] postgres@tpcds1 LOG: duration: 0.062 ms',\n", + " '2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/5184 ] postgres@tpcds1 LOG: statement: COMMIT',\n", + " '2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/0 ] postgres@tpcds1 LOG: duration: 0.030 ms',\n", + " '2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/5185 ] postgres@tpcds1 LOG: statement: BEGIN',\n", + " '2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/5185 ] postgres@tpcds1 LOG: duration: 0.023 ms',\n", + " \"2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/5185 ] postgres@tpcds1 LOG: statement: SET work_mem = '128.0';\",\n", + " '2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/5185 ] postgres@tpcds1 LOG: duration: 0.044 ms',\n", + " '2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/5185 ] postgres@tpcds1 LOG: statement: COMMIT',\n", + " '2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/0 ] postgres@tpcds1 LOG: duration: 0.026 ms']" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "log[3:15]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Can we use Sawmill to find the causal effect of these modifications on query runtime?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Parsing and preparation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since we run each iteration of the workload in a separate connection, we can extract the connection ID from each log line and use it to define our causal units. We also specify that each log message begins with a timestamp, so that Samwill can collapse multi-line log messages into a single message:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Initialized Sawmill with log file datasets_raw/tpc-ds/work_mem_2_256kB_2_128kB_parallel_1_2.log\n", + "Work directory set to datasets/tpc-ds\n", + "Parsing file: datasets_raw/tpc-ds/work_mem_2_256kB_2_128kB_parallel_1_2.log\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "27d6f22c9e4c42b59c21c489dc224d89", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Reading and tokenizing log lines...: 0%| | 0/42108 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameTagTagOriginTypeIsUninterestingOccurrencesPreceding 3 tokensExamplesFrom regexAggregates
0DateTimeDateTime4numFalse4687[][2023-11-01 17:54:53.006, 2023-11-01 17:54:53.017, 2023-11-01 17:54:53.018, 2023-11-01 17:54:53.019, 2023-11-01 17:54:53.027]True[mean, max, min]
1sessionIDsessionID4strFalse4687[][6542c92d.1f943, 6542d880.1fc1b, 6542e76c.1fe63, 6543018c.20227, 65431bc7.20615]True[first]
2tIDtID4strTrue4687[][, 3/5183, 3/5184, 3/0, 3/5185]True[]
37f9dd6da_22port0numFalse8[127.0.0.1, port, =][42396, 51214, 54898, 47566, 60122]False[mean, max, min]
49213789e_11statement0strFalse1552[:, statement, :][BEGIN, COMMIT]False[last, mode, first]
52dfe3d16_11duration0numFalse2327[:, duration, :][0.076, 0.062, 0.030, 0.023, 0.044]False[mean, max, min]
6d046ac78_14max_parallel_workers0numFalse8[SET, max_parallel_workers, =][1, 2]False[mean, max, min]
70f62d144_15work_mem0numFalse8[work_mem, =, '][128.0, 64.0, 256.0]False[mean, max, min]
87c2f7377_14Filename0strFalse16[--, Filename, :][query012.sql, query020.sql]False[last, mode, first]
97c2f7377_287c2f7377_283strFalse16[,, sum, (][ws_ext_sales_price, cs_ext_sales_price]False[last, mode, first]
107c2f7377_357c2f7377_353strFalse16[,, sum, (][ws_ext_sales_price, cs_ext_sales_price]False[last, mode, first]
117c2f7377_417c2f7377_413strFalse16[(, sum, (][ws_ext_sales_price, cs_ext_sales_price]False[last, mode, first]
127c2f7377_537c2f7377_533strFalse16[as, revenueratio, from][web_sales, catalog_sales]False[last, mode, first]
137c2f7377_597c2f7377_593strFalse16[,, date_dim, where][ws_item_sk, cs_item_sk]False[last, mode, first]
147c2f7377_797c2f7377_793strFalse16[', ), and][ws_sold_date_sk, cs_sold_date_sk]False[last, mode, first]
\n", + "" + ], + "text/plain": [ + " Name Tag TagOrigin Type IsUninteresting Occurrences Preceding 3 tokens Examples From regex Aggregates\n", + "0 DateTime DateTime 4 num False 4687 [] [2023-11-01 17:54:53.006, 2023-11-01 17:54:53.017, 2023-11-01 17:54:53.018, 2023-11-01 17:54:53.019, 2023-11-01 17:54:53.027] True [mean, max, min]\n", + "1 sessionID sessionID 4 str False 4687 [] [6542c92d.1f943, 6542d880.1fc1b, 6542e76c.1fe63, 6543018c.20227, 65431bc7.20615] True [first]\n", + "2 tID tID 4 str True 4687 [] [, 3/5183, 3/5184, 3/0, 3/5185] True []\n", + "3 7f9dd6da_22 port 0 num False 8 [127.0.0.1, port, =] [42396, 51214, 54898, 47566, 60122] False [mean, max, min]\n", + "4 9213789e_11 statement 0 str False 1552 [:, statement, :] [BEGIN, COMMIT] False [last, mode, first]\n", + "5 2dfe3d16_11 duration 0 num False 2327 [:, duration, :] [0.076, 0.062, 0.030, 0.023, 0.044] False [mean, max, min]\n", + "6 d046ac78_14 max_parallel_workers 0 num False 8 [SET, max_parallel_workers, =] [1, 2] False [mean, max, min]\n", + "7 0f62d144_15 work_mem 0 num False 8 [work_mem, =, '] [128.0, 64.0, 256.0] False [mean, max, min]\n", + "8 7c2f7377_14 Filename 0 str False 16 [--, Filename, :] [query012.sql, query020.sql] False [last, mode, first]\n", + "9 7c2f7377_28 7c2f7377_28 3 str False 16 [,, sum, (] [ws_ext_sales_price, cs_ext_sales_price] False [last, mode, first]\n", + "10 7c2f7377_35 7c2f7377_35 3 str False 16 [,, sum, (] [ws_ext_sales_price, cs_ext_sales_price] False [last, mode, first]\n", + "11 7c2f7377_41 7c2f7377_41 3 str False 16 [(, sum, (] [ws_ext_sales_price, cs_ext_sales_price] False [last, mode, first]\n", + "12 7c2f7377_53 7c2f7377_53 3 str False 16 [as, revenueratio, from] [web_sales, catalog_sales] False [last, mode, first]\n", + "13 7c2f7377_59 7c2f7377_59 3 str False 16 [,, date_dim, where] [ws_item_sk, cs_item_sk] False [last, mode, first]\n", + "14 7c2f7377_79 7c2f7377_79 3 str False 16 [', ), and] [ws_sold_date_sk, cs_sold_date_sk] False [last, mode, first]" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s2.parsed_variables.head(15)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the prepared log consists of one causal unit per run of the workload:" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateTime+mean7f9dd6da_22+mean2dfe3d16_11+meand046ac78_14+mean0f62d144_15+mean2c402162_13+mean2c402162_25+mean9213789e_11+last=COMMIT7c2f7377_14+last=query020.sql7c2f7377_28+last=cs_ext_sales_price7c2f7377_35+last=cs_ext_sales_price7c2f7377_41+last=cs_ext_sales_price7c2f7377_53+last=catalog_sales7c2f7377_59+last=cs_item_sk7c2f7377_79+last=cs_sold_date_sk3e3b083e_14+last=query053.sql3e3b083e_20+last=i_manufact_id3e3b083e_39+last=i_manufact_id3e3b083e_41+last=avg_quarterly_sales3e3b083e_219+last=i_manufact_id3e3b083e_221+last=d_qoy3e3b083e_227+last=avg_quarterly_sales3e3b083e_235+last=avg_quarterly_sales3e3b083e_238+last=avg_quarterly_sales3e3b083e_246+last=avg_quarterly_sales3e3b083e_248+last=sum_sales3e3b083e_250+last=i_manufact_ida092a92c_14+last=query026.sqla092a92c_20+last=cs_quantitya092a92c_26+last=cs_list_pricea092a92c_32+last=cs_coupon_amta092a92c_38+last=cs_sales_pricea092a92c_42+last=catalog_salesa092a92c_52+last=cs_sold_date_ska092a92c_56+last=cs_item_ska092a92c_60+last=cs_bill_cdemo_ska092a92c_64+last=cs_promo_skc1dbe68b_14+last=query099.sqlc1dbe68b_27+last=cc_namec1dbe68b_34+last=cs_ship_date_skc1dbe68b_36+last=cs_sold_date_skc1dbe68b_58+last=cs_ship_date_skc1dbe68b_60+last=cs_sold_date_skc1dbe68b_66+last=cs_ship_date_skc1dbe68b_68+last=cs_sold_date_skc1dbe68b_90+last=cs_ship_date_skc1dbe68b_92+last=cs_sold_date_skc1dbe68b_98+last=cs_ship_date_skc1dbe68b_100+last=cs_sold_date_skc1dbe68b_122+last=cs_ship_date_skc1dbe68b_124+last=cs_sold_date_skc1dbe68b_130+last=cs_ship_date_skc1dbe68b_132+last=cs_sold_date_skc1dbe68b_154+last=cs_ship_date_skc1dbe68b_156+last=cs_sold_date_skc1dbe68b_172+last=catalog_salesc1dbe68b_178+last=call_centerc1dbe68b_190+last=cs_ship_date_skc1dbe68b_194+last=cs_warehouse_skc1dbe68b_198+last=cs_ship_mode_skc1dbe68b_202+last=cs_call_center_skc1dbe68b_204+last=cc_call_center_skc1dbe68b_218+last=cc_namec1dbe68b_232+last=cc_name
sessionID+first
6542c92d.1f9431.698863e+0942396.013483.5959901.0128.03923.84642396.0111111111111111111111111111111111111111111111111111111111
6542d880.1fc1b1.698867e+0951214.013126.1803091.0128.03819.82151214.0111111111111111111111111111111111111111111111111111111111
6542e76c.1fe631.698872e+0954898.022983.4083992.064.06688.27554898.0111111111111111111111111111111111111111111111111111111111
6543018c.202271.698879e+0947566.023075.0709972.064.06714.95047566.0111111111111111111111111111111111111111111111111111111111
65431bc7.206151.698883e+0960122.02707.9560931.0256.0808.71360122.0111111111111111111111111111111111111111111111111111111111
65431ef0.2073a1.698884e+0947102.02781.8805261.0256.0809.63247102.0111111111111111111111111111111111111111111111111111111111
6543221a.2085f1.698886e+0943972.013000.0996632.0128.03783.13643972.0111111111111111111111111111111111111111111111111111111111
654330e1.20b8f1.698890e+0937380.013005.0231442.0128.03784.56637380.0111111111111111111111111111111111111111111111111111111111
\n", + "
" + ], + "text/plain": [ + " DateTime+mean 7f9dd6da_22+mean 2dfe3d16_11+mean d046ac78_14+mean 0f62d144_15+mean 2c402162_13+mean 2c402162_25+mean 9213789e_11+last=COMMIT 7c2f7377_14+last=query020.sql 7c2f7377_28+last=cs_ext_sales_price 7c2f7377_35+last=cs_ext_sales_price 7c2f7377_41+last=cs_ext_sales_price 7c2f7377_53+last=catalog_sales 7c2f7377_59+last=cs_item_sk 7c2f7377_79+last=cs_sold_date_sk 3e3b083e_14+last=query053.sql 3e3b083e_20+last=i_manufact_id 3e3b083e_39+last=i_manufact_id 3e3b083e_41+last=avg_quarterly_sales 3e3b083e_219+last=i_manufact_id 3e3b083e_221+last=d_qoy 3e3b083e_227+last=avg_quarterly_sales 3e3b083e_235+last=avg_quarterly_sales 3e3b083e_238+last=avg_quarterly_sales 3e3b083e_246+last=avg_quarterly_sales 3e3b083e_248+last=sum_sales 3e3b083e_250+last=i_manufact_id a092a92c_14+last=query026.sql a092a92c_20+last=cs_quantity a092a92c_26+last=cs_list_price a092a92c_32+last=cs_coupon_amt a092a92c_38+last=cs_sales_price a092a92c_42+last=catalog_sales a092a92c_52+last=cs_sold_date_sk a092a92c_56+last=cs_item_sk a092a92c_60+last=cs_bill_cdemo_sk a092a92c_64+last=cs_promo_sk c1dbe68b_14+last=query099.sql c1dbe68b_27+last=cc_name c1dbe68b_34+last=cs_ship_date_sk c1dbe68b_36+last=cs_sold_date_sk c1dbe68b_58+last=cs_ship_date_sk c1dbe68b_60+last=cs_sold_date_sk c1dbe68b_66+last=cs_ship_date_sk c1dbe68b_68+last=cs_sold_date_sk c1dbe68b_90+last=cs_ship_date_sk c1dbe68b_92+last=cs_sold_date_sk c1dbe68b_98+last=cs_ship_date_sk c1dbe68b_100+last=cs_sold_date_sk c1dbe68b_122+last=cs_ship_date_sk c1dbe68b_124+last=cs_sold_date_sk c1dbe68b_130+last=cs_ship_date_sk c1dbe68b_132+last=cs_sold_date_sk c1dbe68b_154+last=cs_ship_date_sk c1dbe68b_156+last=cs_sold_date_sk c1dbe68b_172+last=catalog_sales c1dbe68b_178+last=call_center c1dbe68b_190+last=cs_ship_date_sk c1dbe68b_194+last=cs_warehouse_sk c1dbe68b_198+last=cs_ship_mode_sk c1dbe68b_202+last=cs_call_center_sk c1dbe68b_204+last=cc_call_center_sk c1dbe68b_218+last=cc_name c1dbe68b_232+last=cc_name\n", + "sessionID+first \n", + "6542c92d.1f943 1.698863e+09 42396.0 13483.595990 1.0 128.0 3923.846 42396.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + "6542d880.1fc1b 1.698867e+09 51214.0 13126.180309 1.0 128.0 3819.821 51214.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + "6542e76c.1fe63 1.698872e+09 54898.0 22983.408399 2.0 64.0 6688.275 54898.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + "6543018c.20227 1.698879e+09 47566.0 23075.070997 2.0 64.0 6714.950 47566.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + "65431bc7.20615 1.698883e+09 60122.0 2707.956093 1.0 256.0 808.713 60122.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + "65431ef0.2073a 1.698884e+09 47102.0 2781.880526 1.0 256.0 809.632 47102.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + "6543221a.2085f 1.698886e+09 43972.0 13000.099663 2.0 128.0 3783.136 43972.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", + "654330e1.20b8f 1.698890e+09 37380.0 13005.023144 2.0 128.0 3784.566 37380.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s2.prepared_log " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We ask for candidate causes of query duration:" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Candidate cause exploration complete in 0.860969 seconds!\n" + ] + }, + { + "data": { + "text/plain": [ + "( Candidate Candidate Tag Target Slope P-value Candidate->Target Edge Status Target->Candidate Edge Status\n", + " 0 2c402162_13+mean time mean 2dfe3d16_11+mean 3.442502 1.331652e-16 Undecided Undecided\n", + " 1 0f62d144_15+mean work_mem mean 2dfe3d16_11+mean -100.525674 2.900467e-05 Undecided Undecided\n", + " 2 d046ac78_14+mean max_parallel_workers mean 2dfe3d16_11+mean 9990.997321 5.504147e-02 Undecided Undecided\n", + " 3 DateTime+mean DateTime mean 2dfe3d16_11+mean -0.259903 4.372292e-01 Undecided Undecided\n", + " 4 7f9dd6da_22+mean port mean 2dfe3d16_11+mean -0.145989 7.450969e-01 Undecided Rejected\n", + " 5 2c402162_25+mean 2c402162_25 mean 2dfe3d16_11+mean -0.145989 7.450969e-01 Undecided Rejected,\n", + " '0.860969')" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s2.explore_candidate_causes(\"duration mean\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's learn more about some of the top candidate causes:" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Information about prepared variable 0f62d144_15+mean:\n", + "\n", + "--> Variable Information about 0f62d144_15:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameTagTagOriginTypeIsUninterestingOccurrencesPreceding 3 tokensExamplesFrom regexAggregates
70f62d144_15work_mem0numFalse8[work_mem, =, '][128.0, 64.0, 256.0]False[mean, max, min]
\n", + "
" + ], + "text/plain": [ + " Name Tag TagOrigin Type IsUninteresting Occurrences Preceding 3 tokens Examples From regex Aggregates\n", + "7 0f62d144_15 work_mem 0 num False 8 [work_mem, =, '] [128.0, 64.0, 256.0] False [mean, max, min]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> Template Information about 0f62d144:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TemplateTextTemplateIdVariableIndicesRegexIndicesTemplateExampleOccurrences
6<*0> EDT [ <*1> <*2> ] postgres@tpcds1 LOG : statement : SET work_mem = ' <*> ' ;0f62d144[15][0, 3, 4]<*0> EDT [ <*1> <*2> ] postgres@tpcds1 LOG : statement : SET work_mem = ' 128.0 ' ;8
\n", + "
" + ], + "text/plain": [ + " TemplateText TemplateId VariableIndices RegexIndices TemplateExample Occurrences\n", + "6 <*0> EDT [ <*1> <*2> ] postgres@tpcds1 LOG : statement : SET work_mem = ' <*> ' ; 0f62d144 [15] [0, 3, 4] <*0> EDT [ <*1> <*2> ] postgres@tpcds1 LOG : statement : SET work_mem = ' 128.0 ' ; 8" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> Causal Unit Partial Information:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0f62d144_15+mean (candidate)
sessionID+first
6542c92d.1f943128.0
6542d880.1fc1b128.0
6542e76c.1fe6364.0
6543018c.2022764.0
65431bc7.20615256.0
65431ef0.2073a256.0
6543221a.2085f128.0
654330e1.20b8f128.0
\n", + "
" + ], + "text/plain": [ + " 0f62d144_15+mean (candidate)\n", + "sessionID+first \n", + "6542c92d.1f943 128.0\n", + "6542d880.1fc1b 128.0\n", + "6542e76c.1fe63 64.0\n", + "6543018c.20227 64.0\n", + "65431bc7.20615 256.0\n", + "65431ef0.2073a 256.0\n", + "6543221a.2085f 128.0\n", + "654330e1.20b8f 128.0" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "s2.inspect('work_mem mean')" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Information about prepared variable d046ac78_14+mean:\n", + "\n", + "--> Variable Information about d046ac78_14:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameTagTagOriginTypeIsUninterestingOccurrencesPreceding 3 tokensExamplesFrom regexAggregates
6d046ac78_14max_parallel_workers0numFalse8[SET, max_parallel_workers, =][1, 2]False[mean, max, min]
\n", + "
" + ], + "text/plain": [ + " Name Tag TagOrigin Type IsUninteresting Occurrences Preceding 3 tokens Examples From regex Aggregates\n", + "6 d046ac78_14 max_parallel_workers 0 num False 8 [SET, max_parallel_workers, =] [1, 2] False [mean, max, min]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> Template Information about d046ac78:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
TemplateTextTemplateIdVariableIndicesRegexIndicesTemplateExampleOccurrences
5<*0> EDT [ <*1> <*2> ] postgres@tpcds1 LOG : statement : SET max_parallel_workers = <*> ;d046ac78[14][0, 3, 4]<*0> EDT [ <*1> <*2> ] postgres@tpcds1 LOG : statement : SET max_parallel_workers = 1 ;8
\n", + "
" + ], + "text/plain": [ + " TemplateText TemplateId VariableIndices RegexIndices TemplateExample Occurrences\n", + "5 <*0> EDT [ <*1> <*2> ] postgres@tpcds1 LOG : statement : SET max_parallel_workers = <*> ; d046ac78 [14] [0, 3, 4] <*0> EDT [ <*1> <*2> ] postgres@tpcds1 LOG : statement : SET max_parallel_workers = 1 ; 8" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> Causal Unit Partial Information:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
d046ac78_14+mean (candidate)
sessionID+first
6542c92d.1f9431.0
6542d880.1fc1b1.0
6542e76c.1fe632.0
6543018c.202272.0
65431bc7.206151.0
65431ef0.2073a1.0
6543221a.2085f2.0
654330e1.20b8f2.0
\n", + "
" + ], + "text/plain": [ + " d046ac78_14+mean (candidate)\n", + "sessionID+first \n", + "6542c92d.1f943 1.0\n", + "6542d880.1fc1b 1.0\n", + "6542e76c.1fe63 2.0\n", + "6543018c.20227 2.0\n", + "65431bc7.20615 1.0\n", + "65431ef0.2073a 1.0\n", + "6543221a.2085f 2.0\n", + "654330e1.20b8f 2.0" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "s2.inspect('max_parallel_workers mean')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Indeed, two of them correspond to the two parameters we are tweaking. Assuming we do not know the experiment set up, let's accept them both as causes and reject the rest of the candidates." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "(0.9731182795698925, '0f62d144_15+mean', '')" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s2.accept('work_mem mean', 'duration mean', interactive=False)\n", + "s2.accept('max_parallel_workers mean', 'duration mean', interactive=False)\n", + "s2.reject_undecided_incoming('duration mean')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's now look at the corresponding ATE of the number of `max_parallel_workers` on the max query latency. Intuitively, more parallelism should help so this should be negative:" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAAPCAYAAACSjp+bAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAG3ElEQVRoBe2a0XUVNxCGbzguwIEKMB2A6cDpAEIFhg6SwxO8caADoIIAHQAVENwBpALAHTjfJ2sU7V7tvXMDJjxkztGVdvRrNJoZjbRrr87Ozlbfqzx48OD6fC54+5SDOf//53/88l/ZTb9Q7lL2f0R/7K2+IT18+PA64l5SbtA+HYh+C38f/kntsy3dOK/OfyvmfscT9xL+m463yuL6MaM2cp52/Mu0j+Gt6Z/BgTlg/O9V3iH1Z5/hx5pr12q1AzZltya4NpCvP+5R35v3+Qz/ceV/or5GeQzvY+VZOV7bPIVPtUan8H8ObkJegYLTn1v9O5AbrD+QcfLVwVsVeY5UnaSzdN4SiZE0ikZ6RXmEjHmgaMSJwXk2ePcpjgnK4gI/qZUH4z1F5zyxk1rd/qJ2AxZHUmdxrl1ZvyhLom2AvJdHaZuPdhrL+KzdnLInE8naphHA/K5b2xd7Upc1UqtnBPBNMOoczzQbHdGKTbpiTEZeDE75DZnayDW4+YvtqH22XPsWwWvg3aasEPwblc5fohMwBbsEoP8ufRpiTscw3lLC2CncXMjs2U13mTlL4NpHWx3/pGnGiSDM4gzU+abT8OqqwVuWor0LdqvdkDch5tQXQ6r6TBIBPLOotu3XvYIXNmiy4JUEVfFiXF9W3i5+02Zm2bbpnYdSNtMlGj8aeXytGWygZBY3GNpYt2iNsorZ6gijaSgpizMbfejGlcH8aHydW5xembtgQ06qZh4TiEnFMiITyCgjv4Pfr9vnEc0zZ1aeslJ+Yw3a3HU8c1AQfE+GEh8/YvBqsFso+JoSwaPuZiqzQlAWF/hJ3cmOI7nv/1QfDrO4ii9HLGOWgqZfzy7YXrdM+w46TJw+G+TGGa07NrL9K2SUU64fC08/POp5tFPy6pis3zzBPA2WbLnamylx4Y8oU44YJrpCMRN572pZgPYrC3x33hfa3qvcrQZzM2YWx7ghMV7D2Hd5AFA36QDMmwxOMLilK1G5StHfrzONrbI32k2MxBxeF/pNXvjxQ3+/gYI9r0c2Ubb+uk7d33V3ksfYlH+Z55DyEby2u0MxoRgH7cX9e2deF/oChZ5UA2gEX2bKTqddiGcdG5nDnW5/c3wB8ZPFBX5Quxl0yJxKsMEMx2RxcznqqCznaA5fA1XGBmzWbs7jpowMOpoqAvN01Fl5se45RF9YetpZHvpl/Bs6ePr53mDMmI0NXhPb6rsGL5N6X2lGo62RPT4nmaIqJ86dZr9O8S5ZlKZdKIsL/KA+loectnloG2yhYwRBFjeYoryomW3aS+EIVHkvqdewjE3ZjbH3wMam3zDN1q44eRoQufrgiFp/7EoTecjQj4v+pX+/TmCWn6/nBX3PxexVoG/xMaCO21jdZtxaJtw4YrnTANEoHtEeEx6PfqaKt3Yd52J1rEp7jJtdUjjGLFKVcxWALyAGrUb2TlbuZdQleLM48BNinJvSNS1dERp+F2wdNLLbJAk04dPG5+nj5CmyaNz5+079EZu55+8kj3Vu9VsnfDSfX6KUcWjwugNudAMupMk8rxHsZ6mluWLzeCwZUI0YYzYyC3+gmCU9xrM4oMuEXNcfG6UA4cXR2IyXxcVM4DWw69365WQTlr6tdgNjVtynbvqGHvMaTNz1w949JHgjOSaQNf6/kLfVb8jU3+qlb5bo4NJSzwXwD5EZxunFl92Osn7LtF8nrCkNT8MZtAZECtdPsmPbLFwy/JZxQxz66ehr1C3j0vZkMcgmlMButRsClXsTWd4HW4Gnfp5q8mJDwmpXMds9FV/AmFwNGKu9nWPNL3VwXO3qY6sm8qqcrf7tZDrvEn3cW+q5AP4zlB+9tJhJi7HoNytYyhVioIOLiWvDVtxg/ITFPAaZf4C46rx2UjuHOrUTIour4w0YA2m+Vuea3N/AZLAZu2m/ScBVXb7IZ562ieRDXsH6YC5MflyzSaTYIpjUbiBp6YqQkqfcWjb693yq8h6k3Dmpo3LeXJr3fOXzlTo+dlwvzj+bTu5kPMdfgXrj2jZTGESNePYY9nNZHF1Z3EpZlDOK96WezCZzh2gwX3xOOmAKxxhxjne+st6oq8wWFDtgs3br1G1NbTixoz3M7Sb6TO2GKkRb3K+U8nJ6zm2/IeO0cbrGjvJSfkOmp6wbr22yuY4/+d9CX0sIjR1ixnKhOt4gM9hatqGtcyMjGeAGjp9BJkbh2Yx0v/ZTFTKgJ9kli3M0WO/LGmPpfhsOWpunjg8jLuLqHK5xRGa0PpurTxabsltMyjwmCcfoD8lAeAe/ffGg7Tpck7b3Be0mZfLNnedCYJXlxj+mraw12lFeyr9Oglx1DJsbM03HvwF2giHDPQQm9gAAAABJRU5ErkJggg==", + "text/latex": [ + "$\\displaystyle -1588.99225407086$" + ], + "text/plain": [ + "-1588.9922540708612" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s2.get_adjusted_ate(\"max_parallel_workers mean\", \"duration mean\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What if we hadn't considered the amount of working memory as a cause?" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKAAAAAPCAYAAABjhcQWAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAGj0lEQVRoBe2Z3XEUORCA15QDMCYC7AzARIDJAO4iMGQAxZvfKMgAiMBABpgIDpwBzuCMM/B9n1at1cxq1jI1fqGuqzSSelr9r5Zmd+vq6mrxP6w8cHx8vMfskPaJ8eXqzZ8/wt4HtLPaUuY7zHfpz2v8XOPtmhFC3lfzXcZH4NaCcAt0b7Pcf+n3aW9vavCMOj1Avn54D0+6NbgEf1csvcn6IlMYKOfqfppxpcu0rzLigP6C9gr8IOCxALx6fKY9ZLwWA+nAK+9anr108PoGrXaETo6Fh8tu9cx0r1eYhbSfwa/ZLg34iHEsOQF3tmUFZODiHzSd/k4Keh3wjaYDUvbTz0qX5Sj3Dby/5HnIeBJyxU/B3DrBT0dpe2vHWxlNmi9ZrskWCbhg/JT3Js0zxskexuJNFH37xLnAWDkvadqZgkav7R9pJqdJqh53wV/SDwBcL88uOpnD8yfdLk09tF8bjE1LvvYU26FzvbabWGPbxeu3sNO51Xb/DgNBoy2zKflEMHYXfKfVVXFWOmQ8h/8Ofa2wxjqv5TKdhFl1Ugr6mBQv6gbahDkFF7qq+3PmJl1A7P66MvjOteNgWbm01WAkgJfV1eSV9iSjp7ounizupVPOGbJN+C3aPs2kaSWftls4xnAEYmx7JGX4xjU7tLTBIwF1YmvHm4SHKOECYW66Z/CMcp8E5Mc/9LXc+t14PLdOym7BoNpBoN4GpwSoFazMyMr5s/JjRi8MihtwLxA36Ht59tLdQHS6JpVqPrUQu4yNVfxDTQPeDZ7WbzOI5LqoifLYO5lwAJ3VUJiFDj46X+cMlGMuxGbwfVSc9KJ+zK07vOsKV0QhxyrypiAYgFP/dBcMPDgdLoyrt7QeOSVZE9XqETFYYa4f9fLspbte4orCTfoSe77SW7HDLv1U224lt6rHe6ZDMAElEOvZP4Z7GbEHjcFxOhddj9NbsrJKKQlm1b0wrgbYbHUyeeKyX71dDXnvZknHHePBpmJupW+B1WHB+9Yp0KIvuF6evXTBGPp0LWJu7LXdO+BAP+begS0MbrhfjPWNH49fM55hggOe5+C082+aBU268rFyh4kgs9YxkBzEu0iWOekiuSZ3RyWX4STMqVNLiElla4LOpfkx4W43UN+bhCNkDoo+35jYo2Ubp708N9AZZ39+ekdTL9sPxm6uAYBzU8VG0z/SDBKVeeSNJ6j3SfnqJxMwnRaRgF4eFyCLIMYmXyRHHIlz0yl2E0QF3kRzazrhAxPkkN5jrAm88+KuYw3ICc2AxVHcXJORXs6tJOXDbxNx57tenk06dPFuFjFfMDbu2l4fq0kV3mmjtFY0afSV99xkO30knxs0EhWSBJ94fpQmJSADGd2neZ57tpvRMvSsF1ICzkx3sWTdfEZ1jDtok0jkzDqN5bhbY/ON363N0cVqrC/d4RGAFp0B9WiaOprX1lyHgFcXz166Sp72ewUzHxIw9pg2Wa1q2uEHRdiSEmtJmZ4t//kFrX8OtoMQJjpOhxcAF0dPYTIXnXxoymoFKnBFblGqMZhLpwZrd3NTB2Sm6wn9+NjxCPYksZmQA4De4O3SG7RZoJfnJjre+UGhXms/OmclIyZOzQsLVgHWWc2thv6W6Knh3Pfm1RTspQo49Ra8TvbjYxMTl/8uXZRuedQQFXDy6KuJJ8a/q1Nih8063F0/Zbu72ONWui6A1oT297WoFgvGg+rSxagi6uXZQXcA25YtKRasTxuNXpod+jW/gHOzuunq+LV4QpLgfNuOhTrGH3TvB2N6F7qLy46Ymw7e3kWiyjIsoEzvVmtGFoo8uAWdQoQBEaauCurW2pyxbrB50NMN8Yh+/NGh78d3JFDXQy/PTroPDd1UwhwotkDjyWVz47ROB/Mm6L0WGOMxGF95nKYEZOJOHzvahf4bUB8xs9LBOxlN/5SWjit6DfiL9phWION/gTAxy6ZgPqtOReCqGkxtgnEiLdDLZFJ//VbWMVZH/WnCji/0HletD5F70AtWk8IrYXj08uylg6V/rQ3+XmPu171QKvZymubecx/Tim6MvV74U0xKTHqPYW32R/zkL3r9Y3zTx2P6L1imEtkDEgjlt5rldPm8BTrlKVtD/Oh4RFv77QmcOnq/0KCpu+osumdZJo3H7BHy1u5ymcbqUAfHNTo7KoBkC+bq7bsWDDYUtFEx5K09FgADamBLpezl2UsH/wW06hgby8S3KE39HWdFf51p6BJsypmIjXxLfP8Dr0k4sW9ad64AAAAASUVORK5CYII=", + "text/latex": [ + "$\\displaystyle 9990.99732122586$" + ], + "text/plain": [ + "9990.997321225856" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s2.get_unadjusted_ate(\"max_parallel_workers mean\", \"duration mean\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Surprising discrepancy! Let's look at the underlying data though:" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
work_memmax_parallel_workersmean_latency
sessionID+first
6542c92d.1f943128.01.013483.595990
6542d880.1fc1b128.01.013126.180309
6542e76c.1fe6364.02.022983.408399
6543018c.2022764.02.023075.070997
65431bc7.20615256.01.02707.956093
65431ef0.2073a256.01.02781.880526
6543221a.2085f128.02.013000.099663
654330e1.20b8f128.02.013005.023144
\n", + "
" + ], + "text/plain": [ + " work_mem max_parallel_workers mean_latency\n", + "sessionID+first \n", + "6542c92d.1f943 128.0 1.0 13483.595990\n", + "6542d880.1fc1b 128.0 1.0 13126.180309\n", + "6542e76c.1fe63 64.0 2.0 22983.408399\n", + "6543018c.20227 64.0 2.0 23075.070997\n", + "65431bc7.20615 256.0 1.0 2707.956093\n", + "65431ef0.2073a 256.0 1.0 2781.880526\n", + "6543221a.2085f 128.0 2.0 13000.099663\n", + "654330e1.20b8f 128.0 2.0 13005.023144" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t = s2.prepared_log[[\"0f62d144_15+mean\", \"d046ac78_14+mean\", \"2dfe3d16_11+mean\"]]\n", + "t.columns = [\"work_mem\", \"max_parallel_workers\", \"mean_latency\"]\n", + "t" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Indeed, for a fixed amount of working memory, more parallelism leads to lower latency. But because of how we set up the experiment, more parallelism comes at the expense of working memory, so naively looking at only the 2 right-hand columns above would indeed make us think that more parallelism means *higher* latency!" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/gen_ref_pages.py b/docs/gen_ref_pages.py new file mode 100644 index 0000000..7d0e882 --- /dev/null +++ b/docs/gen_ref_pages.py @@ -0,0 +1,36 @@ +"""Generate the code reference pages and navigation. + +Script was taken from +https://mkdocstrings.github.io/recipes/#automatic-code-reference-pages +""" + +from pathlib import Path + +import mkdocs_gen_files + +nav = mkdocs_gen_files.Nav() + +for path in sorted(Path(".").rglob("logos/**/*.py")): + module_path = path.relative_to(".").with_suffix("") + doc_path = path.relative_to(".").with_suffix(".md") + full_doc_path = Path("reference", doc_path) + + parts = tuple(module_path.parts) + + if parts[-1] == "__init__": + parts = parts[:-1] + doc_path = doc_path.with_name("index.md") + full_doc_path = full_doc_path.with_name("index.md") + elif parts[-1] == "__main__": + continue + + nav[parts] = doc_path.as_posix() # + + with mkdocs_gen_files.open(full_doc_path, "w") as fd: + ident = ".".join(parts) + fd.write(f"::: {ident}") + + mkdocs_gen_files.set_edit_path(full_doc_path, path) + +with mkdocs_gen_files.open("reference/SUMMARY.md", "w") as nav_file: + nav_file.writelines(nav.build_literate_nav()) \ No newline at end of file diff --git a/docs/index.md b/docs/index.md new file mode 100644 index 0000000..86f1159 --- /dev/null +++ b/docs/index.md @@ -0,0 +1,633 @@ + + +# Welcome! + + +This is Sawmill - a system for processing logs to help extract causal insights! + +You can find a quick demo below, as well as documentation in the "Docs" tab. + + +## Synthetic Example + +Let's start with a basic example of a synthetic log. This log contains three different log line *templates*, each of which reports the value of one of the variables `x`, `y` and `z`. Here is an example of each line: + +``` title="Log Excerpt" +2023-03-14T20:55:49.234591Z DATA The current line will include the value of z = 100.0 +2023-03-14T20:55:49.233591Z DATA Short message with x = 199.05342369055703 +2023-03-14T20:55:49.232591Z DATA This is a log message that reports y = 399.82103707673997 +``` + +Each millisecond, we decide whether or not to "flip" the value of `z` between 100 and 200, with probability `1%`. If we end up flipping it, we print a log line that reports the new value (first template above). + +Each millisecond, we print the value of `x` (second template above), which is generated each time by taking the most recent value of `z` and adding random noise in `[-1,1]`. + +Finally, each millisecond we print the value of `y` with probability `50%`(third template above). The value of `y` is generated each time by taking the most recent value of `z`, multiplying it by `2` and adding random noise in `[-1,1]`. + +Let's create a Sawmill instance and initialize it with the path to this log: + + + +```python title="Code" +s = Sawmill("datasets_raw/xyzw_logs/log_2023-03-14_20:55:49.log", + workdir='datasets/xyzw_logs/log_2023-03-14_20:55:49') +``` +``` title="Output" +Initialized Sawmill with log file datasets_raw/xyzw_logs/log_2023-03-14_20:55:49.log +Work directory set to datasets/xyzw_logs/log_2023-03-14_20:55:49 +``` + +### Parsing and tagging variables + +We can call the `parse()` function to parse the log into a table using the [Drain](https://jiemingzhu.github.io/pub/pjhe_icws2017.pdf) algorithm. + +The Drain algorithm can first extract named variables from each log line using regular expressions. By default, Sawmill provides a single regular expression to capture timestamps in the format shown above, naming the resulting field `Timestamp`, but users can parse additional regular expressions to the `parse()` call as a dictionary, via the `regex_dict` parameter. + +Then, the Drain algorithm separated log lines into "templates" and "variables", based on the similarity of each new line to the lines seen before it. You can find more information in the paper. + + +```python title="Code" +s.parse(force=True, regex_dict={'Date': r'\d{4}-\d{2}-\d{2}', 'Time': r'\d{2}:\d{2}:\d{2}.\d{6}'}) +s.parsed_log.head() +``` +``` title="Output" +Parsing file: datasets_raw/xyzw_logs/log_2023-03-14_20:55:49.log + + +Reading and tokenizing log lines...: 100%|██████████| 15121/15121 [00:00<00:00, 63539.36it/s] +Determining template for each line...: 100%|██████████| 15121/15121 [00:00<00:00, 100521.41it/s] +Extracting variables from each line...: 100%|██████████| 3/3 [00:00<00:00, 108.38it/s] + + +Variables generated from regexes: 2 +Variables generated by Drain: 3 +Templates with at least 1 non-regex variable: 3 +Templates with at least 2 occurrences: 3 + + +Determining variable types...: 100%|██████████| 5/5 [00:00<00:00, 6142.80it/s] +Casting date variables...: 0%| | 0/1 [00:00` in the template text. + +For each template, we also got a regular expression match at index 0, corresponding to the regular expression that matches timestamps. The timestamps were correspondingly replaced by `<*0>`, since that was the 0th (and only) regular expression we provided. + + +```python title="Code" +s.parsed_templates +``` + +|TemplateText| TemplateId |Occurrences |VariableIndices |RegexIndices +|-|-|-|-|-| +| <\*0>T<\*1>Z DATA Short message with x = <\*> |ac34c703| 10000| [7]| []| +| <\*0>T<\*1>Z DATA This is a log message that reports y = <\*> |62ff3fb7 |5006| [11]| []| +| <\*0>T<\*1>Z DATA The current line will include the value of z = <\*> |ff661264| 115 |[12]| []| + + + + + +We can also look at the extracted variables. For variables that were extracted via a regular expression, like the timestamp, the user has already provided a name (in this case, `Timestamp`). For the rest, a variable name is generated from the corresponding template ID and the index that the variable appear in, within the template. For each variable, we also report the preceding 3 tokens and some example values. + +Since the automatically-generated names are not meaningful, we also allow for each variable to carry a tag. Initial values of these tags are guessed from the preceding tokens of each variable: + + +```python +s.parsed_variables +``` + +|Name |Tag |Type |IsUninteresting |Occurrences |Preceding 3 tokens |Examples |From regex| +|-|-|-|-|-|-|-|-| +|Date |Date |date |True |15121 |[] |[2023-03-14] |True +|Time |Time |time |True |15121 |[] |[20:55:49.165591, 20:55:49.166591, 20:55:49.167591, 20:55:49.168591, 20:55:49.169591] |True +|ac34c703_7 |x |num |False |10000 |[with, x, =] |[100.00285967800117, 100.81229891323964, 100.26016363495995, 199.4482406365968, 200.98748260974] |False| +|62ff3fb7_11 |y |num |False |5006 |[reports, y, =] |[200.1899632341074, 200.45898567905772, 399.6905765982258, 400.22712382793407, 400.08343040509993] |False| +|ff661264_12 |z |num |False |115 |[of, z, =] |[200.0, 100.0] |False| + + + + + + +However, the user is free to change or provide the tag of a variable as they like: + + +```python title="Code" +s.tag_parsed_variable("ac34c703_7", "X") +s.parsed_variables +``` +``` title="Output" +Variable ac34c703_7 tagged as X +``` + +|Name |Tag |Type |IsUninteresting |Occurrences |Preceding 3 tokens |Examples |From regex| +|-|-|-|-|-|-|-|-| +|Date |Date |date |True |15121 |[] |[2023-03-14] |True +|Time |Time |time |True |15121 |[] |[20:55:49.165591, 20:55:49.166591, 20:55:49.167591, 20:55:49.168591, 20:55:49.169591] |True +|ac34c703_7 |X |num |False |10000 |[with, x, =] |[100.00285967800117, 100.81229891323964, 100.26016363495995, 199.4482406365968, 200.98748260974] |False| +|62ff3fb7_11 |y |num |False |5006 |[reports, y, =] |[200.1899632341074, 200.45898567905772, 399.6905765982258, 400.22712382793407, 400.08343040509993] |False| +|ff661264_12 |z |num |False |115 |[of, z, =] |[200.0, 100.0] |False| + + + + +### Defining the causal unit and aggregating + +To continue our analysis, we would like to structure and complete the parsed information to form "causal units", which will be the units on which our causal analysis will be performed. If we think of causality in other contexts, the causal units could be patients in a medical context, or individuals in an economic/social study. + +Causal units are defined by one of the available attributes. In a medical context, this could be "patient name". In a systems context, we could pick one of the variables parsed from the log and call `set_causal_unit()`. For example, the call below indicates that each causal unit should be a `1 ms`-long time interval (not that this choice may not be appropriate in every setting): + + +```python title="Code" +s.set_causal_unit("Time", time_granularity=1) +``` +``` title="Output" +Causal unit set to Time (tag: Time) with time_granularity 1 ms +``` + +Given the causal unit, we can then ask Sawmill to perpare the log for analysis by using `prepare()`. Preparing the log involves two distinct tasks: + +1. Aggregation: Based on our choice of causal unit, there might be variables that take a multitude of values on different log lines associated with the same causal unit. For example, had we chosen a 10ms window as our causal unit, there would have been 10 lines reporting values of `x`. From this multitude of values, a fixed set of values must be derived (e.g. we could always keep the mean, or the last value seen). By default, Sawmill will generate the `min`, `max` and `mean` for numerical variables; the most recent value for string variables; and the least recent value for date-typed variables. + +2. Imputation: On the other end of the spectrum, there might be variables that are never observed within some causal unit. For example, `z` is only reported every approximately `100 ms`, so it should be missing most of the time, if our causal unit is a `1 ms` window. Whether and how to impute such missing values is application-dependent, since we must avoid information leakage from one causal unit to another or risk violating SUTVA. In this case, we know that `z` should be interpreted as a "sticky" value, but `x` and `y` should not be imputed. + +After aggregating and imputing, we drop any causal units that still have missing values. + + +```python title="Code" +imputation_functions = {'z': 'ffill_imp'} +s.prepare(custom_imp=imputation_functions, force=True) +s.prepared_log.head(10) +``` +``` title="Output" +Dropped 1 identifier columns. +Calculating aggregates for each causal unit... + + +Imputing missing values...: 100%|██████████| 9/9 [00:00<00:00, 3577.06it/s] +One-hot encoding categorical variables...: 0it [00:00, ?it/s] +~/causal-log/src/sawmill/sawmill.py:658: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead. + self._prepared_log[date_cols] = self._prepared_log[date_cols].applymap( +~/causal-log/src/sawmill/sawmill.py:666: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead. + self._prepared_log[time_cols] = self._prepared_log[time_cols].applymap( +Dumping pkl file to datasets/xyzw_logs/log_2023-03-14_20:55:49/log_2023-03-14_20:55:49.log_prepared_log_Time.pkl...: 100%|██████████| 1/1 [00:00<00:00, 865.16it/s] +Dumping pkl file to datasets/xyzw_logs/log_2023-03-14_20:55:49/log_2023-03-14_20:55:49.log_prepared_variables_Time.pkl...: 100%|██████████| 1/1 [00:00<00:00, 1365.78it/s] + +Successfully prepared the log with causal unit Time + (tag: Time) with time_granularity 1 ms +Preparation complete in 8.887855 seconds! +``` + +| | ac34c703_7+mean | ac34c703_7+min | ac34c703_7+max | 62ff3fb7_11+mean | 62ff3fb7_11+min | 62ff3fb7_11+max | ff661264_12+mean | ff661264_12+min | ff661264_12+max | +|-----------------------:|---------------:|---------------:|-----------------:|----------------:|----------------:|-----------------:|----------------:|----------------:|-------| +| **Time+earliest** | | | | | | | | | | +| 0 days 20:55:49.170591 | 199.659262 | 199.659262 | 199.659262 | 399.690577 | 399.690577 | 399.690577 | 200.0 | 200.0 | 200.0 | +| 0 days 20:55:49.173591 | 200.068149 | 200.068149 | 200.068149 | 400.227124 | 400.227124 | 400.227124 | 200.0 | 200.0 | 200.0 | +| 0 days 20:55:49.175591 | 199.504039 | 199.504039 | 199.504039 | 400.083430 | 400.083430 | 400.083430 | 200.0 | 200.0 | 200.0 | +| 0 days 20:55:49.178591 | 200.158634 | 200.158634 | 200.158634 | 399.188180 | 399.188180 | 399.188180 | 200.0 | 200.0 | 200.0 | +| 0 days 20:55:49.179591 | 200.934658 | 200.934658 | 200.934658 | 400.514334 | 400.514334 | 400.514334 | 200.0 | 200.0 | 200.0 | +| 0 days 20:55:49.181591 | 200.065517 | 200.065517 | 200.065517 | 399.894171 | 399.894171 | 399.894171 | 200.0 | 200.0 | 200.0 | +| 0 days 20:55:49.182591 | 200.937334 | 200.937334 | 200.937334 | 400.577257 | 400.577257 | 400.577257 | 200.0 | 200.0 | 200.0 | +| 0 days 20:55:49.183591 | 199.831092 | 199.831092 | 199.831092 | 399.077464 | 399.077464 | 399.077464 | 200.0 | 200.0 | 200.0 | +| 0 days 20:55:49.188591 | 199.372097 | 199.372097 | 199.372097 | 399.650472 | 399.650472 | 399.650472 | 200.0 | 200.0 | 200.0 | +| 0 days 20:55:49.193591 | 200.476665 | 200.476665 | 200.476665 | 400.613001 | 400.613001 | 400.613001 | 200.0 | 200.0 | 200.0 | + + + + +### Graph exploration and ATE calculation + +We're now ready to proceed to our analysis! First, let's pick the variable that interests us, and ask the system for candidate causes for it. Remember from our data generation process, that `y` appears to be roughly equal to `2x`, but that both `x` and `y` are in fact driven by the value of `z`: + + +```python title="Code" +s.explore_candidate_causes("y mean") +``` + +| |Candidate |Tag |Slope| P-value| Candidate->Target Edge Status| Target->Candidate Edge Status| +|-|-|-|-|-|-|-| +|0| ac34c703_7+mean| X mean| 2.000074| 0.0| Accepted |Rejected| +|1| ff661264_12+mean |z mean |2.000228 |0.0 |Accepted |Rejected| + + + +As expected, the system cannot meaningfully distinguish between the impact of `X` and `z` on `y`, since `X` is essentially a slightly noisy version of `z`. Both are reported with similar relationship strengths, so let's accept both edges into the causal graph. + + +```python title="Code" +s.accept('X mean', 'y mean', interactive=False) +s.accept('z mean', 'y mean') +``` + + + + + + + + +Based on this trivial causal graph, we can calculate the ATE: + + +```python title="Code" +s.get_unadjusted_ate("X mean", "y mean") +``` + + + +```title="Output" +2.00007436079689 +``` + + + + +However, let's now assume that we are (thankfully) not yet fully convinced, and would like to look for any possible confounding. Let's ask the system for candidates causes of `X`: + + +```python title="Code" +s.explore_candidate_causes("X mean") +``` + + +| |Candidate| Tag |Slope| P-value| Candidate->Target Edge Status |Target->Candidate Edge Status| +|-|-|-|-|-|-|-| +|0 |62ff3fb7_11+mean |y mean |0.499895 |0.0 |Rejected |Accepted| +|1| ff661264_12+mean |z mean |0.999940| 0.0| Undecided |Undecided| + + + +`z` is successfully detected once more, and we can use domain knowledge to judge that `z` influencing `X` is the correct direction. Indeed, let's see what happens if we add it to the graph: + + +```python title="Code" +s.accept('z mean', 'X mean') +``` + + + + + + + + +```python title="Code" +s.get_unadjusted_ate("X mean", "y mean") +``` + + + +``` title="Output" +2.00007436079689 +``` + + + + +```python title="Code" +s.get_adjusted_ate("X mean", "y mean") +``` + + + +``` title="Output" +-0.0249128594251147 +``` + + +That is, after adjusting for `z`, the effect of `x` on `y` is negligible. + +## PostgreSQL/TPC-DS Example + +Now that we saw the basics of the framework, let's try to apply it to logs from a real system. + +We set up a PostgreSQL instance and load it with the data from TPC-DS with scale factor 1. We then run a workload in which we issue the queries in the TPC-DS workload once each (except for 4 particularly long-running queries, to expedite development 😅). + +We use PostgreSQL's logging to capture the execution of this workload: + + +``` title="Log Excerpt" +2023-11-01 17:54:53.027 EDT [ 6542c92d.1f943 3/5186 ] postgres@tpcds1 LOG: statement: BEGIN +2023-11-01 17:54:53.027 EDT [ 6542c92d.1f943 3/5186 ] postgres@tpcds1 LOG: duration: 0.033 ms +2023-11-01 17:54:53.028 EDT [ 6542c92d.1f943 3/5186 ] postgres@tpcds1 LOG: statement: -- Filename: query080.sql + + with ssr as + (select s_store_id as store_id, + sum(ss_ext_sales_price) as sales, + sum(coalesce(sr_return_amt, 0)) as returns, + sum(ss_net_profit - coalesce(sr_net_loss, 0)) as profit + from store_sales left outer join store_returns on +``` + + + +We configure logging to print out the latency of every query, and the prefix of each line is set to `%m [ %c %v ] %q%u@%d`, where: + +- %m = timestamp with milliseconds +- %c = session ID +- %v = virtual transaction ID +- %q = stop here in non-session processes +- %u = user name +- %d = database name + +We run this workload 8 times total, each using a new connection - 2 runs each for each of 4 different parameter configurations. + +For each parameter configuration, we decide on a total memory budget (128 kB or 256 kB). We then set the number of `max_parallel_workers` to 1 or 2, and the amount of `work_mem` to the budget divided by the number of max parallel workers. For example: + + +```python title="Log Excerpt" + +2023-11-01 17:54:53.018 EDT [ 6542c92d.1f943 3/5184 ] postgres@tpcds1 LOG: statement: BEGIN +2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/5184 ] postgres@tpcds1 LOG: duration: 0.076 ms +2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/5184 ] postgres@tpcds1 LOG: statement: SET max_parallel_workers = 1; +2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/5184 ] postgres@tpcds1 LOG: duration: 0.062 ms +2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/5184 ] postgres@tpcds1 LOG: statement: COMMIT +2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/0 ] postgres@tpcds1 LOG: duration: 0.030 ms +2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/5185 ] postgres@tpcds1 LOG: statement: BEGIN +2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/5185 ] postgres@tpcds1 LOG: duration: 0.023 ms +2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/5185 ] postgres@tpcds1 LOG: statement: SET work_mem = '128.0'; +2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/5185 ] postgres@tpcds1 LOG: duration: 0.044 ms +2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/5185 ] postgres@tpcds1 LOG: statement: COMMIT +2023-11-01 17:54:53.019 EDT [ 6542c92d.1f943 3/0 ] postgres@tpcds1 LOG: duration: 0.026 ms + +``` + +Can we use Sawmill to find the causal effect of these modifications on query runtime? + +### Parsing and preparation + +Since we run each iteration of the workload in a separate connection, we can extract the connection ID from each log line and use it to define our causal units. We also specify that each log message begins with a timestamp, so that Samwill can collapse multi-line log messages into a single message: + + +```python title="Code" +s2 = Sawmill("datasets_raw/tpc-ds/work_mem_2_256kB_2_128kB_parallel_1_2.log", workdir="datasets/tpc-ds") +s2.parse(regex_dict={"Date": r'\d{4}-\d{2}-\d{2}', + "Time": r'\d{2}:\d{2}:\d{2}\.\d{3}(?= EDT \[ )', + "sessionID" : r'(?<=EDT \[ )\S+\.\S+', + "tID": r'3/\d+(?= ] )' + },message_prefix=r'\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}.\d{3}', force=True) +s2.set_causal_unit("sessionID") +s2.prepare(force = True) +``` +``` title="Output" +Initialized Sawmill with log file datasets_raw/tpc-ds/work_mem_2_256kB_2_128kB_parallel_1_2.log +Work directory set to datasets/tpc-ds +Parsing file: datasets_raw/tpc-ds/work_mem_2_256kB_2_128kB_parallel_1_2.log + + +Reading and tokenizing log lines...: 100%|██████████| 42108/42108 [00:00<00:00, 85860.79it/s] +Determining template for each line...: 100%|██████████| 4687/4687 [00:00<00:00, 65351.69it/s] +Extracting variables from each line...: 100%|██████████| 100/100 [00:00<00:00, 349.71it/s] + + +Variables generated from regexes: 4 +Variables generated by Drain: 63 +Templates with at least 1 non-regex variable: 100 +Templates with at least 2 occurrences: 99 + + +Determining variable types...: 100%|██████████| 67/67 [00:00<00:00, 49414.17it/s] +Casting date variables...: 100%|██████████| 1/1 [00:00<00:00, 431.11it/s] +Casting time variables...: 100%|██████████| 2/2 [00:00<00:00, 275.95it/s] +Casting numerical variables...: 100%|██████████| 5/5 [00:00<00:00, 1644.05it/s] +Tagging variables...: 100%|██████████| 67/67 [00:00<00:00, 83018.72it/s] +Detecting identifiers...: 100%|██████████| 67/67 [00:00<00:00, 4675.30it/s] +Dumping pkl file to datasets/tpc-ds/work_mem_2_256kB_2_128kB_parallel_1_2.log_parsed_log_None.pkl...: 100%|██████████| 1/1 [00:00<00:00, 95.75it/s] +Dumping pkl file to datasets/tpc-ds/work_mem_2_256kB_2_128kB_parallel_1_2.log_parsed_templates_None.pkl...: 100%|██████████| 1/1 [00:00<00:00, 1182.83it/s] +Dumping pkl file to datasets/tpc-ds/work_mem_2_256kB_2_128kB_parallel_1_2.log_parsed_variables_None.pkl...: 100%|██████████| 1/1 [00:00<00:00, 1450.81it/s] + + +Parsing complete in 1.088751 seconds! +Causal unit set to sessionID (tag: sessionID) +Dropped 3 identifier columns. +Calculating aggregates for each causal unit... + + +Imputing missing values...: 100%|██████████| 73/73 [00:00<00:00, 16921.86it/s] +One-hot encoding categorical variables...: 100%|██████████| 57/57 [00:00<00:00, 996.50it/s] +Dumping pkl file to datasets/tpc-ds/work_mem_2_256kB_2_128kB_parallel_1_2.log_prepared_log_sessionID.pkl...: 100%|██████████| 1/1 [00:00<00:00, 2413.29it/s] +Dumping pkl file to datasets/tpc-ds/work_mem_2_256kB_2_128kB_parallel_1_2.log_prepared_variables_sessionID.pkl...: 100%|██████████| 1/1 [00:00<00:00, 1171.59it/s] + +Successfully prepared the log with causal unit sessionID + (tag: sessionID) +Preparation complete in 0.343447 seconds! + +``` + + + + +Now, the prepared log consists of one causal unit per run of the workload: + + +```python title="Code" +s2.prepared_log +``` + + +| | Date+earliest | 8ea7bb0e_23+mean | 8ea7bb0e_23+min | 8ea7bb0e_23+max | 424c4f52_12+mean | 424c4f52_12+min | 424c4f52_12+max | f1c25a57_15+mean | f1c25a57_15+min | f1c25a57_15+max | 80cfbe3b_16+mean | 80cfbe3b_16+min | 80cfbe3b_16+max | 758612aa_26+mean | 758612aa_26+min | 758612aa_26+max | f20ea3d3_12+latest=COMMIT | 7fce1bc0_15+latest=query020.sql | 7fce1bc0_29+latest=cs_ext_sales_price | 7fce1bc0_36+latest=cs_ext_sales_price | 7fce1bc0_42+latest=cs_ext_sales_price | 7fce1bc0_54+latest=catalog_sales | 7fce1bc0_60+latest=cs_item_sk | 7fce1bc0_80+latest=cs_sold_date_sk | f8592a76_15+latest=query053.sql | f8592a76_21+latest=i_manufact_id | f8592a76_40+latest=i_manufact_id | f8592a76_42+latest=avg_quarterly_sales | f8592a76_220+latest=i_manufact_id | f8592a76_222+latest=d_qoy | f8592a76_228+latest=avg_quarterly_sales | f8592a76_236+latest=avg_quarterly_sales | f8592a76_239+latest=avg_quarterly_sales | f8592a76_247+latest=avg_quarterly_sales | f8592a76_249+latest=sum_sales | f8592a76_251+latest=i_manufact_id | 7e11a9a5_15+latest=query026.sql | 7e11a9a5_21+latest=cs_quantity | 7e11a9a5_27+latest=cs_list_price | 7e11a9a5_33+latest=cs_coupon_amt | 7e11a9a5_39+latest=cs_sales_price | 7e11a9a5_43+latest=catalog_sales | 7e11a9a5_53+latest=cs_sold_date_sk | 7e11a9a5_57+latest=cs_item_sk | 7e11a9a5_61+latest=cs_bill_cdemo_sk | 7e11a9a5_65+latest=cs_promo_sk | 252996ec_15+latest=query099.sql | 252996ec_28+latest=cc_name | 252996ec_35+latest=cs_ship_date_sk | 252996ec_37+latest=cs_sold_date_sk | 252996ec_59+latest=cs_ship_date_sk | 252996ec_61+latest=cs_sold_date_sk | 252996ec_67+latest=cs_ship_date_sk | 252996ec_69+latest=cs_sold_date_sk | 252996ec_91+latest=cs_ship_date_sk | 252996ec_93+latest=cs_sold_date_sk | 252996ec_99+latest=cs_ship_date_sk | 252996ec_101+latest=cs_sold_date_sk | 252996ec_123+latest=cs_ship_date_sk | 252996ec_125+latest=cs_sold_date_sk | 252996ec_131+latest=cs_ship_date_sk | 252996ec_133+latest=cs_sold_date_sk | 252996ec_155+latest=cs_ship_date_sk | 252996ec_157+latest=cs_sold_date_sk | 252996ec_173+latest=catalog_sales | 252996ec_179+latest=call_center | 252996ec_191+latest=cs_ship_date_sk | 252996ec_195+latest=cs_warehouse_sk | 252996ec_199+latest=cs_ship_mode_sk | 252996ec_203+latest=cs_call_center_sk | 252996ec_205+latest=cc_call_center_sk | 252996ec_219+latest=cc_name | 252996ec_233+latest=cc_name | +|-----------------:|-----------------:|----------------:|----------------:|-----------------:|----------------:|----------------:|-----------------:|----------------:|----------------:|-----------------:|----------------:|----------------:|-----------------:|----------------:|----------------:|--------------------------:|--------------------------------:|--------------------------------------:|--------------------------------------:|--------------------------------------:|---------------------------------:|------------------------------:|-----------------------------------:|--------------------------------:|---------------------------------:|---------------------------------:|---------------------------------------:|----------------------------------:|--------------------------:|----------------------------------------:|----------------------------------------:|----------------------------------------:|----------------------------------------:|------------------------------:|----------------------------------:|--------------------------------:|-------------------------------:|---------------------------------:|---------------------------------:|----------------------------------:|---------------------------------:|-----------------------------------:|------------------------------:|------------------------------------:|-------------------------------:|--------------------------------:|---------------------------:|-----------------------------------:|-----------------------------------:|-----------------------------------:|-----------------------------------:|-----------------------------------:|-----------------------------------:|-----------------------------------:|-----------------------------------:|-----------------------------------:|------------------------------------:|------------------------------------:|------------------------------------:|------------------------------------:|------------------------------------:|------------------------------------:|------------------------------------:|----------------------------------:|--------------------------------:|------------------------------------:|------------------------------------:|------------------------------------:|--------------------------------------:|--------------------------------------:|----------------------------:|----------------------------:|------| +| **sessionID+latest** | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | +| 6542c92d.1f943 | 1.698797e+12 | 42396.0 | 42396.0 | 42396.0 | 13483.595990 | 0.020 | 2935111.471 | 1.0 | 1.0 | 1.0 | 128.0 | 128.0 | 128.0 | 42396.0 | 42396.0 | 42396.0 | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | +| 6542d880.1fc1b | 1.698797e+12 | 51214.0 | 51214.0 | 51214.0 | 13126.180309 | 0.021 | 2876689.649 | 1.0 | 1.0 | 1.0 | 128.0 | 128.0 | 128.0 | 51214.0 | 51214.0 | 51214.0 | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | +| 6542e76c.1fe63 | 1.698797e+12 | 54898.0 | 54898.0 | 54898.0 | 22983.408399 | 0.023 | 4460683.070 | 2.0 | 2.0 | 2.0 | 64.0 | 64.0 | 64.0 | 54898.0 | 54898.0 | 54898.0 | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | +| 6543018c.20227 | 1.698797e+12 | 47566.0 | 47566.0 | 47566.0 | 23075.070997 | 0.023 | 4477061.260 | 2.0 | 2.0 | 2.0 | 64.0 | 64.0 | 64.0 | 47566.0 | 47566.0 | 47566.0 | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | +| 65431bc7.20615 | 1.698797e+12 | 60122.0 | 60122.0 | 60122.0 | 2707.956093 | 0.021 | 423565.150 | 1.0 | 1.0 | 1.0 | 256.0 | 256.0 | 256.0 | 60122.0 | 60122.0 | 60122.0 | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | +| 65431ef0.2073a | 1.698883e+12 | 47102.0 | 47102.0 | 47102.0 | 2781.880526 | 0.019 | 423792.790 | 1.0 | 1.0 | 1.0 | 256.0 | 256.0 | 256.0 | 47102.0 | 47102.0 | 47102.0 | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | +| 6543221a.2085f | 1.698883e+12 | 43972.0 | 43972.0 | 43972.0 | 13000.099663 | 0.024 | 2868369.399 | 2.0 | 2.0 | 2.0 | 128.0 | 128.0 | 128.0 | 43972.0 | 43972.0 | 43972.0 | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | +| 654330e1.20b8f | 1.698883e+12 | 37380.0 | 37380.0 | 37380.0 | 13005.023144 | 0.024 | 2871176.389 | 2.0 | 2.0 | 2.0 | 128.0 | 128.0 | 128.0 | 37380.0 | 37380.0 | 37380.0 | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | True | + + +### Graph exploration and ATE calculation + +We ask for candidate causes of query duration: + + +```python title="Code" +s2.explore_candidate_causes("duration mean") +``` + + +| |Candidate| Tag| Slope| P-value| Candidate->Target Edge Status| Target->Candidate Edge Status| +|-|-|-|-|-|-|-| +|0| 80cfbe3b_16+mean| work_mem mean| -1.005257e+02| 0.000029| Undecided |Undecided| +|1 |Date+earliest |Date earliest |7.664300e-09 |0.001963 |Undecided |Undecided| +|2| f1c25a57_15+mean| max_parallel_workers mean |9.990997e+03| 0.055041| Undecided |Undecided| +|3 |8ea7bb0e_23+mean |port mean |-1.459892e-01 |0.745097 |Undecided |Undecided| +|4| 758612aa_26+mean| port mean| -1.459892e-01| 0.745097 |Undecided |Undecided| + + + +Let's learn more about some of the top candidate causes: + + +```python title="Code" +s2.inspect('work_mem mean') +``` +``` title="Output" +Information about prepared variable 80cfbe3b_16+mean: + +--> Variable Information about 80cfbe3b_16: +``` + +|Name| Tag| Type| IsUninteresting| Occurrences| Preceding 3 tokens| Examples| From regex| Aggregates| +|-|-|-|-|-|-|-|-|-| +| 80cfbe3b_16 |work_mem| num| False| 8| [work_mem, =, ']| [128.0, 64.0, 256.0]| False |[mean, min, max]| + + +``` title="Output" +--> Template Information about 80cfbe3b: +``` + +|TemplateText| TemplateId| Occurrences| VariableIndices| RegexIndices| +|-|-|-|-|-| +|<\*0> <\*1> EDT [ <\*2> <\*3> ] postgres@tpcds1 LOG : statement : SET work_mem = ' <\*> ' ;| 80cfbe3b| 8| [16]| [0, 1, 4, 5]| + +``` title="Output" +--> Causal Unit Partial Information: +``` + +|   | 80cfbe3b_16+mean (candidate) | +|-|-| +| **sessionID+latest** | | +|6542c92d.1f943 |128.0| +|6542d880.1fc1b| 128.0| +|6542e76c.1fe63 |64.0| +|6543018c.20227| 64.0| +|65431bc7.20615 |256.0| +|65431ef0.2073a |256.0| +|6543221a.2085f |128.0| +|654330e1.20b8f |128.0| + + + +```python title="Code" +s2.inspect('max_parallel_workers mean') +``` +``` title="Output" +Information about prepared variable f1c25a57_15+mean: + +--> Variable Information about f1c25a57_15: +``` + +|Name| Tag |Type| IsUninteresting |Occurrences| Preceding 3 tokens| Examples |From regex| Aggregates| +|-|-|-|-|-|-|-|-|-| +|f1c25a57_15| max_parallel_workers| num| False| 8| [SET, max_parallel_workers, =]| [1, 2]| False| [mean, min, max]| + + + +``` title="Output" +--> Template Information about f1c25a57: +``` + +|TemplateText| TemplateId| Occurrences| VariableIndices| RegexIndices| +|-|-|-|-|-| +|<\*0> <\*1> EDT [ <\*2> <\*3> ] postgres@tpcds1 LOG : statement : SET max_parallel_workers = <\*> ; |f1c25a57| 8| [15]| [0, 1, 4, 5]| + +``` title="Output" +--> Causal Unit Partial Information: +``` + +| |f1c25a57_15+mean (candidate)| +|-|-| +|**sessionID+latest** | | +|6542c92d.1f943| 1.0| +|6542d880.1fc1b |1.0| +|6542e76c.1fe63 |2.0| +|6543018c.20227 |2.0| +|65431bc7.20615 |1.0| +|65431ef0.2073a |1.0| +|6543221a.2085f |2.0| +|654330e1.20b8f |2.0| + + + +Indeed, two of them correspond to the two parameters we are tweaking. Assuming we do not know the experiment set up, let's accept them both as causes. + + +```python title="Code" +s2.accept('work_mem mean', 'duration mean', interactive=False) +s2.accept('max_parallel_workers mean', 'duration mean') +``` + + + + + + +Let's now look at the corresponding ATE of the number of `max_parallel_workers` on the mean query latency. Intuitively, more parallelism should help so this should be negative: + + +```python title="Code" +s2.get_adjusted_ate("max_parallel_workers mean", "duration mean") +``` + + +``` title="Output" +-1588.99225407086 +``` + + + +What if we hadn't considered the amount of working memory as a cause? + + +```python title="Code" +s2.get_unadjusted_ate("max_parallel_workers mean", "duration mean") +``` + + + +``` title="Output" +9990.99732122586 +``` + + +Surprising discrepancy! Let's look at the underlying data though: + + +```python title="Code" +t = s2.prepared_log[["80cfbe3b_16+mean", "f1c25a57_15+mean", "424c4f52_12+mean"]] +t.columns = ["work_mem", "max_parallel_workers", "mean_latency"] +t +``` + +| |work_mem| max_parallel_workers |mean_latency| +|-|-|-|-| +|**sessionID+latest** | | | +|6542c92d.1f943 |128.0| 1.0| 13483.595990| +|6542d880.1fc1b |128.0 |1.0 |13126.180309| +|6542e76c.1fe63 |64.0 |2.0| 22983.408399| +|6543018c.20227 |64.0 |2.0 |23075.070997| +|65431bc7.20615 |256.0| 1.0| 2707.956093| +|65431ef0.2073a |256.0 |1.0 |2781.880526| +|6543221a.2085f |128.0| 2.0| 13000.099663| +|654330e1.20b8f |128.0 |2.0 |13005.023144| + + + +Indeed, for a fixed amount of working memory, more parallelism leads to lower latency. But because of how we set up the experiment, more parallelism comes at the expense of working memory, so naively looking at only the 2 right-hand columns above would indeed make us think that more parallelism means *higher* latency! diff --git a/docs/reference/SUMMARY.md b/docs/reference/SUMMARY.md new file mode 100644 index 0000000..9669f85 --- /dev/null +++ b/docs/reference/SUMMARY.md @@ -0,0 +1,15 @@ +* src + * [sawmill](src/sawmill/index.md) + * aggimp + * [agg_funcs](src/sawmill/aggimp/agg_funcs.md) + * [imp_funcs](src/sawmill/aggimp/imp_funcs.md) + * [drain](src/sawmill/drain.md) + * [graph_renderer](src/sawmill/graph_renderer.md) + * [pickler](src/sawmill/pickler.md) + * [printer](src/sawmill/printer.md) + * [regression](src/sawmill/regression.md) + * [sawmill](src/sawmill/sawmill.md) + * [tag_utils](src/sawmill/tag_utils.md) + * variable_name + * [parsed_variable_name](src/sawmill/variable_name/parsed_variable_name.md) + * [prepared_variable_name](src/sawmill/variable_name/prepared_variable_name.md) diff --git a/docs/reference/src/sawmill/aggimp/agg_funcs.md b/docs/reference/src/sawmill/aggimp/agg_funcs.md new file mode 100644 index 0000000..70384ac --- /dev/null +++ b/docs/reference/src/sawmill/aggimp/agg_funcs.md @@ -0,0 +1 @@ +::: src.sawmill.aggimp.agg_funcs \ No newline at end of file diff --git a/docs/reference/src/sawmill/aggimp/imp_funcs.md b/docs/reference/src/sawmill/aggimp/imp_funcs.md new file mode 100644 index 0000000..0627a76 --- /dev/null +++ b/docs/reference/src/sawmill/aggimp/imp_funcs.md @@ -0,0 +1 @@ +::: src.sawmill.aggimp.imp_funcs \ No newline at end of file diff --git a/docs/reference/src/sawmill/drain.md b/docs/reference/src/sawmill/drain.md new file mode 100644 index 0000000..e8e37d7 --- /dev/null +++ b/docs/reference/src/sawmill/drain.md @@ -0,0 +1 @@ +::: src.sawmill.drain \ No newline at end of file diff --git a/docs/reference/src/sawmill/graph_renderer.md b/docs/reference/src/sawmill/graph_renderer.md new file mode 100644 index 0000000..25f0d1b --- /dev/null +++ b/docs/reference/src/sawmill/graph_renderer.md @@ -0,0 +1 @@ +::: src.sawmill.graph_renderer \ No newline at end of file diff --git a/docs/reference/src/sawmill/index.md b/docs/reference/src/sawmill/index.md new file mode 100644 index 0000000..6154652 --- /dev/null +++ b/docs/reference/src/sawmill/index.md @@ -0,0 +1 @@ +::: src.sawmill \ No newline at end of file diff --git a/docs/reference/src/sawmill/pickler.md b/docs/reference/src/sawmill/pickler.md new file mode 100644 index 0000000..eefee84 --- /dev/null +++ b/docs/reference/src/sawmill/pickler.md @@ -0,0 +1 @@ +::: src.sawmill.pickler \ No newline at end of file diff --git a/docs/reference/src/sawmill/printer.md b/docs/reference/src/sawmill/printer.md new file mode 100644 index 0000000..f371f73 --- /dev/null +++ b/docs/reference/src/sawmill/printer.md @@ -0,0 +1 @@ +::: src.sawmill.printer \ No newline at end of file diff --git a/docs/reference/src/sawmill/regression.md b/docs/reference/src/sawmill/regression.md new file mode 100644 index 0000000..03668b9 --- /dev/null +++ b/docs/reference/src/sawmill/regression.md @@ -0,0 +1 @@ +::: src.sawmill.regression \ No newline at end of file diff --git a/docs/reference/src/sawmill/sawmill.md b/docs/reference/src/sawmill/sawmill.md new file mode 100644 index 0000000..c7e1215 --- /dev/null +++ b/docs/reference/src/sawmill/sawmill.md @@ -0,0 +1 @@ +::: src.sawmill.sawmill \ No newline at end of file diff --git a/docs/reference/src/sawmill/tag_utils.md b/docs/reference/src/sawmill/tag_utils.md new file mode 100644 index 0000000..0626ac5 --- /dev/null +++ b/docs/reference/src/sawmill/tag_utils.md @@ -0,0 +1 @@ +::: src.sawmill.tag_utils \ No newline at end of file diff --git a/docs/reference/src/sawmill/variable_name/parsed_variable_name.md b/docs/reference/src/sawmill/variable_name/parsed_variable_name.md new file mode 100644 index 0000000..f0aaccc --- /dev/null +++ b/docs/reference/src/sawmill/variable_name/parsed_variable_name.md @@ -0,0 +1 @@ +::: src.sawmill.variable_name.parsed_variable_name \ No newline at end of file diff --git a/docs/reference/src/sawmill/variable_name/prepared_variable_name.md b/docs/reference/src/sawmill/variable_name/prepared_variable_name.md new file mode 100644 index 0000000..9e16ecf --- /dev/null +++ b/docs/reference/src/sawmill/variable_name/prepared_variable_name.md @@ -0,0 +1 @@ +::: src.sawmill.variable_name.prepared_variable_name \ No newline at end of file diff --git a/evaluation/2.2-existing-causal-discovery/discovery.py b/evaluation/2.2-existing-causal-discovery/discovery.py new file mode 100644 index 0000000..61205b3 --- /dev/null +++ b/evaluation/2.2-existing-causal-discovery/discovery.py @@ -0,0 +1,284 @@ +import pandas as pd +import sys + +sys.path.append("../..") +import threading +from causallearn.search.ConstraintBased.PC import pc +from causallearn.search.ConstraintBased.FCI import fci +from causallearn.search.FCMBased import lingam +from causallearn.search.FCMBased.lingam.utils import make_dot +from causallearn.search.HiddenCausal.GIN import GIN +from causallearn.search.PermutationBased.GRaSP import grasp +from causallearn.search.ScoreBased.GES import ges +from causallearn.search.ScoreBased.ExactSearch import bic_exact_search +from causallearn.graph.Endpoint import Endpoint +import pickle +from datetime import datetime +import multiprocessing as mp +from src.logos.graph_renderer import GraphRenderer +import networkx as nx +from src.logos.causal_discoverer import CausalDiscoverer + + +TIMEOUT_SECONDS = 30 * 60 + +PC_OPTIONS = [ + "fisherz", + "mv_fisherz", + "mc_fisherz", + "kci", + "chisq", + "gsq", + "d_separation", +] + +FCI_OPTIONS = ["fisherz", "kci", "chisq", "gsq"] + +LINGAM_OPTIONS = ['placeholder'] + +GIN_OPTIONS = ["kci", "hsic"] + +GRASP_OPTIONS = [ + "local_score_CV_general", + "local_score_marginal_general", + "local_score_CV_multi", + "local_score_marginal_multi", + "local_score_BIC", + "local_score_BDeu", +] + +GES_OPTIONS = [ + "local_score_CV_general", + "local_score_marginal_general", + "local_score_CV_multi", + "local_score_marginal_multi", + "local_score_BIC", + "local_score_BIC_from_cov", + "local_score_BDeu", +] + +EXACT_SEARCH_OPTIONS = ["dp", "astar"] + +GPT_OPTIONS = ["gpt-4"] + + +datasets = { + "PostgreSQL_filtered": { + "prepared_log": "~/causal-log/datasets/tpc-ds/parameter_sweep_1_filtered.log_prepared_log_sessionID_None.pkl", + "prepared_variables": "~/causal-log/datasets/tpc-ds/parameter_sweep_1_filtered.log_prepared_variables_sessionID_None.pkl", + }, + "XYZ_10": { + "prepared_log": "~/causal-log/datasets/xyz_extended/log_2023-12-22_13:13:01.log_prepared_log_machine_None.pkl", + "prepared_variables": "~/causal-log/datasets/xyz_extended/log_2023-12-22_13:13:01.log_prepared_variables_machine_None.pkl", + }, + "XYZ_100": { + "prepared_log": "~/causal-log/datasets/xyz_extended/log_2023-12-22_13:17:29.log_prepared_log_machine_None.pkl", + "prepared_variables": "~/causal-log/datasets/xyz_extended/log_2023-12-22_13:17:29.log_prepared_variables_machine_None.pkl", + }, + "XYZ_1000": { + "prepared_log": "~/causal-log/datasets/xyz_extended/log_2023-12-22_13:27:02.log_prepared_log_machine_None.pkl", + "prepared_variables": "~/causal-log/datasets/xyz_extended/log_2023-12-22_13:27:02.log_prepared_variables_machine_None.pkl", + }, + "OpenStack_Cinder": { + "prepared_log": "~/causal-log/datasets/OpenStack/Cinder/Cinder_combined_all.log_prepared_log_ID_None.pkl", + "prepared_variables": "~/causal-log/datasets/OpenStack/Cinder/Cinder_combined_all.log_prepared_variables_ID_None.pkl", + }, + "OpenStack_Neutron": { + "prepared_log": "~/causal-log/datasets/OpenStack/Neutron/Neutron_combined_all.log_prepared_log_ID_None.pkl", + "prepared_variables": "~/causal-log/datasets/OpenStack/Neutron/Neutron_combined_all.log_prepared_variables_ID_None.pkl", + }, + "OpenStack_Nova": { + "prepared_log": "~/causal-log/datasets/OpenStack/Nova/Nova_combined_all.log_prepared_log_ID_None.pkl", + "prepared_variables": "~/causal-log/datasets/OpenStack/Nova/Nova_combined_all.log_prepared_variables_ID_None.pkl", + }, + "Proprietary": { + "prepared_log": "~/causal-log/datasets/proprietary_logs/proprietary_eval/proprietary_1000users_10faulty_20pctfailfaulty_10pctfailnormal.log_prepared_log_User_None.pkl", + "prepared_variables": "~/causal-log/datasets/proprietary_logs/proprietary_eval/proprietary_1000users_10faulty_20pctfailfaulty_10pctfailnormal.log_prepared_variables_User_None.pkl", + }, +} + + +def run_method_with_timer(dataset_name, method_name, options, fres): + # Load the data + data_df = pd.read_pickle(datasets[dataset_name]["prepared_log"]) + data = data_df.to_numpy().astype(float) + vars_df = pd.read_pickle(datasets[dataset_name]["prepared_variables"]) + vars_df["Name_old"] = vars_df["Name"] + vars_df["Name"] = vars_df.index.to_list() + + ############################## + + # Define causal discovery methods + + def general_graph_to_nx_digraph(gg_cg): + # Convert the graph to a NetworkX DiGraph + nx_cg = nx.DiGraph() + for edge in gg_cg.get_graph_edges(): + node1 = edge.get_node1().get_name() + node2 = edge.get_node2().get_name() + points_left = edge.get_endpoint1() == Endpoint.ARROW and ( + edge.get_endpoint2() == Endpoint.TAIL + or edge.get_endpoint2() == Endpoint.CIRCLE + ) + points_right = edge.get_endpoint2() == Endpoint.ARROW and ( + edge.get_endpoint1() == Endpoint.TAIL + or edge.get_endpoint1() == Endpoint.CIRCLE + ) + if not points_left: # points right or undirected + nx_cg.add_edge(node1, node2) + if not points_right: # points left or undirected + nx_cg.add_edge(node2, node1) + + return nx_cg + + def run_pc(option): + cg = pc(data, indep_test=option, show_progress=False) + cg.to_nx_graph() + return cg.nx_graph + + def run_fci(option): + cg, _ = fci(data, independence_test_method=option, show_progress=False) + nx_cg = general_graph_to_nx_digraph(cg) + return nx_cg + + def run_lingam(option): + model = lingam.ICALiNGAM() + model.fit(data) + gv_cg = make_dot(model.adjacency_matrix_, labels=list(data_df.columns)) + + # Convert the Graphviz Digraph to NetworkX DiGraph + nx_cg = nx.DiGraph() + for line in gv_cg.body: + tokens = line.strip(";").split("->") + if len(tokens) == 2: + nx_cg.add_edge(tokens[0].strip(), tokens[1].strip()) + tokens = tokens[0].split("--") + if len(tokens) == 2: + nx_cg.add_edge(tokens[0].strip(), tokens[1].strip()) + nx_cg.add_edge(tokens[1].strip(), tokens[0].strip()) + return nx_cg + + def run_gin(option): + cg, _ = GIN.GIN(data, indep_test_method=option) + nx_cg = general_graph_to_nx_digraph(cg) + return nx_cg + + def run_grasp(option): + cg = grasp(data, score_func=option) + nx_cg = general_graph_to_nx_digraph(cg) + return nx_cg + + def run_ges(option): + record = ges(data, score_func=option) + nx_cg = general_graph_to_nx_digraph(record["G"]) + return nx_cg + + def run_exact_search(option): + matrix = bic_exact_search(data, search_method=option) + # Convert the matrix to a NetworkX DiGraph + # If matrix[i,j] == 1, then there is an edge from i to j + nx_cg = nx.DiGraph() + for i in range(matrix.shape[0]): + for j in range(matrix.shape[1]): + if matrix[i, j] == 1: + nx_cg.add_edge(i, j) + return nx_cg + + def run_gpt(option): + vars_df["Name"] = vars_df["Name_old"] + nx_cg = CausalDiscoverer.gpt(data_df, model=option, vars_df=vars_df) + vars_df["Name"] = vars_df.index.to_list() + return nx_cg + + # Run a function within a try except block + def run_safe(function, option): + try: + starttime = datetime.now() + nx_cg = function(option=option) + + # Check if the graph is empty + if nx_cg.number_of_edges() == 0: + fres.write( + f"{dataset_name},{method_name},{option},empty,{(datetime.now() - starttime).seconds}\n" + ) + fres.flush() + return + + # Remove isolated nodes + nx_cg.remove_nodes_from(list(nx.isolates(nx_cg))) + + print(f"{datetime.now()} Writing out {method_name} with {option}") + sys.stdout.flush() + fres.write( + f"{dataset_name},{method_name},{option},success,{(datetime.now() - starttime).seconds}\n" + ) + fres.flush() + + # Save the graph as png + GraphRenderer.save_graph( + nx_cg, vars_df, f"{dataset_name}_{method_name}_{option}.png" + ) + + # Write out graph as pickle + with open(f"{dataset_name}_{method_name}_{option}.pkl", "wb") as f: + pickle.dump(nx_cg, f) + except Exception as e: + print(f"{datetime.now()} Error running {function}: {e}") + sys.stdout.flush() + fres.write(f"{dataset_name},{method_name},{option},exception: {e},\n") + fres.flush() + + ############################## + + # Run the discovery + + for option in options: + process = mp.Process( + target=run_safe, + kwargs={"function": locals()[f"run_{method_name}"], "option": option}, + ) + print(f"{datetime.now()} Running {method_name} with {option}") + sys.stdout.flush() + + process.start() + process.join(TIMEOUT_SECONDS) + if process.is_alive(): + print(f"{datetime.now()} Function timed out") + fres.write( + f"{dataset_name},{method_name},{option},timeout,{TIMEOUT_SECONDS}\n" + ) + fres.flush() + process.terminate() # Terminate the process + process.join() # Clean up the process + + print(f"{datetime.now()} Done running {method_name} with {option}") + sys.stdout.flush() + + +def main(): + # Open logging files + fout = open(f"discovery.log", "a") + sys.stdout = fout + sys.stderr = fout + fres = open(f"discovery-results.csv", "a") + fres.write(f"dataset_name,method_name,option,result,time\n") + fres.flush() + + for dataset_name in datasets.keys(): + print("\n\n========================================\n\n") + print(f"{datetime.now()} Starting {dataset_name}\n") + #run_method_with_timer(dataset_name, "pc", PC_OPTIONS, fres) + #run_method_with_timer(dataset_name, "fci", FCI_OPTIONS, fres) + #run_method_with_timer(dataset_name, "lingam", LINGAM_OPTIONS, fres) + #run_method_with_timer(dataset_name, "gin", GIN_OPTIONS, fres) + #run_method_with_timer(dataset_name, "grasp", GRASP_OPTIONS, fres) + #run_method_with_timer(dataset_name, "ges", GES_OPTIONS, fres) + #run_method_with_timer(dataset_name, "exact_search", EXACT_SEARCH_OPTIONS, fres) + run_method_with_timer(dataset_name, "gpt", GPT_OPTIONS, fres) + + fout.close() + fres.close() + + +if __name__ == "__main__": + main() diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_fci_chisq.pkl b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_fci_chisq.pkl new file mode 100644 index 0000000..96ee461 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_fci_chisq.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_fci_chisq.png b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_fci_chisq.png new file mode 100644 index 0000000..c0f7108 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_fci_chisq.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_fci_chisq.pkl b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_fci_chisq.pkl new file mode 100644 index 0000000..46688fa Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_fci_chisq.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_fci_chisq.png b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_fci_chisq.png new file mode 100644 index 0000000..8e512e7 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_fci_chisq.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_ges_local_score_BDeu.pkl b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_ges_local_score_BDeu.pkl new file mode 100644 index 0000000..660ab22 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_ges_local_score_BDeu.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_ges_local_score_BDeu.png b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_ges_local_score_BDeu.png new file mode 100644 index 0000000..e697d59 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_ges_local_score_BDeu.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_grasp_local_score_BDeu.pkl b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_grasp_local_score_BDeu.pkl new file mode 100644 index 0000000..b388b60 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_grasp_local_score_BDeu.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_grasp_local_score_BDeu.png b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_grasp_local_score_BDeu.png new file mode 100644 index 0000000..f3f083f Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_grasp_local_score_BDeu.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_grasp_local_score_CV_general.pkl b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_grasp_local_score_CV_general.pkl new file mode 100644 index 0000000..f046a60 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_grasp_local_score_CV_general.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_grasp_local_score_CV_general.png b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_grasp_local_score_CV_general.png new file mode 100644 index 0000000..c660551 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_grasp_local_score_CV_general.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_pc_chisq.pkl b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_pc_chisq.pkl new file mode 100644 index 0000000..2305691 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_pc_chisq.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_pc_chisq.png b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_pc_chisq.png new file mode 100644 index 0000000..b55ef2d Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_filtered_pc_chisq.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_ges_local_score_BDeu.pkl b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_ges_local_score_BDeu.pkl new file mode 100644 index 0000000..acda4e2 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_ges_local_score_BDeu.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_ges_local_score_BDeu.png b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_ges_local_score_BDeu.png new file mode 100644 index 0000000..9a565f0 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_ges_local_score_BDeu.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_grasp_local_score_BDeu.pkl b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_grasp_local_score_BDeu.pkl new file mode 100644 index 0000000..dd94aa2 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_grasp_local_score_BDeu.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_grasp_local_score_BDeu.png b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_grasp_local_score_BDeu.png new file mode 100644 index 0000000..ac1e040 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_grasp_local_score_BDeu.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_grasp_local_score_CV_general.pkl b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_grasp_local_score_CV_general.pkl new file mode 100644 index 0000000..ebd4f66 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_grasp_local_score_CV_general.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_grasp_local_score_CV_general.png b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_grasp_local_score_CV_general.png new file mode 100644 index 0000000..816de1f Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_grasp_local_score_CV_general.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_pc_chisq.pkl b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_pc_chisq.pkl new file mode 100644 index 0000000..e803370 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_pc_chisq.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_pc_chisq.png b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_pc_chisq.png new file mode 100644 index 0000000..124c166 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/PostgreSQL_pc_chisq.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/Proprietary_fci_chisq.pkl b/evaluation/2.2-existing-causal-discovery/results/Proprietary_fci_chisq.pkl new file mode 100644 index 0000000..c901692 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/Proprietary_fci_chisq.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/Proprietary_fci_chisq.png b/evaluation/2.2-existing-causal-discovery/results/Proprietary_fci_chisq.png new file mode 100644 index 0000000..abf752d Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/Proprietary_fci_chisq.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/Proprietary_fci_gsq.pkl b/evaluation/2.2-existing-causal-discovery/results/Proprietary_fci_gsq.pkl new file mode 100644 index 0000000..d693be0 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/Proprietary_fci_gsq.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/Proprietary_fci_gsq.png b/evaluation/2.2-existing-causal-discovery/results/Proprietary_fci_gsq.png new file mode 100644 index 0000000..9a50a75 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/Proprietary_fci_gsq.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/Proprietary_pc_chisq.pkl b/evaluation/2.2-existing-causal-discovery/results/Proprietary_pc_chisq.pkl new file mode 100644 index 0000000..302a947 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/Proprietary_pc_chisq.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/Proprietary_pc_chisq.png b/evaluation/2.2-existing-causal-discovery/results/Proprietary_pc_chisq.png new file mode 100644 index 0000000..ff95d8f Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/Proprietary_pc_chisq.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/Proprietary_pc_gsq.pkl b/evaluation/2.2-existing-causal-discovery/results/Proprietary_pc_gsq.pkl new file mode 100644 index 0000000..ea47930 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/Proprietary_pc_gsq.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/Proprietary_pc_gsq.png b/evaluation/2.2-existing-causal-discovery/results/Proprietary_pc_gsq.png new file mode 100644 index 0000000..c8d4935 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/Proprietary_pc_gsq.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_100_fci_fisherz.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_fci_fisherz.pkl new file mode 100644 index 0000000..3e2089e Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_fci_fisherz.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_100_fci_fisherz.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_fci_fisherz.png new file mode 100644 index 0000000..eb63b8c Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_fci_fisherz.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_100_ges_local_score_BIC.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_ges_local_score_BIC.pkl new file mode 100644 index 0000000..f731d33 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_ges_local_score_BIC.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_100_ges_local_score_BIC.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_ges_local_score_BIC.png new file mode 100644 index 0000000..951d632 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_ges_local_score_BIC.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_100_ges_local_score_BIC_from_cov.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_ges_local_score_BIC_from_cov.pkl new file mode 100644 index 0000000..f731d33 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_ges_local_score_BIC_from_cov.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_100_ges_local_score_BIC_from_cov.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_ges_local_score_BIC_from_cov.png new file mode 100644 index 0000000..951d632 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_ges_local_score_BIC_from_cov.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_100_grasp_local_score_BIC.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_grasp_local_score_BIC.pkl new file mode 100644 index 0000000..ecef5f8 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_grasp_local_score_BIC.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_100_grasp_local_score_BIC.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_grasp_local_score_BIC.png new file mode 100644 index 0000000..ac89a50 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_grasp_local_score_BIC.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_100_lingam_placeholder.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_lingam_placeholder.pkl new file mode 100644 index 0000000..190bd10 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_lingam_placeholder.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_100_lingam_placeholder.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_lingam_placeholder.png new file mode 100644 index 0000000..65d614f Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_lingam_placeholder.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_100_pc_fisherz.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_pc_fisherz.pkl new file mode 100644 index 0000000..4db424b Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_pc_fisherz.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_100_pc_fisherz.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_pc_fisherz.png new file mode 100644 index 0000000..26277ce Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_pc_fisherz.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_100_pc_mv_fisherz.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_pc_mv_fisherz.pkl new file mode 100644 index 0000000..4db424b Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_pc_mv_fisherz.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_100_pc_mv_fisherz.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_pc_mv_fisherz.png new file mode 100644 index 0000000..26277ce Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_100_pc_mv_fisherz.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_fci_chisq.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_fci_chisq.pkl new file mode 100644 index 0000000..24c301b Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_fci_chisq.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_fci_chisq.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_fci_chisq.png new file mode 100644 index 0000000..a847397 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_fci_chisq.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_fci_fisherz.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_fci_fisherz.pkl new file mode 100644 index 0000000..37a50dc Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_fci_fisherz.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_fci_fisherz.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_fci_fisherz.png new file mode 100644 index 0000000..7b772c4 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_fci_fisherz.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_fci_kci.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_fci_kci.pkl new file mode 100644 index 0000000..9002353 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_fci_kci.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_fci_kci.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_fci_kci.png new file mode 100644 index 0000000..08e5f0b Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_fci_kci.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_ges_local_score_BDeu.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_ges_local_score_BDeu.pkl new file mode 100644 index 0000000..a827cad Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_ges_local_score_BDeu.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_ges_local_score_BDeu.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_ges_local_score_BDeu.png new file mode 100644 index 0000000..69803f0 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_ges_local_score_BDeu.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_ges_local_score_BIC.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_ges_local_score_BIC.pkl new file mode 100644 index 0000000..2be558a Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_ges_local_score_BIC.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_ges_local_score_BIC.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_ges_local_score_BIC.png new file mode 100644 index 0000000..9c32e7c Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_ges_local_score_BIC.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_ges_local_score_BIC_from_cov.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_ges_local_score_BIC_from_cov.pkl new file mode 100644 index 0000000..2be558a Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_ges_local_score_BIC_from_cov.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_ges_local_score_BIC_from_cov.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_ges_local_score_BIC_from_cov.png new file mode 100644 index 0000000..9c32e7c Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_ges_local_score_BIC_from_cov.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_gin_hsic.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_gin_hsic.pkl new file mode 100644 index 0000000..be296d0 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_gin_hsic.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_gin_hsic.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_gin_hsic.png new file mode 100644 index 0000000..b67cbea Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_gin_hsic.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_gin_kci.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_gin_kci.pkl new file mode 100644 index 0000000..b07d314 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_gin_kci.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_gin_kci.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_gin_kci.png new file mode 100644 index 0000000..fada160 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_gin_kci.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_grasp_local_score_BDeu.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_grasp_local_score_BDeu.pkl new file mode 100644 index 0000000..0ca31c2 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_grasp_local_score_BDeu.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_grasp_local_score_BDeu.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_grasp_local_score_BDeu.png new file mode 100644 index 0000000..50b025e Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_grasp_local_score_BDeu.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_grasp_local_score_BIC.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_grasp_local_score_BIC.pkl new file mode 100644 index 0000000..502b087 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_grasp_local_score_BIC.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_grasp_local_score_BIC.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_grasp_local_score_BIC.png new file mode 100644 index 0000000..ca35478 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_grasp_local_score_BIC.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_grasp_local_score_CV_general.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_grasp_local_score_CV_general.pkl new file mode 100644 index 0000000..6d57124 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_grasp_local_score_CV_general.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_grasp_local_score_CV_general.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_grasp_local_score_CV_general.png new file mode 100644 index 0000000..4bb9ce2 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_grasp_local_score_CV_general.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_lingam_placeholder.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_lingam_placeholder.pkl new file mode 100644 index 0000000..0bd17cf Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_lingam_placeholder.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_lingam_placeholder.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_lingam_placeholder.png new file mode 100644 index 0000000..7a30692 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_lingam_placeholder.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_chisq.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_chisq.pkl new file mode 100644 index 0000000..1ec54ad Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_chisq.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_chisq.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_chisq.png new file mode 100644 index 0000000..8be55d3 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_chisq.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_fisherz.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_fisherz.pkl new file mode 100644 index 0000000..7c71e83 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_fisherz.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_fisherz.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_fisherz.png new file mode 100644 index 0000000..fee4301 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_fisherz.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_kci.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_kci.pkl new file mode 100644 index 0000000..cec9f1f Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_kci.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_kci.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_kci.png new file mode 100644 index 0000000..be97a15 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_kci.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_mv_fisherz.pkl b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_mv_fisherz.pkl new file mode 100644 index 0000000..7c71e83 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_mv_fisherz.pkl differ diff --git a/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_mv_fisherz.png b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_mv_fisherz.png new file mode 100644 index 0000000..fee4301 Binary files /dev/null and b/evaluation/2.2-existing-causal-discovery/results/XYZ_10_pc_mv_fisherz.png differ diff --git a/evaluation/2.2-existing-causal-discovery/results/discovery-results.csv b/evaluation/2.2-existing-causal-discovery/results/discovery-results.csv new file mode 100644 index 0000000..66cfd31 --- /dev/null +++ b/evaluation/2.2-existing-causal-discovery/results/discovery-results.csv @@ -0,0 +1,301 @@ +dataset_name,method_name,option,result,time +PostgreSQL,pc,fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +PostgreSQL,pc,mv_fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +PostgreSQL,pc,mc_fisherz,exception: 'm', +PostgreSQL,pc,kci,timeout,1800 +PostgreSQL,pc,chisq,success,1 +PostgreSQL,pc,gsq,empty,1 +PostgreSQL,pc,d_separation,exception: 'NoneType' object has no attribute 'is_directed', +PostgreSQL,fci,fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +PostgreSQL,fci,kci,timeout,1800 +PostgreSQL,fci,chisq,success,1 +PostgreSQL,fci,gsq,empty,2 +PostgreSQL,gin,kci,timeout,1800 +PostgreSQL,gin,hsic,timeout,1800 +PostgreSQL,grasp,local_score_CV_general,success,1545 +PostgreSQL,grasp,local_score_marginal_general,exception: Array must not contain infs or NaNs, +PostgreSQL,grasp,local_score_CV_multi,exception: 147, +PostgreSQL,grasp,local_score_marginal_multi,exception: 145, +PostgreSQL,grasp,local_score_BIC,exception: Singular matrix, +PostgreSQL,grasp,local_score_BDeu,success,183 +PostgreSQL,ges,local_score_CV_general,timeout,1800 +PostgreSQL,ges,local_score_marginal_general,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +PostgreSQL,ges,local_score_CV_multi,timeout,1800 +PostgreSQL,ges,local_score_marginal_multi,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +PostgreSQL,ges,local_score_BIC,exception: Singular matrix, +PostgreSQL,ges,local_score_BIC_from_cov,exception: Singular matrix, +PostgreSQL,ges,local_score_BDeu,success,1352 +PostgreSQL,exact_search,dp,exception: can only convert an array of size 1 to a Python scalar, +PostgreSQL,exact_search,astar,exception: can only convert an array of size 1 to a Python scalar, +XYZ_10,pc,fisherz,success,1 +XYZ_10,pc,mv_fisherz,success,3 +XYZ_10,pc,mc_fisherz,exception: 'm', +XYZ_10,pc,kci,success,341 +XYZ_10,pc,chisq,success,10 +XYZ_10,pc,gsq,empty,1 +XYZ_10,pc,d_separation,exception: 'NoneType' object has no attribute 'is_directed', +XYZ_10,fci,fisherz,success,1 +XYZ_10,fci,kci,success,314 +XYZ_10,fci,chisq,success,10 +XYZ_10,fci,gsq,empty,1 +XYZ_10,gin,kci,success,156 +XYZ_10,gin,hsic,success,197 +XYZ_10,grasp,local_score_CV_general,success,1729 +XYZ_10,grasp,local_score_marginal_general,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +XYZ_10,grasp,local_score_CV_multi,exception: 0, +XYZ_10,grasp,local_score_marginal_multi,exception: 10, +XYZ_10,grasp,local_score_BIC,success,1 +XYZ_10,grasp,local_score_BDeu,success,243 +XYZ_10,ges,local_score_CV_general,timeout,1800 +XYZ_10,ges,local_score_marginal_general,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +XYZ_10,ges,local_score_CV_multi,timeout,1800 +XYZ_10,ges,local_score_marginal_multi,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +XYZ_10,ges,local_score_BIC,success,54 +XYZ_10,ges,local_score_BIC_from_cov,success,57 +XYZ_10,ges,local_score_BDeu,success,428 +dataset_name,method_name,option,result,time +dataset_name,method_name,option,result,time +XYZ_100,pc,fisherz,success,95 +XYZ_100,pc,mv_fisherz,success,183 +XYZ_100,pc,mc_fisherz,exception: 'm', +XYZ_100,pc,kci,timeout,1800 +XYZ_100,pc,chisq,empty,93 +XYZ_100,pc,gsq,empty,121 +XYZ_100,pc,d_separation,exception: 'NoneType' object has no attribute 'is_directed', +XYZ_100,fci,fisherz,success,31 +XYZ_100,fci,kci,timeout,1800 +XYZ_100,fci,chisq,empty,95 +XYZ_100,fci,gsq,empty,122 +XYZ_100,gin,kci,timeout,1800 +XYZ_100,gin,hsic,timeout,1800 +XYZ_100,grasp,local_score_CV_general,timeout,1800 +XYZ_100,grasp,local_score_marginal_general,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +XYZ_100,grasp,local_score_CV_multi,exception: 55, +XYZ_100,grasp,local_score_marginal_multi,exception: 79, +XYZ_100,grasp,local_score_BIC,success,29 +XYZ_100,grasp,local_score_BDeu,timeout,1800 +XYZ_100,ges,local_score_CV_general,timeout,1800 +XYZ_100,ges,local_score_marginal_general,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +XYZ_100,ges,local_score_CV_multi,timeout,1800 +XYZ_100,ges,local_score_marginal_multi,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +XYZ_100,ges,local_score_BIC,success,1464 +XYZ_100,ges,local_score_BIC_from_cov,success,1466 +XYZ_100,ges,local_score_BDeu,timeout,1800 +XYZ_100,exact_search,dp,timeout,1800 +XYZ_100,exact_search,astar,timeout,1800 +XYZ_1000,pc,fisherz,timeout,1800 +XYZ_1000,pc,mv_fisherz,timeout,1800 +XYZ_1000,pc,mc_fisherz,exception: 'm', +XYZ_1000,pc,kci,timeout,1800 +XYZ_1000,pc,chisq,timeout,1800 +XYZ_1000,pc,gsq,timeout,1800 +XYZ_1000,pc,d_separation,exception: 'NoneType' object has no attribute 'is_directed', +XYZ_1000,fci,fisherz,timeout,1800 +XYZ_1000,fci,kci,timeout,1800 +XYZ_1000,fci,chisq,timeout,1800 +XYZ_1000,fci,gsq,timeout,1800 +XYZ_1000,gin,kci,timeout,1800 +XYZ_1000,gin,hsic,timeout,1800 +XYZ_1000,grasp,local_score_CV_general,timeout,1800 +XYZ_1000,grasp,local_score_marginal_general,exception: Array must not contain infs or NaNs, +XYZ_1000,grasp,local_score_CV_multi,exception: 191, +XYZ_1000,grasp,local_score_marginal_multi,exception: 66, +XYZ_1000,grasp,local_score_BIC,exception: Singular matrix, +XYZ_1000,grasp,local_score_BDeu,timeout,1800 +XYZ_1000,ges,local_score_CV_general,timeout,1800 +XYZ_1000,ges,local_score_marginal_general,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +XYZ_1000,ges,local_score_CV_multi,timeout,1800 +XYZ_1000,ges,local_score_marginal_multi,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +XYZ_1000,ges,local_score_BIC,timeout,1800 +XYZ_1000,ges,local_score_BIC_from_cov,timeout,1800 +XYZ_1000,ges,local_score_BDeu,timeout,1800 +XYZ_1000,exact_search,dp,timeout,1800 +XYZ_1000,exact_search,astar,timeout,1800 +OpenStack_Cinder,pc,fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +OpenStack_Cinder,pc,mv_fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +OpenStack_Cinder,pc,mc_fisherz,exception: 'm', +OpenStack_Cinder,pc,kci,timeout,1800 +dataset_name,method_name,option,result,time +OpenStack_Cinder,pc,fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +OpenStack_Cinder,pc,mv_fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +OpenStack_Cinder,pc,mc_fisherz,exception: 'm', +OpenStack_Cinder,pc,kci,timeout,1800 +OpenStack_Cinder,pc,chisq,timeout,1800 +OpenStack_Cinder,pc,gsq,timeout,1800 +OpenStack_Cinder,pc,d_separation,exception: 'NoneType' object has no attribute 'is_directed', +OpenStack_Cinder,fci,fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +OpenStack_Cinder,fci,kci,timeout,1800 +OpenStack_Cinder,fci,chisq,timeout,1800 +OpenStack_Cinder,fci,gsq,timeout,1800 +OpenStack_Cinder,gin,kci,timeout,1800 +OpenStack_Cinder,gin,hsic,timeout,1800 +OpenStack_Cinder,grasp,local_score_CV_general,timeout,1800 +OpenStack_Cinder,grasp,local_score_marginal_general,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +OpenStack_Cinder,grasp,local_score_CV_multi,exception: 576, +OpenStack_Cinder,grasp,local_score_marginal_multi,exception: 390, +OpenStack_Cinder,grasp,local_score_BIC,exception: Singular matrix, +OpenStack_Cinder,grasp,local_score_BDeu,timeout,1800 +OpenStack_Cinder,ges,local_score_CV_general,timeout,1800 +OpenStack_Cinder,ges,local_score_marginal_general,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +OpenStack_Cinder,ges,local_score_CV_multi,timeout,1800 +OpenStack_Cinder,ges,local_score_marginal_multi,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +OpenStack_Cinder,ges,local_score_BIC,exception: Singular matrix, +OpenStack_Cinder,ges,local_score_BIC_from_cov,exception: Singular matrix, +OpenStack_Cinder,ges,local_score_BDeu,timeout,1800 +OpenStack_Cinder,exact_search,dp,exception: can only convert an array of size 1 to a Python scalar, +OpenStack_Cinder,exact_search,astar,exception: can only convert an array of size 1 to a Python scalar, +OpenStack_Neutron,pc,fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +OpenStack_Neutron,pc,mv_fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +OpenStack_Neutron,pc,mc_fisherz,exception: 'm', +OpenStack_Neutron,pc,kci,timeout,1800 +OpenStack_Neutron,pc,chisq,timeout,1800 +OpenStack_Neutron,pc,gsq,timeout,1800 +OpenStack_Neutron,pc,d_separation,exception: 'NoneType' object has no attribute 'is_directed', +OpenStack_Neutron,fci,fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +OpenStack_Neutron,fci,kci,timeout,1800 +OpenStack_Neutron,fci,chisq,timeout,1800 +OpenStack_Neutron,fci,gsq,timeout,1800 +OpenStack_Neutron,gin,kci,timeout,1800 +OpenStack_Neutron,gin,hsic,timeout,1800 +OpenStack_Neutron,grasp,local_score_CV_general,timeout,1800 +OpenStack_Neutron,grasp,local_score_marginal_general,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +OpenStack_Neutron,grasp,local_score_CV_multi,exception: 256, +OpenStack_Neutron,grasp,local_score_marginal_multi,exception: 191, +OpenStack_Neutron,grasp,local_score_BIC,exception: Singular matrix, +OpenStack_Neutron,grasp,local_score_BDeu,timeout,1800 +OpenStack_Neutron,ges,local_score_CV_general,timeout,1800 +OpenStack_Neutron,ges,local_score_marginal_general,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +OpenStack_Neutron,ges,local_score_CV_multi,timeout,1800 +OpenStack_Neutron,ges,local_score_marginal_multi,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +OpenStack_Neutron,ges,local_score_BIC,timeout,1800 +OpenStack_Neutron,ges,local_score_BIC_from_cov,timeout,1800 +OpenStack_Neutron,ges,local_score_BDeu,timeout,1800 +OpenStack_Neutron,exact_search,dp,exception: can only convert an array of size 1 to a Python scalar, +OpenStack_Neutron,exact_search,astar,exception: can only convert an array of size 1 to a Python scalar, +OpenStack_Nova,pc,fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +OpenStack_Nova,pc,mv_fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +OpenStack_Nova,pc,mc_fisherz,exception: 'm', +OpenStack_Nova,pc,kci,timeout,1800 +OpenStack_Nova,pc,chisq,timeout,1800 +OpenStack_Nova,pc,gsq,timeout,1800 +OpenStack_Nova,pc,d_separation,exception: 'NoneType' object has no attribute 'is_directed', +OpenStack_Nova,fci,fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +OpenStack_Nova,fci,kci,timeout,1800 +OpenStack_Nova,fci,chisq,timeout,1800 +OpenStack_Nova,fci,gsq,timeout,1800 +OpenStack_Nova,gin,kci,timeout,1800 +OpenStack_Nova,gin,hsic,timeout,1800 +OpenStack_Nova,grasp,local_score_CV_general,timeout,1800 +OpenStack_Nova,grasp,local_score_marginal_general,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +OpenStack_Nova,grasp,local_score_CV_multi,exception: 611, +OpenStack_Nova,grasp,local_score_marginal_multi,exception: 590, +OpenStack_Nova,grasp,local_score_BIC,exception: Singular matrix, +OpenStack_Nova,grasp,local_score_BDeu,timeout,1800 +OpenStack_Nova,ges,local_score_CV_general,timeout,1800 +OpenStack_Nova,ges,local_score_marginal_general,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +OpenStack_Nova,ges,local_score_CV_multi,timeout,1800 +OpenStack_Nova,ges,local_score_marginal_multi,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +OpenStack_Nova,ges,local_score_BIC,exception: Singular matrix, +OpenStack_Nova,ges,local_score_BIC_from_cov,exception: Singular matrix, +OpenStack_Nova,ges,local_score_BDeu,timeout,1800 +OpenStack_Nova,exact_search,dp,exception: can only convert an array of size 1 to a Python scalar, +OpenStack_Nova,exact_search,astar,exception: can only convert an array of size 1 to a Python scalar, +Proprietary,pc,fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +Proprietary,pc,mv_fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +Proprietary,pc,mc_fisherz,exception: 'm', +Proprietary,pc,kci,timeout,1800 +Proprietary,pc,chisq,success,0 +Proprietary,pc,gsq,success,0 +Proprietary,pc,d_separation,exception: 'NoneType' object has no attribute 'is_directed', +Proprietary,fci,fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +Proprietary,fci,kci,timeout,1800 +Proprietary,fci,chisq,success,0 +Proprietary,fci,gsq,success,0 +Proprietary,gin,kci,timeout,1800 +Proprietary,gin,hsic,timeout,1800 +Proprietary,grasp,local_score_CV_general,timeout,1800 +Proprietary,grasp,local_score_marginal_general,exception: Array must not contain infs or NaNs, +Proprietary,grasp,local_score_CV_multi,exception: 32, +Proprietary,grasp,local_score_marginal_multi,exception: 17, +Proprietary,grasp,local_score_BIC,exception: Singular matrix, +Proprietary,grasp,local_score_BDeu,empty,19 +Proprietary,ges,local_score_CV_general,timeout,1800 +Proprietary,ges,local_score_marginal_general,exception: Array must not contain infs or NaNs, +Proprietary,ges,local_score_CV_multi,timeout,1800 +Proprietary,ges,local_score_marginal_multi,exception: Array must not contain infs or NaNs, +Proprietary,ges,local_score_BIC,exception: Singular matrix, +Proprietary,ges,local_score_BIC_from_cov,exception: Singular matrix, +Proprietary,ges,local_score_BDeu,empty,73 +Proprietary,exact_search,dp,exception: can only convert an array of size 1 to a Python scalar, +Proprietary,exact_search,astar,exception: can only convert an array of size 1 to a Python scalar, +dataset_name,method_name,option,result,time +PostgreSQL,lingam,placeholder,exception: cost matrix is infeasible, +XYZ_10,lingam,placeholder,success,0 +XYZ_100,lingam,placeholder,success,59 +XYZ_1000,lingam,placeholder,exception: index 1000 is out of bounds for axis 0 with size 1000, +OpenStack_Cinder,lingam,placeholder,exception: index 581 is out of bounds for axis 0 with size 538, +OpenStack_Neutron,lingam,placeholder,exception: index 429 is out of bounds for axis 0 with size 406, +OpenStack_Nova,lingam,placeholder,exception: index 879 is out of bounds for axis 0 with size 878, +Proprietary,lingam,placeholder,exception: cost matrix is infeasible, +dataset_name,method_name,option,result,time +XYZ_10,exact_search,dp,timeout,1800 +XYZ_10,exact_search,astar,timeout,1800 +dataset_name,method_name,option,result,time +PostgreSQL_filtered,pc,fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +PostgreSQL_filtered,pc,mv_fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +PostgreSQL_filtered,pc,mc_fisherz,exception: 'm', +PostgreSQL_filtered,pc,kci,timeout,1800 +PostgreSQL_filtered,pc,chisq,success,1 +PostgreSQL_filtered,pc,gsq,empty,1 +PostgreSQL_filtered,pc,d_separation,exception: 'NoneType' object has no attribute 'is_directed', +PostgreSQL_filtered,fci,fisherz,exception: Data correlation matrix is singular. Cannot run fisherz test. Please check your data., +PostgreSQL_filtered,fci,kci,timeout,1800 +PostgreSQL_filtered,fci,chisq,success,1 +PostgreSQL_filtered,fci,gsq,empty,1 +PostgreSQL_filtered,lingam,placeholder,exception: cost matrix is infeasible, +PostgreSQL_filtered,gin,kci,timeout,1800 +PostgreSQL_filtered,gin,hsic,timeout,1800 +PostgreSQL_filtered,grasp,local_score_CV_general,success,919 +PostgreSQL_filtered,grasp,local_score_marginal_general,exception: Array must not contain infs or NaNs, +PostgreSQL_filtered,grasp,local_score_CV_multi,exception: 147, +PostgreSQL_filtered,grasp,local_score_marginal_multi,exception: 122, +PostgreSQL_filtered,grasp,local_score_BIC,exception: Singular matrix, +PostgreSQL_filtered,grasp,local_score_BDeu,success,173 +PostgreSQL_filtered,ges,local_score_CV_general,timeout,1800 +PostgreSQL_filtered,ges,local_score_marginal_general,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +PostgreSQL_filtered,ges,local_score_CV_multi,timeout,1800 +PostgreSQL_filtered,ges,local_score_marginal_multi,exception: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part., +PostgreSQL_filtered,ges,local_score_BIC,exception: Singular matrix, +PostgreSQL_filtered,ges,local_score_BIC_from_cov,exception: Singular matrix, +PostgreSQL_filtered,ges,local_score_BDeu,success,1141 +PostgreSQL_filtered,exact_search,dp,exception: can only convert an array of size 1 to a Python scalar, +PostgreSQL_filtered,exact_search,astar,exception: can only convert an array of size 1 to a Python scalar, +dataset_name,method_name,option,result,time +PostgreSQL_filtered,lingam,placeholder,exception: cost matrix is infeasible, +XYZ_10,lingam,placeholder,success,0 +XYZ_100,lingam,placeholder,success,64 +XYZ_1000,lingam,placeholder,exception: index 1000 is out of bounds for axis 0 with size 1000, +dataset_name,method_name,option,result,time +PostgreSQL_filtered,lingam,placeholder,exception: cost matrix is infeasible, +XYZ_10,lingam,placeholder,success,0 +XYZ_100,lingam,placeholder,success,62 +XYZ_1000,lingam,placeholder,exception: index 1000 is out of bounds for axis 0 with size 1000, +dataset_name,method_name,option,result,time +PostgreSQL_filtered,lingam,placeholder,exception: cost matrix is infeasible, +XYZ_10,lingam,placeholder,success,0 +XYZ_100,lingam,placeholder,success,55 +XYZ_1000,lingam,placeholder,exception: index 1000 is out of bounds for axis 0 with size 1000, +OpenStack_Cinder,lingam,placeholder,exception: index 602 is out of bounds for axis 0 with size 538, +OpenStack_Neutron,lingam,placeholder,exception: index 490 is out of bounds for axis 0 with size 406, +OpenStack_Nova,lingam,placeholder,exception: index 900 is out of bounds for axis 0 with size 878, +Proprietary,lingam,placeholder,exception: cost matrix is infeasible, +dataset_name,method_name,option,result,time +PostgreSQL_filtered,gpt,gpt-4,timeout,1800 +XYZ_10,gpt,gpt-4,timeout,1800 +XYZ_100,gpt,gpt-4,timeout,1800 +XYZ_1000,gpt,gpt-4,timeout,1800 +OpenStack_Cinder,gpt,gpt-4,timeout,1800 +OpenStack_Neutron,gpt,gpt-4,timeout,1800 +OpenStack_Nova,gpt,gpt-4,timeout,1800 +Proprietary,gpt,gpt-4,timeout,1800 + diff --git a/evaluation/2.2-existing-causal-discovery/results/discovery.log b/evaluation/2.2-existing-causal-discovery/results/discovery.log new file mode 100644 index 0000000..6d9e9cf --- /dev/null +++ b/evaluation/2.2-existing-causal-discovery/results/discovery.log @@ -0,0 +1,1820 @@ + + +======================================== + + +2024-01-03 06:05:50.942151 Starting PostgreSQL + +2024-01-03 06:05:50.946116 Running pc with fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2897: RuntimeWarning: invalid value encountered in divide + c /= stddev[:, None] +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2898: RuntimeWarning: invalid value encountered in divide + c /= stddev[None, :] +2024-01-03 06:05:51.071805 Error running .run_pc at 0x7f53c7dfa0c0>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-03 06:05:51.077663 Done running pc with fisherz +2024-01-03 06:05:51.077755 Running pc with mv_fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2897: RuntimeWarning: invalid value encountered in divide + c /= stddev[:, None] +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2898: RuntimeWarning: invalid value encountered in divide + c /= stddev[None, :] +2024-01-03 06:05:51.279817 Error running .run_pc at 0x7f53c7dfa0c0>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-03 06:05:51.286376 Done running pc with mv_fisherz +2024-01-03 06:05:51.286516 Running pc with mc_fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-03 06:05:51.351353 Error running .run_pc at 0x7f53c7dfa0c0>: 'm' +2024-01-03 06:05:51.354934 Done running pc with mc_fisherz +2024-01-03 06:05:51.355027 Running pc with kci +2024-01-03 06:35:51.455707 Function timed out +2024-01-03 06:35:51.470300 Done running pc with kci +2024-01-03 06:35:51.470509 Running pc with chisq +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-03 06:35:53.295567 Writing out pc with chisq +2024-01-03 06:35:53.464141 Done running pc with chisq +2024-01-03 06:35:53.464264 Running pc with gsq +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-03 06:35:55.441201 Done running pc with gsq +2024-01-03 06:35:55.441470 Running pc with d_separation +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-03 06:35:55.508248 Error running .run_pc at 0x7f53c7dfa0c0>: 'NoneType' object has no attribute 'is_directed' +2024-01-03 06:35:55.511779 Done running pc with d_separation +2024-01-03 06:35:55.519352 Running fci with fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/FCI.py:736: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2897: RuntimeWarning: invalid value encountered in divide + c /= stddev[:, None] +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2898: RuntimeWarning: invalid value encountered in divide + c /= stddev[None, :] +2024-01-03 06:35:55.638594 Error running .run_fci at 0x7f53c7dfa480>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-03 06:35:55.645771 Done running fci with fisherz +2024-01-03 06:35:55.645878 Running fci with kci +2024-01-03 07:05:55.748850 Function timed out +2024-01-03 07:05:55.768293 Done running fci with kci +2024-01-03 07:05:55.768428 Running fci with chisq +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/FCI.py:736: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-03 07:05:57.576112 Writing out fci with chisq +2024-01-03 07:05:57.730178 Done running fci with chisq +2024-01-03 07:05:57.730302 Running fci with gsq +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/FCI.py:736: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-03 07:05:59.820409 Done running fci with gsq +2024-01-03 07:05:59.839519 Running gin with kci +2024-01-03 07:35:59.876857 Function timed out +2024-01-03 07:35:59.881953 Done running gin with kci +2024-01-03 07:35:59.882205 Running gin with hsic +2024-01-03 08:05:59.992324 Function timed out +2024-01-03 08:05:59.997348 Done running gin with hsic +2024-01-03 08:06:00.008502 Running grasp with local_score_CV_general +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/matrixlib/defmatrix.py:446: RuntimeWarning: Mean of empty slice. + return N.ndarray.mean(self, axis, dtype, out, keepdims=True)._collapse(axis) +~/logs-venv/lib/python3.11/site-packages/numpy/core/_methods.py:121: RuntimeWarning: invalid value encountered in divide + ret = um.true_divide( + +GRaSP completed in: 1545.75s +2024-01-03 08:31:45.948226 Writing out grasp with local_score_CV_general +2024-01-03 08:31:46.061516 Done running grasp with local_score_CV_general +2024-01-03 08:31:46.061853 Running grasp with local_score_marginal_general +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/matrixlib/defmatrix.py:446: RuntimeWarning: Mean of empty slice. + return N.ndarray.mean(self, axis, dtype, out, keepdims=True)._collapse(axis) +~/logs-venv/lib/python3.11/site-packages/numpy/core/_methods.py:121: RuntimeWarning: invalid value encountered in divide + ret = um.true_divide( +2024-01-03 08:31:46.086213 Error running .run_grasp at 0x7f53c7dfa200>: Array must not contain infs or NaNs +2024-01-03 08:31:46.091977 Done running grasp with local_score_marginal_general +2024-01-03 08:31:46.092107 Running grasp with local_score_CV_multi +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-03 08:31:46.106897 Error running .run_grasp at 0x7f53c7dfa200>: 147 +2024-01-03 08:31:46.109842 Done running grasp with local_score_CV_multi +2024-01-03 08:31:46.109928 Running grasp with local_score_marginal_multi +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-03 08:31:46.124667 Error running .run_grasp at 0x7f53c7dfa200>: 145 +2024-01-03 08:31:46.127453 Done running grasp with local_score_marginal_multi +2024-01-03 08:31:46.127555 Running grasp with local_score_BIC +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:35: RuntimeWarning: divide by zero encountered in log + return n * np.log(cov[i, i]) +2024-01-03 08:31:46.179957 Error running .run_grasp at 0x7f53c7dfa200>: Singular matrix +2024-01-03 08:31:46.182844 Done running grasp with local_score_BIC +2024-01-03 08:31:46.183145 Running grasp with local_score_BDeu +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") + +GRaSP edge count: 8 +GRaSP edge count: 7 +GRaSP completed in: 183.61s +2024-01-03 08:34:49.882239 Writing out grasp with local_score_BDeu +2024-01-03 08:34:50.065370 Done running grasp with local_score_BDeu +2024-01-03 08:34:50.068512 Running ges with local_score_CV_general +2024-01-03 09:04:50.171463 Function timed out +2024-01-03 09:04:50.186782 Done running ges with local_score_CV_general +2024-01-03 09:04:50.187066 Running ges with local_score_marginal_general +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/ScoreUtils.py:108: ComplexWarning: Casting complex values to real discards the imaginary part + return evals.astype(float), evec.astype(float) +2024-01-03 09:04:50.242122 Error running .run_ges at 0x7f53c7dfa200>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-03 09:04:50.248872 Done running ges with local_score_marginal_general +2024-01-03 09:04:50.249013 Running ges with local_score_CV_multi +2024-01-03 09:34:50.351287 Function timed out +2024-01-03 09:34:50.363616 Done running ges with local_score_CV_multi +2024-01-03 09:34:50.363735 Running ges with local_score_marginal_multi +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/ScoreUtils.py:108: ComplexWarning: Casting complex values to real discards the imaginary part + return evals.astype(float), evec.astype(float) +2024-01-03 09:34:50.415003 Error running .run_ges at 0x7f53c7dfa200>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-03 09:34:50.421060 Done running ges with local_score_marginal_multi +2024-01-03 09:34:50.421190 Running ges with local_score_BIC +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:69: RuntimeWarning: divide by zero encountered in log + return n * np.log(cov[i, i]) +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:73: RuntimeWarning: divide by zero encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/GESUtils.py:228: RuntimeWarning: invalid value encountered in subtract + ch_score = score1 - score2 +2024-01-03 09:34:51.814271 Error running .run_ges at 0x7f53c7dfa200>: Singular matrix +2024-01-03 09:34:51.823610 Done running ges with local_score_BIC +2024-01-03 09:34:51.823990 Running ges with local_score_BIC_from_cov +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:69: RuntimeWarning: divide by zero encountered in log + return n * np.log(cov[i, i]) +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:73: RuntimeWarning: divide by zero encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/GESUtils.py:228: RuntimeWarning: invalid value encountered in subtract + ch_score = score1 - score2 +2024-01-03 09:34:53.226743 Error running .run_ges at 0x7f53c7dfa200>: Singular matrix +2024-01-03 09:34:53.235627 Done running ges with local_score_BIC_from_cov +2024-01-03 09:34:53.235978 Running ges with local_score_BDeu +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-03 09:57:25.996371 Writing out ges with local_score_BDeu +2024-01-03 09:57:26.182626 Done running ges with local_score_BDeu +2024-01-03 09:57:26.186337 Running exact_search with dp +2024-01-03 09:57:26.221640 Error running .run_exact_search at 0x7f53c7dfa7a0>: can only convert an array of size 1 to a Python scalar +2024-01-03 09:57:26.225030 Done running exact_search with dp +2024-01-03 09:57:26.225118 Running exact_search with astar +2024-01-03 09:57:26.259700 Error running .run_exact_search at 0x7f53c7dfa7a0>: can only convert an array of size 1 to a Python scalar +2024-01-03 09:57:26.262718 Done running exact_search with astar + + +======================================== + + +2024-01-03 09:57:26.263546 Starting XYZ_10 + +2024-01-03 09:57:26.268986 Running pc with fisherz +2024-01-03 09:57:27.424565 Writing out pc with fisherz +2024-01-03 09:57:27.772686 Done running pc with fisherz +2024-01-03 09:57:27.772819 Running pc with mv_fisherz +2024-01-03 09:57:31.628584 Writing out pc with mv_fisherz +2024-01-03 09:57:31.981817 Done running pc with mv_fisherz +2024-01-03 09:57:31.982017 Running pc with mc_fisherz +2024-01-03 09:57:31.992973 Error running .run_pc at 0x7f53c7dfa020>: 'm' +2024-01-03 09:57:31.996780 Done running pc with mc_fisherz +2024-01-03 09:57:31.996922 Running pc with kci +2024-01-03 10:03:13.096464 Writing out pc with kci +2024-01-03 10:03:13.477972 Done running pc with kci +2024-01-03 10:03:13.478129 Running pc with chisq +2024-01-03 10:03:23.656359 Writing out pc with chisq +2024-01-03 10:03:23.985969 Done running pc with chisq +2024-01-03 10:03:23.986107 Running pc with gsq +2024-01-03 10:03:25.380298 Done running pc with gsq +2024-01-03 10:03:25.380658 Running pc with d_separation +2024-01-03 10:03:25.396162 Error running .run_pc at 0x7f53c7dfa020>: 'NoneType' object has no attribute 'is_directed' +2024-01-03 10:03:25.399916 Done running pc with d_separation +2024-01-03 10:03:25.406846 Running fci with fisherz +2024-01-03 10:03:27.271998 Writing out fci with fisherz +2024-01-03 10:03:27.514304 Done running fci with fisherz +2024-01-03 10:03:27.514618 Running fci with kci +2024-01-03 10:08:42.319904 Writing out fci with kci +2024-01-03 10:08:42.644501 Done running fci with kci +2024-01-03 10:08:42.644654 Running fci with chisq +2024-01-03 10:08:52.798424 Writing out fci with chisq +2024-01-03 10:08:53.137509 Done running fci with chisq +2024-01-03 10:08:53.137627 Running fci with gsq +2024-01-03 10:08:54.565174 Done running fci with gsq +2024-01-03 10:08:54.575518 Running gin with kci +2024-01-03 10:11:31.495755 Writing out gin with kci +2024-01-03 10:11:31.772797 Done running gin with kci +2024-01-03 10:11:31.772909 Running gin with hsic +2024-01-03 10:14:49.684631 Writing out gin with hsic +2024-01-03 10:14:49.960411 Done running gin with hsic +2024-01-03 10:14:49.962853 Running grasp with local_score_CV_general + +GRaSP edge count: 14 +GRaSP edge count: 14 +GRaSP edge count: 14 +GRaSP completed in: 1729.11s +2024-01-03 10:43:39.102482 Writing out grasp with local_score_CV_general +2024-01-03 10:43:39.421359 Done running grasp with local_score_CV_general +2024-01-03 10:43:39.421463 Running grasp with local_score_marginal_general +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/ScoreUtils.py:108: ComplexWarning: Casting complex values to real discards the imaginary part + return evals.astype(float), evec.astype(float) +2024-01-03 10:43:40.723067 Error running .run_grasp at 0x7f53c7dfa7a0>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-03 10:43:40.732162 Done running grasp with local_score_marginal_general +2024-01-03 10:43:40.732379 Running grasp with local_score_CV_multi +2024-01-03 10:43:40.738981 Error running .run_grasp at 0x7f53c7dfa7a0>: 0 +2024-01-03 10:43:40.741847 Done running grasp with local_score_CV_multi +2024-01-03 10:43:40.741951 Running grasp with local_score_marginal_multi +2024-01-03 10:43:40.746185 Error running .run_grasp at 0x7f53c7dfa7a0>: 10 +2024-01-03 10:43:40.748864 Done running grasp with local_score_marginal_multi +2024-01-03 10:43:40.748943 Running grasp with local_score_BIC +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:39: RuntimeWarning: invalid value encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) + +GRaSP edge count: 43 +GRaSP edge count: 40 +GRaSP edge count: 42 +GRaSP edge count: 41 +GRaSP edge count: 41 +GRaSP edge count: 42 +GRaSP edge count: 40 +GRaSP completed in: 1.90s +2024-01-03 10:43:42.689759 Writing out grasp with local_score_BIC +2024-01-03 10:43:42.922623 Done running grasp with local_score_BIC +2024-01-03 10:43:42.922751 Running grasp with local_score_BDeu + +GRaSP completed in: 243.45s +2024-01-03 10:47:46.389869 Writing out grasp with local_score_BDeu +2024-01-03 10:47:46.597588 Done running grasp with local_score_BDeu +2024-01-03 10:47:46.599863 Running ges with local_score_CV_general +2024-01-03 11:17:46.700688 Function timed out +2024-01-03 11:17:46.710194 Done running ges with local_score_CV_general +2024-01-03 11:17:46.710329 Running ges with local_score_marginal_general +2024-01-03 11:17:48.057167 Error running .run_ges at 0x7f53c7dfa200>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-03 11:17:48.065761 Done running ges with local_score_marginal_general +2024-01-03 11:17:48.065903 Running ges with local_score_CV_multi +2024-01-03 11:47:48.170491 Function timed out +2024-01-03 11:47:48.180119 Done running ges with local_score_CV_multi +2024-01-03 11:47:48.180549 Running ges with local_score_marginal_multi +2024-01-03 11:47:49.520252 Error running .run_ges at 0x7f53c7dfa200>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-03 11:47:49.529671 Done running ges with local_score_marginal_multi +2024-01-03 11:47:49.530049 Running ges with local_score_BIC +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:73: RuntimeWarning: invalid value encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) +2024-01-03 11:48:44.128031 Writing out ges with local_score_BIC +2024-01-03 11:48:44.324391 Done running ges with local_score_BIC +2024-01-03 11:48:44.324542 Running ges with local_score_BIC_from_cov +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:73: RuntimeWarning: invalid value encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) +2024-01-03 11:49:41.372017 Writing out ges with local_score_BIC_from_cov +2024-01-03 11:49:41.582746 Done running ges with local_score_BIC_from_cov +2024-01-03 11:49:41.582886 Running ges with local_score_BDeu +2024-01-03 11:56:50.447976 Writing out ges with local_score_BDeu +2024-01-03 11:56:50.661959 Done running ges with local_score_BDeu +2024-01-03 11:56:50.664348 Running exact_search with dp +Traceback (most recent call last): + File "~/causal-log/evaluation/discovery/discovery.py", line 274, in + main() + File "~/causal-log/evaluation/discovery/discovery.py", line 258, in main + for dataset_name in datasets.keys()[2:]: + ~~~~~~~~~~~~~~~^^^^ +TypeError: 'dict_keys' object is not subscriptable + + +======================================== + + +2024-01-03 12:20:56.737715 Starting XYZ_100 + +2024-01-03 12:20:56.744681 Running pc with fisherz +2024-01-03 12:22:32.066212 Writing out pc with fisherz +2024-01-03 12:22:34.054368 Done running pc with fisherz +2024-01-03 12:22:34.054519 Running pc with mv_fisherz +2024-01-03 12:25:37.635699 Writing out pc with mv_fisherz +2024-01-03 12:25:39.808483 Done running pc with mv_fisherz +2024-01-03 12:25:39.808643 Running pc with mc_fisherz +2024-01-03 12:25:39.887382 Error running .run_pc at 0x7f19f686df80>: 'm' +2024-01-03 12:25:39.891189 Done running pc with mc_fisherz +2024-01-03 12:25:39.891302 Running pc with kci +2024-01-03 12:55:39.992901 Function timed out +2024-01-03 12:55:40.011034 Done running pc with kci +2024-01-03 12:55:40.011381 Running pc with chisq +2024-01-03 12:57:13.146582 Done running pc with chisq +2024-01-03 12:57:13.146818 Running pc with gsq +2024-01-03 12:59:15.058904 Done running pc with gsq +2024-01-03 12:59:15.059145 Running pc with d_separation +2024-01-03 12:59:15.132949 Error running .run_pc at 0x7f19f686df80>: 'NoneType' object has no attribute 'is_directed' +2024-01-03 12:59:15.136375 Done running pc with d_separation +2024-01-03 12:59:15.147119 Running fci with fisherz +2024-01-03 12:59:46.548395 Writing out fci with fisherz +2024-01-03 12:59:49.498198 Done running fci with fisherz +2024-01-03 12:59:49.498449 Running fci with kci +2024-01-03 13:29:49.596217 Function timed out +2024-01-03 13:29:49.616344 Done running fci with kci +2024-01-03 13:29:49.616514 Running fci with chisq +2024-01-03 13:31:25.005969 Done running fci with chisq +2024-01-03 13:31:25.006332 Running fci with gsq +2024-01-03 13:33:27.828012 Done running fci with gsq +2024-01-03 13:33:27.853437 Running gin with kci +2024-01-03 14:03:27.921230 Function timed out +2024-01-03 14:03:27.931381 Done running gin with kci +2024-01-03 14:03:27.931636 Running gin with hsic +2024-01-03 14:33:27.946729 Function timed out +2024-01-03 14:33:27.956058 Done running gin with hsic +2024-01-03 14:33:27.963584 Running grasp with local_score_CV_general +2024-01-03 15:03:28.068685 Function timed out +2024-01-03 15:03:28.080084 Done running grasp with local_score_CV_general +2024-01-03 15:03:28.080368 Running grasp with local_score_marginal_general +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/ScoreUtils.py:108: ComplexWarning: Casting complex values to real discards the imaginary part + return evals.astype(float), evec.astype(float) +2024-01-03 15:03:29.571018 Error running .run_grasp at 0x7f19f686e0c0>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-03 15:03:29.580853 Done running grasp with local_score_marginal_general +2024-01-03 15:03:29.580991 Running grasp with local_score_CV_multi +2024-01-03 15:03:29.600595 Error running .run_grasp at 0x7f19f686e0c0>: 55 +2024-01-03 15:03:29.603938 Done running grasp with local_score_CV_multi +2024-01-03 15:03:29.604255 Running grasp with local_score_marginal_multi +2024-01-03 15:03:29.623815 Error running .run_grasp at 0x7f19f686e0c0>: 79 +2024-01-03 15:03:29.626653 Done running grasp with local_score_marginal_multi +2024-01-03 15:03:29.626738 Running grasp with local_score_BIC + +GRaSP edge count: 7 +GRaSP completed in: 29.18s +2024-01-03 15:03:58.938690 Writing out grasp with local_score_BIC +2024-01-03 15:03:59.055103 Done running grasp with local_score_BIC +2024-01-03 15:03:59.055288 Running grasp with local_score_BDeu +2024-01-03 15:33:59.110366 Function timed out +2024-01-03 15:33:59.119459 Done running grasp with local_score_BDeu +2024-01-03 15:33:59.133973 Running ges with local_score_CV_general +2024-01-03 16:03:59.241805 Function timed out +2024-01-03 16:03:59.255462 Done running ges with local_score_CV_general +2024-01-03 16:03:59.255741 Running ges with local_score_marginal_general +2024-01-03 16:04:00.575645 Error running .run_ges at 0x7f19f686e0c0>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-03 16:04:00.585613 Done running ges with local_score_marginal_general +2024-01-03 16:04:00.585766 Running ges with local_score_CV_multi +2024-01-03 16:34:00.681745 Function timed out +2024-01-03 16:34:00.696518 Done running ges with local_score_CV_multi +2024-01-03 16:34:00.696873 Running ges with local_score_marginal_multi +2024-01-03 16:34:02.021857 Error running .run_ges at 0x7f19f686e0c0>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-03 16:34:02.031692 Done running ges with local_score_marginal_multi +2024-01-03 16:34:02.031850 Running ges with local_score_BIC +2024-01-03 16:58:26.447517 Writing out ges with local_score_BIC +2024-01-03 16:58:26.568012 Done running ges with local_score_BIC +2024-01-03 16:58:26.568179 Running ges with local_score_BIC_from_cov +2024-01-03 17:22:52.914085 Writing out ges with local_score_BIC_from_cov +2024-01-03 17:22:53.033003 Done running ges with local_score_BIC_from_cov +2024-01-03 17:22:53.033189 Running ges with local_score_BDeu +2024-01-03 17:52:53.138320 Function timed out +2024-01-03 17:52:53.148536 Done running ges with local_score_BDeu +2024-01-03 17:52:53.163225 Running exact_search with dp +2024-01-03 18:22:53.220149 Function timed out +2024-01-03 18:22:53.233322 Done running exact_search with dp +2024-01-03 18:22:53.233934 Running exact_search with astar +2024-01-03 18:52:53.250760 Function timed out +2024-01-03 18:52:53.261536 Done running exact_search with astar + + +======================================== + + +2024-01-03 18:52:53.263228 Starting XYZ_1000 + +2024-01-03 18:52:53.314981 Running pc with fisherz +2024-01-03 19:22:53.354752 Function timed out +2024-01-03 19:22:53.509035 Done running pc with fisherz +2024-01-03 19:22:53.509320 Running pc with mv_fisherz +2024-01-03 19:52:53.604395 Function timed out +2024-01-03 19:52:53.632977 Done running pc with mv_fisherz +2024-01-03 19:52:53.633238 Running pc with mc_fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-03 19:53:00.175076 Error running .run_pc at 0x7f19f686df80>: 'm' +2024-01-03 19:53:00.193606 Done running pc with mc_fisherz +2024-01-03 19:53:00.193914 Running pc with kci +2024-01-03 20:23:00.301884 Function timed out +2024-01-03 20:23:00.317261 Done running pc with kci +2024-01-03 20:23:00.317619 Running pc with chisq +2024-01-03 20:53:00.428051 Function timed out +2024-01-03 20:53:00.451555 Done running pc with chisq +2024-01-03 20:53:00.451910 Running pc with gsq +2024-01-03 21:23:00.562291 Function timed out +2024-01-03 21:23:00.583743 Done running pc with gsq +2024-01-03 21:23:00.584102 Running pc with d_separation +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-03 21:23:07.268821 Error running .run_pc at 0x7f19f686df80>: 'NoneType' object has no attribute 'is_directed' +2024-01-03 21:23:07.287485 Done running pc with d_separation +2024-01-03 21:23:07.343171 Running fci with fisherz +2024-01-03 21:53:07.417666 Function timed out +2024-01-03 21:53:07.705524 Done running fci with fisherz +2024-01-03 21:53:07.705768 Running fci with kci +2024-01-03 22:23:07.731322 Function timed out +2024-01-03 22:23:07.749149 Done running fci with kci +2024-01-03 22:23:07.749485 Running fci with chisq +2024-01-03 22:53:07.858453 Function timed out +2024-01-03 22:53:07.886959 Done running fci with chisq +2024-01-03 22:53:07.887303 Running fci with gsq +2024-01-03 23:23:07.973778 Function timed out +2024-01-03 23:23:07.999290 Done running fci with gsq +2024-01-03 23:23:08.087454 Running gin with kci +2024-01-03 23:53:08.133163 Function timed out +2024-01-03 23:53:08.149913 Done running gin with kci +2024-01-03 23:53:08.150157 Running gin with hsic +2024-01-04 00:23:08.255908 Function timed out +2024-01-04 00:23:08.272349 Done running gin with hsic +2024-01-04 00:23:08.306640 Running grasp with local_score_CV_general +2024-01-04 00:53:08.411798 Function timed out +2024-01-04 00:53:08.430466 Done running grasp with local_score_CV_general +2024-01-04 00:53:08.430737 Running grasp with local_score_marginal_general +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/matrixlib/defmatrix.py:446: RuntimeWarning: Mean of empty slice. + return N.ndarray.mean(self, axis, dtype, out, keepdims=True)._collapse(axis) +~/logs-venv/lib/python3.11/site-packages/numpy/core/_methods.py:121: RuntimeWarning: invalid value encountered in divide + ret = um.true_divide( +2024-01-04 00:53:09.776015 Error running .run_grasp at 0x7f19f686e340>: Array must not contain infs or NaNs +2024-01-04 00:53:09.789954 Done running grasp with local_score_marginal_general +2024-01-04 00:53:09.790109 Running grasp with local_score_CV_multi +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 00:53:11.044250 Error running .run_grasp at 0x7f19f686e340>: 191 +2024-01-04 00:53:11.053307 Done running grasp with local_score_CV_multi +2024-01-04 00:53:11.053550 Running grasp with local_score_marginal_multi +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 00:53:12.317410 Error running .run_grasp at 0x7f19f686e340>: 66 +2024-01-04 00:53:12.326510 Done running grasp with local_score_marginal_multi +2024-01-04 00:53:12.326814 Running grasp with local_score_BIC +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:35: RuntimeWarning: divide by zero encountered in log + return n * np.log(cov[i, i]) +2024-01-04 00:54:43.665792 Error running .run_grasp at 0x7f19f686e340>: Singular matrix +2024-01-04 00:54:43.684809 Done running grasp with local_score_BIC +2024-01-04 00:54:43.684958 Running grasp with local_score_BDeu +2024-01-04 01:24:43.785724 Function timed out +2024-01-04 01:24:43.797881 Done running grasp with local_score_BDeu +2024-01-04 01:24:43.854126 Running ges with local_score_CV_general +2024-01-04 01:54:43.961705 Function timed out +2024-01-04 01:54:43.984758 Done running ges with local_score_CV_general +2024-01-04 01:54:43.985013 Running ges with local_score_marginal_general +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 01:54:46.538316 Error running .run_ges at 0x7f19f686e020>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-04 01:54:46.552945 Done running ges with local_score_marginal_general +2024-01-04 01:54:46.553076 Running ges with local_score_CV_multi +2024-01-04 02:24:46.654590 Function timed out +2024-01-04 02:24:46.674712 Done running ges with local_score_CV_multi +2024-01-04 02:24:46.674944 Running ges with local_score_marginal_multi +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 02:24:49.216816 Error running .run_ges at 0x7f19f686e020>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-04 02:24:49.231735 Done running ges with local_score_marginal_multi +2024-01-04 02:24:49.231896 Running ges with local_score_BIC +2024-01-04 02:54:49.334999 Function timed out +2024-01-04 02:54:49.379967 Done running ges with local_score_BIC +2024-01-04 02:54:49.380294 Running ges with local_score_BIC_from_cov +2024-01-04 03:24:49.493820 Function timed out +2024-01-04 03:24:49.541029 Done running ges with local_score_BIC_from_cov +2024-01-04 03:24:49.541415 Running ges with local_score_BDeu +2024-01-04 03:54:49.629236 Function timed out +2024-01-04 03:54:49.642114 Done running ges with local_score_BDeu +2024-01-04 03:54:49.794727 Running exact_search with dp +2024-01-04 04:24:49.894332 Function timed out +2024-01-04 04:24:49.902737 Done running exact_search with dp +2024-01-04 04:24:49.902865 Running exact_search with astar +2024-01-04 04:54:50.008167 Function timed out +2024-01-04 04:54:50.016777 Done running exact_search with astar + + +======================================== + + +2024-01-04 04:54:50.019044 Starting OpenStack_Cinder + +2024-01-04 04:54:50.028985 Running pc with fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2897: RuntimeWarning: invalid value encountered in divide + c /= stddev[:, None] +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2898: RuntimeWarning: invalid value encountered in divide + c /= stddev[None, :] +2024-01-04 04:54:51.071671 Error running .run_pc at 0x7f19f686e160>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-04 04:54:51.081667 Done running pc with fisherz +2024-01-04 04:54:51.081866 Running pc with mv_fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2897: RuntimeWarning: invalid value encountered in divide + c /= stddev[:, None] +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2898: RuntimeWarning: invalid value encountered in divide + c /= stddev[None, :] +2024-01-04 04:54:53.342474 Error running .run_pc at 0x7f19f686e160>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-04 04:54:53.353812 Done running pc with mv_fisherz +2024-01-04 04:54:53.353958 Running pc with mc_fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 04:54:54.021403 Error running .run_pc at 0x7f19f686e160>: 'm' +2024-01-04 04:54:54.027793 Done running pc with mc_fisherz +2024-01-04 04:54:54.028097 Running pc with kci +2024-01-04 05:24:54.136787 Function timed out +2024-01-04 05:24:54.165457 Done running pc with kci +2024-01-04 05:24:54.165849 Running pc with chisq + + +======================================== + + +2024-01-04 05:56:36.594319 Starting OpenStack_Cinder + +2024-01-04 05:56:36.603960 Running pc with fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2897: RuntimeWarning: invalid value encountered in divide + c /= stddev[:, None] +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2898: RuntimeWarning: invalid value encountered in divide + c /= stddev[None, :] +2024-01-04 05:56:37.720848 Error running .run_pc at 0x7fd018285f80>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-04 05:56:37.731789 Done running pc with fisherz +2024-01-04 05:56:37.732065 Running pc with mv_fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2897: RuntimeWarning: invalid value encountered in divide + c /= stddev[:, None] +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2898: RuntimeWarning: invalid value encountered in divide + c /= stddev[None, :] +2024-01-04 05:56:40.048959 Error running .run_pc at 0x7fd018285f80>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-04 05:56:40.060601 Done running pc with mv_fisherz +2024-01-04 05:56:40.060779 Running pc with mc_fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 05:56:40.701355 Error running .run_pc at 0x7fd018285f80>: 'm' +2024-01-04 05:56:40.706373 Done running pc with mc_fisherz +2024-01-04 05:56:40.706553 Running pc with kci +2024-01-04 06:26:40.809696 Function timed out +2024-01-04 06:26:40.830642 Done running pc with kci +2024-01-04 06:26:40.830834 Running pc with chisq +2024-01-04 06:56:40.932836 Function timed out +2024-01-04 06:56:41.097174 Done running pc with chisq +2024-01-04 06:56:41.097387 Running pc with gsq +2024-01-04 07:26:41.205290 Function timed out +2024-01-04 07:26:41.281192 Done running pc with gsq +2024-01-04 07:26:41.281604 Running pc with d_separation +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 07:26:41.953324 Error running .run_pc at 0x7fd018285f80>: 'NoneType' object has no attribute 'is_directed' +2024-01-04 07:26:41.958705 Done running pc with d_separation +2024-01-04 07:26:41.979470 Running fci with fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/FCI.py:736: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2897: RuntimeWarning: invalid value encountered in divide + c /= stddev[:, None] +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2898: RuntimeWarning: invalid value encountered in divide + c /= stddev[None, :] +2024-01-04 07:26:43.156899 Error running .run_fci at 0x7fd018286ac0>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-04 07:26:43.168713 Done running fci with fisherz +2024-01-04 07:26:43.168882 Running fci with kci +2024-01-04 07:56:43.272507 Function timed out +2024-01-04 07:56:43.308329 Done running fci with kci +2024-01-04 07:56:43.308515 Running fci with chisq +2024-01-04 08:26:43.331293 Function timed out +2024-01-04 08:26:43.476357 Done running fci with chisq +2024-01-04 08:26:43.476707 Running fci with gsq +2024-01-04 08:56:43.587297 Function timed out +2024-01-04 08:56:43.698091 Done running fci with gsq +2024-01-04 08:56:43.730580 Running gin with kci +2024-01-04 09:26:43.838763 Function timed out +2024-01-04 09:26:43.845647 Done running gin with kci +2024-01-04 09:26:43.845768 Running gin with hsic +2024-01-04 09:56:43.939909 Function timed out +2024-01-04 09:56:43.947043 Done running gin with hsic +2024-01-04 09:56:43.954904 Running grasp with local_score_CV_general +2024-01-04 10:26:44.058282 Function timed out +2024-01-04 10:26:44.073500 Done running grasp with local_score_CV_general +2024-01-04 10:26:44.073716 Running grasp with local_score_marginal_general +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/ScoreUtils.py:108: ComplexWarning: Casting complex values to real discards the imaginary part + return evals.astype(float), evec.astype(float) +2024-01-04 10:26:44.597519 Error running .run_grasp at 0x7fd018286840>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-04 10:26:44.606210 Done running grasp with local_score_marginal_general +2024-01-04 10:26:44.606361 Running grasp with local_score_CV_multi +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 10:26:44.733248 Error running .run_grasp at 0x7fd018286840>: 576 +2024-01-04 10:26:44.736626 Done running grasp with local_score_CV_multi +2024-01-04 10:26:44.736956 Running grasp with local_score_marginal_multi +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 10:26:44.864422 Error running .run_grasp at 0x7fd018286840>: 390 +2024-01-04 10:26:44.867407 Done running grasp with local_score_marginal_multi +2024-01-04 10:26:44.867742 Running grasp with local_score_BIC +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:35: RuntimeWarning: divide by zero encountered in log + return n * np.log(cov[i, i]) +2024-01-04 10:26:47.347632 Error running .run_grasp at 0x7fd018286840>: Singular matrix +2024-01-04 10:26:47.351895 Done running grasp with local_score_BIC +2024-01-04 10:26:47.352284 Running grasp with local_score_BDeu +2024-01-04 10:56:47.462278 Function timed out +2024-01-04 10:56:47.478035 Done running grasp with local_score_BDeu +2024-01-04 10:56:47.497685 Running ges with local_score_CV_general +2024-01-04 11:26:47.610240 Function timed out +2024-01-04 11:26:47.627503 Done running ges with local_score_CV_general +2024-01-04 11:26:47.627606 Running ges with local_score_marginal_general +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 11:26:48.189633 Error running .run_ges at 0x7fd018286840>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-04 11:26:48.197980 Done running ges with local_score_marginal_general +2024-01-04 11:26:48.198167 Running ges with local_score_CV_multi +2024-01-04 11:56:48.302036 Function timed out +2024-01-04 11:56:48.321272 Done running ges with local_score_CV_multi +2024-01-04 11:56:48.321603 Running ges with local_score_marginal_multi +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 11:56:48.886322 Error running .run_ges at 0x7fd018286840>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-04 11:56:48.895113 Done running ges with local_score_marginal_multi +2024-01-04 11:56:48.895278 Running ges with local_score_BIC +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:69: RuntimeWarning: divide by zero encountered in log + return n * np.log(cov[i, i]) +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:73: RuntimeWarning: divide by zero encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/GESUtils.py:228: RuntimeWarning: invalid value encountered in subtract + ch_score = score1 - score2 +2024-01-04 11:57:09.906791 Error running .run_ges at 0x7fd018286840>: Singular matrix +2024-01-04 11:57:09.931323 Done running ges with local_score_BIC +2024-01-04 11:57:09.931675 Running ges with local_score_BIC_from_cov +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:69: RuntimeWarning: divide by zero encountered in log + return n * np.log(cov[i, i]) +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:73: RuntimeWarning: divide by zero encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/GESUtils.py:228: RuntimeWarning: invalid value encountered in subtract + ch_score = score1 - score2 +2024-01-04 11:57:30.949498 Error running .run_ges at 0x7fd018286840>: Singular matrix +2024-01-04 11:57:30.972144 Done running ges with local_score_BIC_from_cov +2024-01-04 11:57:30.972514 Running ges with local_score_BDeu +2024-01-04 12:27:31.006292 Function timed out +2024-01-04 12:27:31.018554 Done running ges with local_score_BDeu +2024-01-04 12:27:31.037786 Running exact_search with dp +2024-01-04 12:27:31.104368 Error running .run_exact_search at 0x7fd018286de0>: can only convert an array of size 1 to a Python scalar +2024-01-04 12:27:31.108145 Done running exact_search with dp +2024-01-04 12:27:31.108386 Running exact_search with astar +2024-01-04 12:27:31.173223 Error running .run_exact_search at 0x7fd018286de0>: can only convert an array of size 1 to a Python scalar +2024-01-04 12:27:31.176473 Done running exact_search with astar + + +======================================== + + +2024-01-04 12:27:31.178325 Starting OpenStack_Neutron + +2024-01-04 12:27:31.189652 Running pc with fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 12:27:32.101023 Error running .run_pc at 0x7fd018286200>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-04 12:27:32.109809 Done running pc with fisherz +2024-01-04 12:27:32.110072 Running pc with mv_fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 12:27:33.303621 Error running .run_pc at 0x7fd018286200>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-04 12:27:33.312091 Done running pc with mv_fisherz +2024-01-04 12:27:33.312222 Running pc with mc_fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 12:27:34.078525 Error running .run_pc at 0x7fd018286200>: 'm' +2024-01-04 12:27:34.084081 Done running pc with mc_fisherz +2024-01-04 12:27:34.084468 Running pc with kci +2024-01-04 12:57:34.194017 Function timed out +2024-01-04 12:57:34.222789 Done running pc with kci +2024-01-04 12:57:34.223152 Running pc with chisq +2024-01-04 13:27:34.245606 Function timed out +2024-01-04 13:27:34.269200 Done running pc with chisq +2024-01-04 13:27:34.269587 Running pc with gsq +2024-01-04 13:57:34.380010 Function timed out +2024-01-04 13:57:34.457969 Done running pc with gsq +2024-01-04 13:57:34.458356 Running pc with d_separation +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 13:57:35.208402 Error running .run_pc at 0x7fd018286200>: 'NoneType' object has no attribute 'is_directed' +2024-01-04 13:57:35.213233 Done running pc with d_separation +2024-01-04 13:57:35.233820 Running fci with fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/FCI.py:736: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 13:57:36.248523 Error running .run_fci at 0x7fd018286840>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-04 13:57:36.259997 Done running fci with fisherz +2024-01-04 13:57:36.260337 Running fci with kci +2024-01-04 14:27:36.363494 Function timed out +2024-01-04 14:27:36.397669 Done running fci with kci +2024-01-04 14:27:36.397905 Running fci with chisq +2024-01-04 14:57:36.503601 Function timed out +2024-01-04 14:57:36.529591 Done running fci with chisq +2024-01-04 14:57:36.529998 Running fci with gsq +2024-01-04 15:27:36.639772 Function timed out +2024-01-04 15:27:36.756276 Done running fci with gsq +2024-01-04 15:27:36.767357 Running gin with kci +2024-01-04 15:57:36.871433 Function timed out +2024-01-04 15:57:36.879889 Done running gin with kci +2024-01-04 15:57:36.880147 Running gin with hsic +2024-01-04 16:27:36.990713 Function timed out +2024-01-04 16:27:36.999443 Done running gin with hsic +2024-01-04 16:27:37.020050 Running grasp with local_score_CV_general +2024-01-04 16:57:37.132165 Function timed out +2024-01-04 16:57:37.148917 Done running grasp with local_score_CV_general +2024-01-04 16:57:37.149228 Running grasp with local_score_marginal_general +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/ScoreUtils.py:108: ComplexWarning: Casting complex values to real discards the imaginary part + return evals.astype(float), evec.astype(float) +2024-01-04 16:57:37.489569 Error running .run_grasp at 0x7fd0182860c0>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-04 16:57:37.498112 Done running grasp with local_score_marginal_general +2024-01-04 16:57:37.498242 Running grasp with local_score_CV_multi +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 16:57:37.645202 Error running .run_grasp at 0x7fd0182860c0>: 256 +2024-01-04 16:57:37.648581 Done running grasp with local_score_CV_multi +2024-01-04 16:57:37.648893 Running grasp with local_score_marginal_multi +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 16:57:37.794651 Error running .run_grasp at 0x7fd0182860c0>: 191 +2024-01-04 16:57:37.797468 Done running grasp with local_score_marginal_multi +2024-01-04 16:57:37.797805 Running grasp with local_score_BIC +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:39: RuntimeWarning: divide by zero encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) +2024-01-04 16:57:40.372136 Error running .run_grasp at 0x7fd0182860c0>: Singular matrix +2024-01-04 16:57:40.378341 Done running grasp with local_score_BIC +2024-01-04 16:57:40.378455 Running grasp with local_score_BDeu +2024-01-04 17:27:40.481811 Function timed out +2024-01-04 17:27:40.492406 Done running grasp with local_score_BDeu +2024-01-04 17:27:40.512580 Running ges with local_score_CV_general +2024-01-04 17:57:40.622278 Function timed out +2024-01-04 17:57:40.636050 Done running ges with local_score_CV_general +2024-01-04 17:57:40.636162 Running ges with local_score_marginal_general +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 17:57:40.996926 Error running .run_ges at 0x7fd0182862a0>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-04 17:57:41.005124 Done running ges with local_score_marginal_general +2024-01-04 17:57:41.005251 Running ges with local_score_CV_multi +2024-01-04 18:27:41.012730 Function timed out +2024-01-04 18:27:41.029220 Done running ges with local_score_CV_multi +2024-01-04 18:27:41.029567 Running ges with local_score_marginal_multi +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 18:27:41.390121 Error running .run_ges at 0x7fd0182862a0>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-04 18:27:41.398444 Done running ges with local_score_marginal_multi +2024-01-04 18:27:41.398564 Running ges with local_score_BIC +2024-01-04 18:57:41.502169 Function timed out +2024-01-04 18:57:41.527018 Done running ges with local_score_BIC +2024-01-04 18:57:41.527352 Running ges with local_score_BIC_from_cov +2024-01-04 19:27:41.625984 Function timed out +2024-01-04 19:27:41.651446 Done running ges with local_score_BIC_from_cov +2024-01-04 19:27:41.651834 Running ges with local_score_BDeu +2024-01-04 19:57:41.762057 Function timed out +2024-01-04 19:57:41.772438 Done running ges with local_score_BDeu +2024-01-04 19:57:41.792609 Running exact_search with dp +2024-01-04 19:57:41.862957 Error running .run_exact_search at 0x7fd018286520>: can only convert an array of size 1 to a Python scalar +2024-01-04 19:57:41.866650 Done running exact_search with dp +2024-01-04 19:57:41.866890 Running exact_search with astar +2024-01-04 19:57:41.950348 Error running .run_exact_search at 0x7fd018286520>: can only convert an array of size 1 to a Python scalar +2024-01-04 19:57:41.953457 Done running exact_search with astar + + +======================================== + + +2024-01-04 19:57:41.955764 Starting OpenStack_Nova + +2024-01-04 19:57:41.976508 Running pc with fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2897: RuntimeWarning: invalid value encountered in divide + c /= stddev[:, None] +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2898: RuntimeWarning: invalid value encountered in divide + c /= stddev[None, :] +2024-01-04 19:57:43.922863 Error running .run_pc at 0x7fd018286b60>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-04 19:57:43.935581 Done running pc with fisherz +2024-01-04 19:57:43.935702 Running pc with mv_fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2897: RuntimeWarning: invalid value encountered in divide + c /= stddev[:, None] +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2898: RuntimeWarning: invalid value encountered in divide + c /= stddev[None, :] +2024-01-04 19:57:48.594094 Error running .run_pc at 0x7fd018286b60>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-04 19:57:48.607069 Done running pc with mv_fisherz +2024-01-04 19:57:48.607199 Running pc with mc_fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 19:57:49.993662 Error running .run_pc at 0x7fd018286b60>: 'm' +2024-01-04 19:57:49.999724 Done running pc with mc_fisherz +2024-01-04 19:57:50.000081 Running pc with kci +2024-01-04 20:27:50.110066 Function timed out +2024-01-04 20:27:50.122514 Done running pc with kci +2024-01-04 20:27:50.122882 Running pc with chisq +2024-01-04 20:57:50.233080 Function timed out +2024-01-04 20:57:50.276716 Done running pc with chisq +2024-01-04 20:57:50.277087 Running pc with gsq +2024-01-04 21:27:50.326282 Function timed out +2024-01-04 21:27:50.396567 Done running pc with gsq +2024-01-04 21:27:50.396947 Running pc with d_separation +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-04 21:27:51.782981 Error running .run_pc at 0x7fd018286b60>: 'NoneType' object has no attribute 'is_directed' +2024-01-04 21:27:51.788777 Done running pc with d_separation +2024-01-04 21:27:51.817433 Running fci with fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/FCI.py:736: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2897: RuntimeWarning: invalid value encountered in divide + c /= stddev[:, None] +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2898: RuntimeWarning: invalid value encountered in divide + c /= stddev[None, :] +2024-01-04 21:27:53.786641 Error running .run_fci at 0x7fd018286020>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-04 21:27:53.799809 Done running fci with fisherz +2024-01-04 21:27:53.799915 Running fci with kci +2024-01-04 21:57:53.903589 Function timed out +2024-01-04 21:57:53.917340 Done running fci with kci +2024-01-04 21:57:53.917740 Running fci with chisq +2024-01-04 22:27:53.948535 Function timed out +2024-01-04 22:27:54.010399 Done running fci with chisq +2024-01-04 22:27:54.010805 Running fci with gsq +2024-01-04 22:57:54.121114 Function timed out +2024-01-04 22:57:54.234778 Done running fci with gsq +2024-01-04 22:57:54.280442 Running gin with kci +2024-01-04 23:27:54.389808 Function timed out +2024-01-04 23:27:54.396767 Done running gin with kci +2024-01-04 23:27:54.397109 Running gin with hsic +2024-01-04 23:57:54.506369 Function timed out +2024-01-04 23:57:54.514296 Done running gin with hsic +2024-01-04 23:57:54.540992 Running grasp with local_score_CV_general +2024-01-05 00:27:54.649945 Function timed out +2024-01-05 00:27:54.665577 Done running grasp with local_score_CV_general +2024-01-05 00:27:54.665697 Running grasp with local_score_marginal_general +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/ScoreUtils.py:108: ComplexWarning: Casting complex values to real discards the imaginary part + return evals.astype(float), evec.astype(float) +2024-01-05 00:27:55.829021 Error running .run_grasp at 0x7fd018286520>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-05 00:27:55.837782 Done running grasp with local_score_marginal_general +2024-01-05 00:27:55.838153 Running grasp with local_score_CV_multi +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-05 00:27:56.105411 Error running .run_grasp at 0x7fd018286520>: 611 +2024-01-05 00:27:56.108691 Done running grasp with local_score_CV_multi +2024-01-05 00:27:56.109013 Running grasp with local_score_marginal_multi +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-05 00:27:56.378212 Error running .run_grasp at 0x7fd018286520>: 590 +2024-01-05 00:27:56.381070 Done running grasp with local_score_marginal_multi +2024-01-05 00:27:56.381387 Running grasp with local_score_BIC +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:35: RuntimeWarning: divide by zero encountered in log + return n * np.log(cov[i, i]) +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:39: RuntimeWarning: invalid value encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:39: RuntimeWarning: divide by zero encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) +2024-01-05 00:28:48.361021 Error running .run_grasp at 0x7fd018286520>: Singular matrix +2024-01-05 00:28:48.381989 Done running grasp with local_score_BIC +2024-01-05 00:28:48.382170 Running grasp with local_score_BDeu +2024-01-05 00:58:48.487442 Function timed out +2024-01-05 00:58:48.499024 Done running grasp with local_score_BDeu +2024-01-05 00:58:48.524915 Running ges with local_score_CV_general +2024-01-05 01:28:48.632874 Function timed out +2024-01-05 01:28:48.650244 Done running ges with local_score_CV_general +2024-01-05 01:28:48.650407 Running ges with local_score_marginal_general +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-05 01:28:49.911476 Error running .run_ges at 0x7fd0182867a0>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-05 01:28:49.922153 Done running ges with local_score_marginal_general +2024-01-05 01:28:49.922560 Running ges with local_score_CV_multi +2024-01-05 01:58:50.026020 Function timed out +2024-01-05 01:58:50.044817 Done running ges with local_score_CV_multi +2024-01-05 01:58:50.045011 Running ges with local_score_marginal_multi +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-05 01:58:51.313410 Error running .run_ges at 0x7fd0182867a0>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-05 01:58:51.322521 Done running ges with local_score_marginal_multi +2024-01-05 01:58:51.322701 Running ges with local_score_BIC +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:69: RuntimeWarning: divide by zero encountered in log + return n * np.log(cov[i, i]) +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:73: RuntimeWarning: divide by zero encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/GESUtils.py:228: RuntimeWarning: invalid value encountered in subtract + ch_score = score1 - score2 +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:73: RuntimeWarning: invalid value encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) +2024-01-05 01:59:59.701972 Error running .run_ges at 0x7fd0182867a0>: Singular matrix +2024-01-05 01:59:59.750402 Done running ges with local_score_BIC +2024-01-05 01:59:59.750578 Running ges with local_score_BIC_from_cov +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:69: RuntimeWarning: divide by zero encountered in log + return n * np.log(cov[i, i]) +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:73: RuntimeWarning: divide by zero encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/GESUtils.py:228: RuntimeWarning: invalid value encountered in subtract + ch_score = score1 - score2 +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:73: RuntimeWarning: invalid value encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) +2024-01-05 02:01:08.119152 Error running .run_ges at 0x7fd0182867a0>: Singular matrix +2024-01-05 02:01:08.166962 Done running ges with local_score_BIC_from_cov +2024-01-05 02:01:08.167340 Running ges with local_score_BDeu +2024-01-05 02:31:08.277465 Function timed out +2024-01-05 02:31:08.288131 Done running ges with local_score_BDeu +2024-01-05 02:31:08.314467 Running exact_search with dp +2024-01-05 02:31:08.505537 Error running .run_exact_search at 0x7fd018286020>: can only convert an array of size 1 to a Python scalar +2024-01-05 02:31:08.513641 Done running exact_search with dp +2024-01-05 02:31:08.513930 Running exact_search with astar +2024-01-05 02:31:08.703921 Error running .run_exact_search at 0x7fd018286020>: can only convert an array of size 1 to a Python scalar +2024-01-05 02:31:08.712015 Done running exact_search with astar + + +======================================== + + +2024-01-05 02:31:08.714411 Starting Proprietary + +2024-01-05 02:31:08.721079 Running pc with fisherz +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2897: RuntimeWarning: invalid value encountered in divide + c /= stddev[:, None] +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2898: RuntimeWarning: invalid value encountered in divide + c /= stddev[None, :] +2024-01-05 02:31:08.760810 Error running .run_pc at 0x7fd018286840>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-05 02:31:08.765922 Done running pc with fisherz +2024-01-05 02:31:08.766029 Running pc with mv_fisherz +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2897: RuntimeWarning: invalid value encountered in divide + c /= stddev[:, None] +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2898: RuntimeWarning: invalid value encountered in divide + c /= stddev[None, :] +2024-01-05 02:31:08.820500 Error running .run_pc at 0x7fd018286840>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-05 02:31:08.825335 Done running pc with mv_fisherz +2024-01-05 02:31:08.825509 Running pc with mc_fisherz +2024-01-05 02:31:08.862990 Error running .run_pc at 0x7fd018286840>: 'm' +2024-01-05 02:31:08.865757 Done running pc with mc_fisherz +2024-01-05 02:31:08.866076 Running pc with kci +2024-01-05 03:01:08.972333 Function timed out +2024-01-05 03:01:08.988807 Done running pc with kci +2024-01-05 03:01:08.989204 Running pc with chisq +2024-01-05 03:01:09.896330 Writing out pc with chisq +2024-01-05 03:01:10.077734 Done running pc with chisq +2024-01-05 03:01:10.077849 Running pc with gsq +2024-01-05 03:01:10.942975 Writing out pc with gsq +2024-01-05 03:01:11.110824 Done running pc with gsq +2024-01-05 03:01:11.110957 Running pc with d_separation +2024-01-05 03:01:11.145805 Error running .run_pc at 0x7fd018286840>: 'NoneType' object has no attribute 'is_directed' +2024-01-05 03:01:11.149652 Done running pc with d_separation +2024-01-05 03:01:11.157965 Running fci with fisherz +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2897: RuntimeWarning: invalid value encountered in divide + c /= stddev[:, None] +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2898: RuntimeWarning: invalid value encountered in divide + c /= stddev[None, :] +2024-01-05 03:01:11.208374 Error running .run_fci at 0x7fd018285f80>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-05 03:01:11.213367 Done running fci with fisherz +2024-01-05 03:01:11.213452 Running fci with kci +2024-01-05 03:31:11.298076 Function timed out +2024-01-05 03:31:11.316784 Done running fci with kci +2024-01-05 03:31:11.317152 Running fci with chisq +X25 --> X3 +2024-01-05 03:31:12.256375 Writing out fci with chisq +2024-01-05 03:31:12.428981 Done running fci with chisq +2024-01-05 03:31:12.429258 Running fci with gsq +2024-01-05 03:31:13.341103 Writing out fci with gsq +2024-01-05 03:31:13.501029 Done running fci with gsq +2024-01-05 03:31:13.506644 Running gin with kci +2024-01-05 04:01:13.585945 Function timed out +2024-01-05 04:01:13.591173 Done running gin with kci +2024-01-05 04:01:13.591264 Running gin with hsic +2024-01-05 04:31:13.625943 Function timed out +2024-01-05 04:31:13.630985 Done running gin with hsic +2024-01-05 04:31:13.639816 Running grasp with local_score_CV_general +2024-01-05 05:01:13.746439 Function timed out +2024-01-05 05:01:13.759442 Done running grasp with local_score_CV_general +2024-01-05 05:01:13.759701 Running grasp with local_score_marginal_general +~/logs-venv/lib/python3.11/site-packages/numpy/matrixlib/defmatrix.py:446: RuntimeWarning: Mean of empty slice. + return N.ndarray.mean(self, axis, dtype, out, keepdims=True)._collapse(axis) +~/logs-venv/lib/python3.11/site-packages/numpy/core/_methods.py:121: RuntimeWarning: invalid value encountered in divide + ret = um.true_divide( +2024-01-05 05:01:13.869012 Error running .run_grasp at 0x7fd018286200>: Array must not contain infs or NaNs +2024-01-05 05:01:13.878106 Done running grasp with local_score_marginal_general +2024-01-05 05:01:13.878295 Running grasp with local_score_CV_multi +2024-01-05 05:01:13.888854 Error running .run_grasp at 0x7fd018286200>: 32 +2024-01-05 05:01:13.891874 Done running grasp with local_score_CV_multi +2024-01-05 05:01:13.891988 Running grasp with local_score_marginal_multi +2024-01-05 05:01:13.902033 Error running .run_grasp at 0x7fd018286200>: 17 +2024-01-05 05:01:13.904910 Done running grasp with local_score_marginal_multi +2024-01-05 05:01:13.905019 Running grasp with local_score_BIC +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:35: RuntimeWarning: divide by zero encountered in log + return n * np.log(cov[i, i]) +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:39: RuntimeWarning: divide by zero encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) +2024-01-05 05:01:13.990061 Error running .run_grasp at 0x7fd018286200>: Singular matrix +2024-01-05 05:01:13.992890 Done running grasp with local_score_BIC +2024-01-05 05:01:13.993207 Running grasp with local_score_BDeu + +GRaSP completed in: 19.80s +2024-01-05 05:01:33.849773 Done running grasp with local_score_BDeu +2024-01-05 05:01:33.858373 Running ges with local_score_CV_general +2024-01-05 05:31:33.968076 Function timed out +2024-01-05 05:31:33.981341 Done running ges with local_score_CV_general +2024-01-05 05:31:33.981491 Running ges with local_score_marginal_general +~/logs-venv/lib/python3.11/site-packages/numpy/matrixlib/defmatrix.py:446: RuntimeWarning: Mean of empty slice. + return N.ndarray.mean(self, axis, dtype, out, keepdims=True)._collapse(axis) +~/logs-venv/lib/python3.11/site-packages/numpy/core/_methods.py:121: RuntimeWarning: invalid value encountered in divide + ret = um.true_divide( +2024-01-05 05:31:34.087784 Error running .run_ges at 0x7fd018286700>: Array must not contain infs or NaNs +2024-01-05 05:31:34.096823 Done running ges with local_score_marginal_general +2024-01-05 05:31:34.096973 Running ges with local_score_CV_multi +2024-01-05 06:01:34.197901 Function timed out +2024-01-05 06:01:34.209558 Done running ges with local_score_CV_multi +2024-01-05 06:01:34.209699 Running ges with local_score_marginal_multi +~/logs-venv/lib/python3.11/site-packages/numpy/matrixlib/defmatrix.py:446: RuntimeWarning: Mean of empty slice. + return N.ndarray.mean(self, axis, dtype, out, keepdims=True)._collapse(axis) +~/logs-venv/lib/python3.11/site-packages/numpy/core/_methods.py:121: RuntimeWarning: invalid value encountered in divide + ret = um.true_divide( +2024-01-05 06:01:34.315030 Error running .run_ges at 0x7fd018286700>: Array must not contain infs or NaNs +2024-01-05 06:01:34.323867 Done running ges with local_score_marginal_multi +2024-01-05 06:01:34.324006 Running ges with local_score_BIC +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:69: RuntimeWarning: divide by zero encountered in log + return n * np.log(cov[i, i]) +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:73: RuntimeWarning: divide by zero encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/GESUtils.py:228: RuntimeWarning: invalid value encountered in subtract + ch_score = score1 - score2 +2024-01-05 06:01:34.429783 Error running .run_ges at 0x7fd018286700>: Singular matrix +2024-01-05 06:01:34.433245 Done running ges with local_score_BIC +2024-01-05 06:01:34.433349 Running ges with local_score_BIC_from_cov +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:69: RuntimeWarning: divide by zero encountered in log + return n * np.log(cov[i, i]) +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:73: RuntimeWarning: divide by zero encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/GESUtils.py:228: RuntimeWarning: invalid value encountered in subtract + ch_score = score1 - score2 +2024-01-05 06:01:34.537226 Error running .run_ges at 0x7fd018286700>: Singular matrix +2024-01-05 06:01:34.540385 Done running ges with local_score_BIC_from_cov +2024-01-05 06:01:34.540725 Running ges with local_score_BDeu +2024-01-05 06:02:47.789125 Done running ges with local_score_BDeu +2024-01-05 06:02:47.797877 Running exact_search with dp +2024-01-05 06:02:47.817432 Error running .run_exact_search at 0x7fd018285f80>: can only convert an array of size 1 to a Python scalar +2024-01-05 06:02:47.820660 Done running exact_search with dp +2024-01-05 06:02:47.820898 Running exact_search with astar +2024-01-05 06:02:47.839394 Error running .run_exact_search at 0x7fd018285f80>: can only convert an array of size 1 to a Python scalar +2024-01-05 06:02:47.842052 Done running exact_search with astar + + +======================================== + + +2024-01-06 07:52:10.933329 Starting PostgreSQL + +2024-01-06 07:52:10.936063 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py:128: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/causallearn/search/FCMBased/lingam/ica_lingam.py:59: RuntimeWarning: divide by zero encountered in divide + _, col_index = linear_sum_assignment(1 / np.abs(W_ica)) +2024-01-06 07:52:19.200559 Error running .run_lingam at 0x7f49a3b02160>: cost matrix is infeasible +2024-01-06 07:52:19.210138 Done running lingam with placeholder + + +======================================== + + +2024-01-06 07:52:19.210430 Starting XYZ_10 + +2024-01-06 07:52:19.213476 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py:128: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:639: ConvergenceWarning: Regressors in active set degenerate. Dropping a regressor, after 11 iterations, i.e. alpha=1.760e-01, with an active set of 9 regressors, and the smallest cholesky pivot element being 2.220e-16. Reduce max_iter or increase eps parameters. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 21 iterations, alpha=1.625e-03, previous alpha=1.525e-03, with an active set of 10 regressors. + warnings.warn( +2024-01-06 07:52:19.938290 Writing out lingam with placeholder +2024-01-06 07:52:20.511788 Done running lingam with placeholder + + +======================================== + + +2024-01-06 07:52:20.512195 Starting XYZ_100 + +2024-01-06 07:52:20.519588 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py:128: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 101 iterations, alpha=3.200e-02, previous alpha=8.000e-03, with an active set of 100 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 129 iterations, alpha=5.163e-02, previous alpha=5.151e-02, with an active set of 106 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 155 iterations, alpha=5.625e-03, previous alpha=5.589e-03, with an active set of 114 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 144 iterations, alpha=2.266e-04, previous alpha=2.098e-04, with an active set of 117 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 138 iterations, alpha=5.430e-04, previous alpha=4.319e-04, with an active set of 119 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 137 iterations, alpha=7.617e-05, previous alpha=6.857e-05, with an active set of 120 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 140 iterations, alpha=4.079e-04, previous alpha=4.051e-04, with an active set of 119 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 134 iterations, alpha=1.617e-03, previous alpha=1.465e-03, with an active set of 119 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 150 iterations, alpha=8.437e-04, previous alpha=7.716e-04, with an active set of 121 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 176 iterations, alpha=2.344e-04, previous alpha=2.079e-04, with an active set of 123 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 143 iterations, alpha=6.973e-04, previous alpha=6.288e-04, with an active set of 124 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 132 iterations, alpha=2.431e-02, previous alpha=2.420e-02, with an active set of 113 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 154 iterations, alpha=3.875e-02, previous alpha=3.860e-02, with an active set of 113 regressors. + warnings.warn( +2024-01-06 07:53:19.659409 Writing out lingam with placeholder +2024-01-06 07:53:20.869371 Done running lingam with placeholder + + +======================================== + + +2024-01-06 07:53:20.869960 Starting XYZ_1000 + +2024-01-06 07:53:20.912582 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/causallearn/search/FCMBased/lingam/ica_lingam.py:59: RuntimeWarning: divide by zero encountered in divide + _, col_index = linear_sum_assignment(1 / np.abs(W_ica)) +2024-01-06 07:54:35.762695 Error running .run_lingam at 0x7f49a3b022a0>: index 1000 is out of bounds for axis 0 with size 1000 +2024-01-06 07:54:35.777832 Done running lingam with placeholder + + +======================================== + + +2024-01-06 07:54:35.779313 Starting OpenStack_Cinder + +2024-01-06 07:54:35.786047 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py:128: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. + warnings.warn( +2024-01-06 07:58:12.847928 Error running .run_lingam at 0x7f49a3b02fc0>: index 581 is out of bounds for axis 0 with size 538 +2024-01-06 07:58:12.863461 Done running lingam with placeholder + + +======================================== + + +2024-01-06 07:58:12.864013 Starting OpenStack_Neutron + +2024-01-06 07:58:12.869587 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py:128: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. + warnings.warn( +2024-01-06 07:59:57.619275 Error running .run_lingam at 0x7f49a3b02200>: index 429 is out of bounds for axis 0 with size 406 +2024-01-06 07:59:57.630667 Done running lingam with placeholder + + +======================================== + + +2024-01-06 07:59:57.631082 Starting OpenStack_Nova + +2024-01-06 07:59:57.641756 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py:128: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. + warnings.warn( +2024-01-06 08:06:57.997384 Error running .run_lingam at 0x7f49a3b01f80>: index 879 is out of bounds for axis 0 with size 878 +2024-01-06 08:06:58.012651 Done running lingam with placeholder + + +======================================== + + +2024-01-06 08:06:58.013413 Starting Proprietary + +2024-01-06 08:06:58.017036 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py:128: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/causallearn/search/FCMBased/lingam/ica_lingam.py:59: RuntimeWarning: divide by zero encountered in divide + _, col_index = linear_sum_assignment(1 / np.abs(W_ica)) +2024-01-06 08:07:07.909140 Error running .run_lingam at 0x7f49a3b02480>: cost matrix is infeasible +2024-01-06 08:07:07.919985 Done running lingam with placeholder + + +======================================== + + +2024-01-06 12:55:47.059163 Starting XYZ_10 + +2024-01-06 12:55:47.061102 Running exact_search with dp +2024-01-06 13:25:47.168498 Function timed out +2024-01-06 13:25:47.176467 Done running exact_search with dp +2024-01-06 13:25:47.176756 Running exact_search with astar +2024-01-06 13:55:47.280599 Function timed out +2024-01-06 13:55:47.292025 Done running exact_search with astar + + + + +======================================== + + +2024-01-09 07:59:25.181549 Starting PostgreSQL_filtered + +2024-01-09 07:59:25.183629 Running pc with fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2897: RuntimeWarning: invalid value encountered in divide + c /= stddev[:, None] +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2898: RuntimeWarning: invalid value encountered in divide + c /= stddev[None, :] +2024-01-09 07:59:25.308035 Error running .run_pc at 0x7f806113a020>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-09 07:59:25.314991 Done running pc with fisherz +2024-01-09 07:59:25.315091 Running pc with mv_fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2897: RuntimeWarning: invalid value encountered in divide + c /= stddev[:, None] +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2898: RuntimeWarning: invalid value encountered in divide + c /= stddev[None, :] +2024-01-09 07:59:25.515544 Error running .run_pc at 0x7f806113a020>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-09 07:59:25.523197 Done running pc with mv_fisherz +2024-01-09 07:59:25.523523 Running pc with mc_fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-09 07:59:25.584877 Error running .run_pc at 0x7f806113a020>: 'm' +2024-01-09 07:59:25.589021 Done running pc with mc_fisherz +2024-01-09 07:59:25.589114 Running pc with kci +2024-01-09 08:29:25.692476 Function timed out +2024-01-09 08:29:25.711466 Done running pc with kci +2024-01-09 08:29:25.711797 Running pc with chisq +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-09 08:29:27.457733 Writing out pc with chisq +2024-01-09 08:29:27.632546 Done running pc with chisq +2024-01-09 08:29:27.632694 Running pc with gsq +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-09 08:29:29.560240 Done running pc with gsq +2024-01-09 08:29:29.560547 Running pc with d_separation +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/PC.py:36: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-09 08:29:29.627682 Error running .run_pc at 0x7f806113a020>: 'NoneType' object has no attribute 'is_directed' +2024-01-09 08:29:29.632035 Done running pc with d_separation +2024-01-09 08:29:29.637153 Running fci with fisherz +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/FCI.py:736: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2897: RuntimeWarning: invalid value encountered in divide + c /= stddev[:, None] +~/logs-venv/lib/python3.11/site-packages/numpy/lib/function_base.py:2898: RuntimeWarning: invalid value encountered in divide + c /= stddev[None, :] +2024-01-09 08:29:29.763916 Error running .run_fci at 0x7f806113a480>: Data correlation matrix is singular. Cannot run fisherz test. Please check your data. +2024-01-09 08:29:29.769300 Done running fci with fisherz +2024-01-09 08:29:29.769386 Running fci with kci +2024-01-09 08:59:29.872258 Function timed out +2024-01-09 08:59:29.896621 Done running fci with kci +2024-01-09 08:59:29.897002 Running fci with chisq +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/FCI.py:736: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-09 08:59:31.691457 Writing out fci with chisq +2024-01-09 08:59:31.860127 Done running fci with chisq +2024-01-09 08:59:31.860249 Running fci with gsq +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ConstraintBased/FCI.py:736: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-09 08:59:33.866358 Done running fci with gsq +2024-01-09 08:59:33.873953 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/causallearn/search/FCMBased/lingam/ica_lingam.py:59: RuntimeWarning: divide by zero encountered in divide + _, col_index = linear_sum_assignment(1 / np.abs(W_ica)) +2024-01-09 08:59:34.473819 Error running .run_lingam at 0x7f806113a200>: cost matrix is infeasible +2024-01-09 08:59:34.482378 Done running lingam with placeholder +2024-01-09 08:59:34.485315 Running gin with kci +2024-01-09 09:29:34.590233 Function timed out +2024-01-09 09:29:34.596075 Done running gin with kci +2024-01-09 09:29:34.596317 Running gin with hsic +2024-01-09 09:59:34.642261 Function timed out +2024-01-09 09:59:34.649076 Done running gin with hsic +2024-01-09 09:59:34.656449 Running grasp with local_score_CV_general +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/matrixlib/defmatrix.py:446: RuntimeWarning: Mean of empty slice. + return N.ndarray.mean(self, axis, dtype, out, keepdims=True)._collapse(axis) +~/logs-venv/lib/python3.11/site-packages/numpy/core/_methods.py:121: RuntimeWarning: invalid value encountered in divide + ret = um.true_divide( + +GRaSP completed in: 919.56s +2024-01-09 10:14:54.426424 Writing out grasp with local_score_CV_general +2024-01-09 10:14:54.574672 Done running grasp with local_score_CV_general +2024-01-09 10:14:54.574768 Running grasp with local_score_marginal_general +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/numpy/matrixlib/defmatrix.py:446: RuntimeWarning: Mean of empty slice. + return N.ndarray.mean(self, axis, dtype, out, keepdims=True)._collapse(axis) +~/logs-venv/lib/python3.11/site-packages/numpy/core/_methods.py:121: RuntimeWarning: invalid value encountered in divide + ret = um.true_divide( +2024-01-09 10:14:54.596688 Error running .run_grasp at 0x7f806113a5c0>: Array must not contain infs or NaNs +2024-01-09 10:14:54.601880 Done running grasp with local_score_marginal_general +2024-01-09 10:14:54.602020 Running grasp with local_score_CV_multi +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-09 10:14:54.617340 Error running .run_grasp at 0x7f806113a5c0>: 147 +2024-01-09 10:14:54.620896 Done running grasp with local_score_CV_multi +2024-01-09 10:14:54.620994 Running grasp with local_score_marginal_multi +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-09 10:14:54.635211 Error running .run_grasp at 0x7f806113a5c0>: 122 +2024-01-09 10:14:54.638092 Done running grasp with local_score_marginal_multi +2024-01-09 10:14:54.638180 Running grasp with local_score_BIC +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:35: RuntimeWarning: divide by zero encountered in log + return n * np.log(cov[i, i]) +2024-01-09 10:14:54.681039 Error running .run_grasp at 0x7f806113a5c0>: Singular matrix +2024-01-09 10:14:54.683907 Done running grasp with local_score_BIC +2024-01-09 10:14:54.683996 Running grasp with local_score_BDeu +~/logs-venv/lib/python3.11/site-packages/causallearn/search/PermutationBased/GRaSP.py:107: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") + +GRaSP completed in: 173.77s +2024-01-09 10:17:48.536777 Writing out grasp with local_score_BDeu +2024-01-09 10:17:48.718115 Done running grasp with local_score_BDeu +2024-01-09 10:17:48.720587 Running ges with local_score_CV_general +2024-01-09 10:47:48.825391 Function timed out +2024-01-09 10:47:48.841842 Done running ges with local_score_CV_general +2024-01-09 10:47:48.842085 Running ges with local_score_marginal_general +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/ScoreUtils.py:108: ComplexWarning: Casting complex values to real discards the imaginary part + return evals.astype(float), evec.astype(float) +2024-01-09 10:47:48.879617 Error running .run_ges at 0x7f806113a5c0>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-09 10:47:48.886285 Done running ges with local_score_marginal_general +2024-01-09 10:47:48.886397 Running ges with local_score_CV_multi +2024-01-09 11:17:48.990515 Function timed out +2024-01-09 11:17:49.007337 Done running ges with local_score_CV_multi +2024-01-09 11:17:49.007695 Running ges with local_score_marginal_multi +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/ScoreUtils.py:108: ComplexWarning: Casting complex values to real discards the imaginary part + return evals.astype(float), evec.astype(float) +2024-01-09 11:17:49.050591 Error running .run_ges at 0x7f806113a5c0>: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part. +2024-01-09 11:17:49.057623 Done running ges with local_score_marginal_multi +2024-01-09 11:17:49.057825 Running ges with local_score_BIC +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:69: RuntimeWarning: divide by zero encountered in log + return n * np.log(cov[i, i]) +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:73: RuntimeWarning: divide by zero encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/GESUtils.py:228: RuntimeWarning: invalid value encountered in subtract + ch_score = score1 - score2 +2024-01-09 11:17:50.456719 Error running .run_ges at 0x7f806113a5c0>: Singular matrix +2024-01-09 11:17:50.466913 Done running ges with local_score_BIC +2024-01-09 11:17:50.467266 Running ges with local_score_BIC_from_cov +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:69: RuntimeWarning: divide by zero encountered in log + return n * np.log(cov[i, i]) +~/logs-venv/lib/python3.11/site-packages/causallearn/score/LocalScoreFunction.py:73: RuntimeWarning: divide by zero encountered in log + H = np.log(cov[i, i] - yX * np.linalg.inv(XX) * yX.T) +~/logs-venv/lib/python3.11/site-packages/causallearn/utils/GESUtils.py:228: RuntimeWarning: invalid value encountered in subtract + ch_score = score1 - score2 +2024-01-09 11:17:51.856455 Error running .run_ges at 0x7f806113a5c0>: Singular matrix +2024-01-09 11:17:51.866612 Done running ges with local_score_BIC_from_cov +2024-01-09 11:17:51.866956 Running ges with local_score_BDeu +~/logs-venv/lib/python3.11/site-packages/causallearn/search/ScoreBased/GES.py:40: UserWarning: The number of features is much larger than the sample size! + warnings.warn("The number of features is much larger than the sample size!") +2024-01-09 11:36:53.196817 Writing out ges with local_score_BDeu +2024-01-09 11:36:53.380605 Done running ges with local_score_BDeu +2024-01-09 11:36:53.383263 Running exact_search with dp +2024-01-09 11:36:53.421544 Error running .run_exact_search at 0x7f806113a480>: can only convert an array of size 1 to a Python scalar +2024-01-09 11:36:53.426936 Done running exact_search with dp +2024-01-09 11:36:53.427010 Running exact_search with astar +2024-01-09 11:36:53.459216 Error running .run_exact_search at 0x7f806113a480>: can only convert an array of size 1 to a Python scalar +2024-01-09 11:36:53.462774 Done running exact_search with astar + + +======================================== + + +2024-01-10 06:32:41.150470 Starting PostgreSQL_filtered + +2024-01-10 06:32:41.152515 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/causallearn/search/FCMBased/lingam/ica_lingam.py:59: RuntimeWarning: divide by zero encountered in divide + _, col_index = linear_sum_assignment(1 / np.abs(W_ica)) +2024-01-10 06:32:41.949663 Error running .run_lingam at 0x7ff1a2fde200>: cost matrix is infeasible +2024-01-10 06:32:41.959833 Done running lingam with placeholder + + +======================================== + + +2024-01-10 06:32:41.960143 Starting XYZ_10 + +2024-01-10 06:32:41.962675 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py:128: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. + warnings.warn( +made it this far +2024-01-10 06:32:42.672273 Writing out lingam with placeholder +2024-01-10 06:32:43.237174 Done running lingam with placeholder + + +======================================== + + +2024-01-10 06:32:43.237633 Starting XYZ_100 + +2024-01-10 06:32:43.242487 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py:128: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 106 iterations, alpha=5.600e-02, previous alpha=5.400e-02, with an active set of 99 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 137 iterations, alpha=2.687e-03, previous alpha=2.664e-03, with an active set of 112 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 139 iterations, alpha=1.395e-03, previous alpha=1.356e-03, with an active set of 116 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 137 iterations, alpha=3.340e-04, previous alpha=7.386e-05, with an active set of 118 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 134 iterations, alpha=1.426e-04, previous alpha=1.388e-04, with an active set of 119 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 146 iterations, alpha=3.359e-04, previous alpha=3.254e-04, with an active set of 119 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 133 iterations, alpha=1.558e-04, previous alpha=1.554e-04, with an active set of 120 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 143 iterations, alpha=8.301e-04, previous alpha=8.187e-04, with an active set of 118 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 145 iterations, alpha=4.219e-04, previous alpha=1.200e-05, with an active set of 122 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 158 iterations, alpha=1.398e-03, previous alpha=8.841e-04, with an active set of 121 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 157 iterations, alpha=2.002e-04, previous alpha=8.757e-05, with an active set of 124 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 163 iterations, alpha=9.835e-04, previous alpha=3.086e-04, with an active set of 126 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 131 iterations, alpha=8.288e-02, previous alpha=8.028e-02, with an active set of 110 regressors. + warnings.warn( +made it this far +2024-01-10 06:33:47.310582 Writing out lingam with placeholder +2024-01-10 06:33:48.491989 Done running lingam with placeholder + + +======================================== + + +2024-01-10 06:33:48.492659 Starting XYZ_1000 + +2024-01-10 06:33:48.518083 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/causallearn/search/FCMBased/lingam/ica_lingam.py:59: RuntimeWarning: divide by zero encountered in divide + _, col_index = linear_sum_assignment(1 / np.abs(W_ica)) +2024-01-10 06:34:53.759758 Error running .run_lingam at 0x7ff1a2fde340>: index 1000 is out of bounds for axis 0 with size 1000 +2024-01-10 06:34:53.776205 Done running lingam with placeholder + + +======================================== + + +2024-01-10 06:34:53.777792 Starting OpenStack_Cinder + +Traceback (most recent call last): + File "~/causal-log/evaluation/discovery/discovery.py", line 278, in + main() + File "~/causal-log/evaluation/discovery/discovery.py", line 267, in main + run_method_with_timer(dataset_name, "lingam", LINGAM_OPTIONS, fres) + File "~/causal-log/evaluation/discovery/discovery.py", line 100, in run_method_with_timer + data_df = pd.read_pickle(datasets[dataset_name]["prepared_log"]) + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "~/logs-venv/lib/python3.11/site-packages/pandas/io/pickle.py", line 189, in read_pickle + with get_handle( + ^^^^^^^^^^^ + File "~/logs-venv/lib/python3.11/site-packages/pandas/io/common.py", line 872, in get_handle + handle = open(handle, ioargs.mode) + ^^^^^^^^^^^^^^^^^^^^^^^^^ +FileNotFoundError: [Errno 2] No such file or directory: '~/causal-log/evaluation/datasets/Openstack/Cinder/Cinder_combined_all.log_prepared_log_ID_None.pkl' + + +======================================== + + +2024-01-10 06:36:41.542342 Starting PostgreSQL_filtered + +2024-01-10 06:36:41.544330 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/causallearn/search/FCMBased/lingam/ica_lingam.py:59: RuntimeWarning: divide by zero encountered in divide + _, col_index = linear_sum_assignment(1 / np.abs(W_ica)) +2024-01-10 06:36:42.226411 Error running .run_lingam at 0x7fd996636200>: cost matrix is infeasible +2024-01-10 06:36:42.235296 Done running lingam with placeholder + + +======================================== + + +2024-01-10 06:36:42.235667 Starting XYZ_10 + +2024-01-10 06:36:42.238059 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py:128: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 10 iterations, alpha=1.500e-02, previous alpha=1.400e-02, with an active set of 9 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 19 iterations, alpha=3.000e-03, previous alpha=1.875e-03, with an active set of 10 regressors. + warnings.warn( +made it this far +2024-01-10 06:36:42.943631 Writing out lingam with placeholder +2024-01-10 06:36:43.516372 Done running lingam with placeholder + + +======================================== + + +2024-01-10 06:36:43.516705 Starting XYZ_100 + +2024-01-10 06:36:43.521712 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py:128: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 104 iterations, alpha=4.006e-02, previous alpha=3.300e-02, with an active set of 99 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 131 iterations, alpha=2.797e-03, previous alpha=2.720e-03, with an active set of 114 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 134 iterations, alpha=1.137e-02, previous alpha=1.110e-02, with an active set of 113 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 143 iterations, alpha=6.575e-04, previous alpha=5.194e-04, with an active set of 116 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 132 iterations, alpha=6.587e-03, previous alpha=6.565e-03, with an active set of 115 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 138 iterations, alpha=1.516e-03, previous alpha=1.470e-03, with an active set of 119 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 152 iterations, alpha=3.463e-05, previous alpha=2.930e-05, with an active set of 121 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 148 iterations, alpha=4.231e-04, previous alpha=4.224e-04, with an active set of 121 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 161 iterations, alpha=1.219e-01, previous alpha=4.065e-02, with an active set of 114 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 186 iterations, alpha=6.165e-04, previous alpha=6.135e-04, with an active set of 121 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 144 iterations, alpha=1.756e-02, previous alpha=1.756e-02, with an active set of 117 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 106 iterations, alpha=4.677e-01, previous alpha=4.674e-01, with an active set of 101 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 121 iterations, alpha=1.639e-01, previous alpha=1.639e-01, with an active set of 106 regressors. + warnings.warn( +made it this far +2024-01-10 06:37:45.962987 Writing out lingam with placeholder +2024-01-10 06:37:47.144225 Done running lingam with placeholder + + +======================================== + + +2024-01-10 06:37:47.145187 Starting XYZ_1000 + +2024-01-10 06:37:47.171273 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/causallearn/search/FCMBased/lingam/ica_lingam.py:59: RuntimeWarning: divide by zero encountered in divide + _, col_index = linear_sum_assignment(1 / np.abs(W_ica)) +2024-01-10 06:38:49.342454 Error running .run_lingam at 0x7fd996636340>: index 1000 is out of bounds for axis 0 with size 1000 +2024-01-10 06:38:49.357074 Done running lingam with placeholder + + +======================================== + + +2024-01-10 06:38:49.358541 Starting OpenStack_Cinder + +Traceback (most recent call last): + File "~/causal-log/evaluation/discovery/discovery.py", line 278, in + main() + File "~/causal-log/evaluation/discovery/discovery.py", line 267, in main + run_method_with_timer(dataset_name, "lingam", LINGAM_OPTIONS, fres) + File "~/causal-log/evaluation/discovery/discovery.py", line 100, in run_method_with_timer + data_df = pd.read_pickle(datasets[dataset_name]["prepared_log"]) + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "~/logs-venv/lib/python3.11/site-packages/pandas/io/pickle.py", line 189, in read_pickle + with get_handle( + ^^^^^^^^^^^ + File "~/logs-venv/lib/python3.11/site-packages/pandas/io/common.py", line 872, in get_handle + handle = open(handle, ioargs.mode) + ^^^^^^^^^^^^^^^^^^^^^^^^^ +FileNotFoundError: [Errno 2] No such file or directory: '~/causal-log/evaluation/OpenStack/Cinder/Cinder_combined_all.log_prepared_log_ID_None.pkl' + + +======================================== + + +2024-01-10 06:43:46.203288 Starting PostgreSQL_filtered + +2024-01-10 06:43:46.205301 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/causallearn/search/FCMBased/lingam/ica_lingam.py:59: RuntimeWarning: divide by zero encountered in divide + _, col_index = linear_sum_assignment(1 / np.abs(W_ica)) +2024-01-10 06:43:46.766202 Error running .run_lingam at 0x7f15a3e6a160>: cost matrix is infeasible +2024-01-10 06:43:46.776750 Done running lingam with placeholder + + +======================================== + + +2024-01-10 06:43:46.777083 Starting XYZ_10 + +2024-01-10 06:43:46.779708 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py:128: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 12 iterations, alpha=1.500e-03, previous alpha=9.336e-04, with an active set of 9 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 22 iterations, alpha=1.250e-04, previous alpha=3.125e-05, with an active set of 11 regressors. + warnings.warn( +made it this far +2024-01-10 06:43:47.473906 Writing out lingam with placeholder +2024-01-10 06:43:48.046170 Done running lingam with placeholder + + +======================================== + + +2024-01-10 06:43:48.046481 Starting XYZ_100 + +2024-01-10 06:43:48.051386 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py:128: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 102 iterations, alpha=1.675e-02, previous alpha=1.400e-02, with an active set of 99 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 125 iterations, alpha=4.897e-03, previous alpha=4.851e-03, with an active set of 112 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 125 iterations, alpha=2.976e-02, previous alpha=2.671e-02, with an active set of 112 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 141 iterations, alpha=3.106e-02, previous alpha=3.057e-02, with an active set of 112 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 146 iterations, alpha=1.506e-02, previous alpha=1.506e-02, with an active set of 113 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 139 iterations, alpha=6.625e-03, previous alpha=6.305e-03, with an active set of 116 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 131 iterations, alpha=3.516e-04, previous alpha=3.383e-04, with an active set of 118 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 152 iterations, alpha=4.116e-04, previous alpha=3.747e-04, with an active set of 119 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 130 iterations, alpha=3.203e-03, previous alpha=3.200e-03, with an active set of 117 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 150 iterations, alpha=7.324e-04, previous alpha=3.525e-04, with an active set of 121 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 146 iterations, alpha=9.644e-06, previous alpha=3.540e-06, with an active set of 123 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 165 iterations, alpha=1.672e-03, previous alpha=1.551e-03, with an active set of 120 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 132 iterations, alpha=4.031e-03, previous alpha=3.851e-03, with an active set of 119 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 161 iterations, alpha=7.617e-05, previous alpha=3.033e-05, with an active set of 126 regressors. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/sklearn/linear_model/_least_angle.py:669: ConvergenceWarning: Early stopping the lars path, as the residues are small and the current value of alpha is no longer well controlled. 160 iterations, alpha=6.470e-06, previous alpha=5.161e-06, with an active set of 127 regressors. + warnings.warn( +made it this far +2024-01-10 06:44:44.032578 Writing out lingam with placeholder +2024-01-10 06:44:45.248278 Done running lingam with placeholder + + +======================================== + + +2024-01-10 06:44:45.248989 Starting XYZ_1000 + +2024-01-10 06:44:45.274633 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/causallearn/search/FCMBased/lingam/ica_lingam.py:59: RuntimeWarning: divide by zero encountered in divide + _, col_index = linear_sum_assignment(1 / np.abs(W_ica)) +2024-01-10 06:45:51.160154 Error running .run_lingam at 0x7f15a3e6a2a0>: index 1000 is out of bounds for axis 0 with size 1000 +2024-01-10 06:45:51.176937 Done running lingam with placeholder + + +======================================== + + +2024-01-10 06:45:51.178714 Starting OpenStack_Cinder + +2024-01-10 06:45:51.186019 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py:128: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. + warnings.warn( +2024-01-10 06:50:20.048467 Error running .run_lingam at 0x7f15a3e6afc0>: index 602 is out of bounds for axis 0 with size 538 +2024-01-10 06:50:20.059942 Done running lingam with placeholder + + +======================================== + + +2024-01-10 06:50:20.060398 Starting OpenStack_Neutron + +2024-01-10 06:50:20.066082 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py:128: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. + warnings.warn( +2024-01-10 06:52:04.237068 Error running .run_lingam at 0x7f15a3e6a200>: index 490 is out of bounds for axis 0 with size 406 +2024-01-10 06:52:04.249985 Done running lingam with placeholder + + +======================================== + + +2024-01-10 06:52:04.250428 Starting OpenStack_Nova + +2024-01-10 06:52:04.261796 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py:128: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. + warnings.warn( +2024-01-10 06:59:08.011404 Error running .run_lingam at 0x7f15a3e6b2e0>: index 900 is out of bounds for axis 0 with size 878 +2024-01-10 06:59:08.027435 Done running lingam with placeholder + + +======================================== + + +2024-01-10 06:59:08.028229 Starting Proprietary + +2024-01-10 06:59:08.031921 Running lingam with placeholder +~/logs-venv/lib/python3.11/site-packages/sklearn/decomposition/_fastica.py:128: ConvergenceWarning: FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. + warnings.warn( +~/logs-venv/lib/python3.11/site-packages/causallearn/search/FCMBased/lingam/ica_lingam.py:59: RuntimeWarning: divide by zero encountered in divide + _, col_index = linear_sum_assignment(1 / np.abs(W_ica)) +2024-01-10 06:59:17.588072 Error running .run_lingam at 0x7f15a3e6a0c0>: cost matrix is infeasible +2024-01-10 06:59:17.599132 Done running lingam with placeholder + + +======================================== + + +2024-01-10 09:21:25.344833 Starting PostgreSQL_filtered + +2024-01-10 09:21:25.349614 Running gpt with gpt-4 + +Outer edge-finding loop using GPT...: 0%| | 0/172 [00:00 10e-5 + ): + edge, latency = s.get_causal_graph_refinement_suggestion( + method_obj, + conf["treatment"], + conf["outcome"], + gpt_log_path=gpt_log_path, + ) + print(f"Edge: {edge}") + + if edge is not None: + if list(edge) in conf["true_graph_edges"]: + print("This edge is in the ground truth graph") + s.accept(edge[0], edge[1], also_fix=True, interactive=False) + s.reject(edge[1], edge[0], also_ban=True, interactive=False) + elif list(edge)[::-1] in conf["true_graph_edges"]: + print( + "The inverse of this edge is in the ground truth graph" + ) + s.reject(edge[0], edge[1], also_ban=True, interactive=False) + s.accept(edge[1], edge[0], also_fix=True, interactive=False) + else: + print("This edge is not in the ground truth graph") + s.reject(edge[0], edge[1], also_ban=True, interactive=False) + s.reject(edge[1], edge[0], also_ban=True, interactive=False) + + print("After updating the graph, it now has edges:") + print(s._graph.edges) + + ate = s.get_adjusted_ate(conf["treatment"], conf["outcome"]) + + d = info.copy() + d["judgments"] = j + 1 + d["edge"] = edge + d["ATE"] = ate + d["ARE_ATE"] = get_are_ate(ate, ground_truth_ate) + df_ranks[method].loc[len(df_ranks[method])] = d + + d = info.copy() + d["judgments"] = j + 1 + d["latency"] = latency + df_lats[method].loc[len(df_lats[method])] = d + + j += 1 + + # Close all files + f.close() + for method in methods: + results_path = os.path.join(outdir, f"{dataset}_results_{method}.csv") + latency_path = os.path.join(outdir, f"{dataset}_latency_{method}.csv") + df_ranks[method].to_csv(results_path, index=False) + df_lats[method].to_csv(latency_path, index=False) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--logos", action="store_true") + parser.add_argument("--regression", action="store_true") + parser.add_argument("--langmodel", action="store_true") + parser.add_argument("--all_methods", action="store_true") + parser.add_argument("--postgresql", action="store_true") + parser.add_argument("--proprietary", action="store_true") + parser.add_argument("--xyz", action="store_true") + parser.add_argument("--all_datasets", action="store_true") + args = parser.parse_args() + methods = [ + method for method in ALL_METHODS if (getattr(args, method) or args.all_methods) + ] + datasets = [ + dataset + for dataset in ALL_DATASETS + if (getattr(args, dataset) or args.all_datasets) + ] + + print(f"Methods: {methods}") + print(f"Datasets: {datasets}") + + for dataset in datasets: + interactive_causal_graph_refinement(dataset, methods) diff --git a/evaluation/8.4-data-transformation/8.4.1-scalability/gen_scaling_logs.py b/evaluation/8.4-data-transformation/8.4.1-scalability/gen_scaling_logs.py new file mode 100644 index 0000000..5e7f031 --- /dev/null +++ b/evaluation/8.4-data-transformation/8.4.1-scalability/gen_scaling_logs.py @@ -0,0 +1,38 @@ +import os +import random + + +def gen_log( + L: int = 10000, + S: int = 10, + V: int = 10, + C: int = 10, + filename: str = "test.log", + seed: int = 42, +): + """ + Generate a log for the microbenchmarks, as per the LOGos paper. + + Parameters: + L: The number of lines in the log. + S: The number of distinct values for the string token. + V: The number of numerical variables. + C: The number of numerical constants. + filename: The filename to write the log to. + """ + + # Generate path to filename if it doesn't exist + if not os.path.exists(os.path.dirname(filename)): + os.makedirs(os.path.dirname(filename)) + + prng = random.Random(seed) + + with open(filename, "w+") as f: + for i in range(L): + f.write(f"line_{i}") + f.write(f" s_{prng.randint(1,S)}") + for j in range(V): + f.write(f" {i}") + for j in range(C): + f.write(f" 0") + f.write("\n") diff --git a/evaluation/8.4-data-transformation/8.4.1-scalability/plot.py b/evaluation/8.4-data-transformation/8.4.1-scalability/plot.py new file mode 100644 index 0000000..c4ff2d6 --- /dev/null +++ b/evaluation/8.4-data-transformation/8.4.1-scalability/plot.py @@ -0,0 +1,177 @@ +import matplotlib.pyplot as plt +import pandas as pd +import numpy as np +import sys +import os +import matplotlib as mpl + +sys.path.append("../../../") +from src.definitions import LOGOS_ROOT_DIR + +rc_fonts = { + "font.family": "serif", + "text.usetex": True, + "text.latex.preamble": r""" + \usepackage{libertine} + \usepackage[libertine]{newtxmath} + """, +} +mpl.rcParams.update(rc_fonts) +FONTSIZE = 24 + +LINE_FORMATTING_DATA = { + "length": { + "xlabel": r"Log Length", + "color": "#7FBA82", + "parse_fit_start_idx": 2, + "parse_fit_end_idx": 6, + "parse_polyfit_deg": 1, + "agg_fit_start_idx": 0, + "agg_fit_end_idx": 6, + "agg_polyfit_deg": 1, + "loglog": True, + "xaxis_mult":1 + }, + "templates": { + "xlabel": r"\# Templates", + "color": "#ba8a7f", + "parse_fit_start_idx": 0, + "parse_fit_end_idx": 4, + "parse_polyfit_deg": 2, + "agg_fit_start_idx": 0, + "agg_fit_end_idx": 4, + "agg_polyfit_deg": 2, + "loglog": True, + "xaxis_mult":1 + }, + "variables": { + "xlabel": r"$\frac{Variables}{Line Tokens}$", + "color": "#7F9FBA", + "parse_fit_start_idx": 0, + "parse_fit_end_idx": 10, + "parse_polyfit_deg": 1, + "agg_fit_start_idx": 0, + "agg_fit_end_idx": 10, + "agg_polyfit_deg": 1, + "loglog": False, + "polyfit_deg": 1, + "xaxis_mult":0.01 + }, +} + + +def form_polynomial_string(p): + p_str = r"$" + for i in range(len(p)): + if i == 0: + p_str += f"{p[i]:.2e}" + else: + p_str += f"{p[i]:+.2e}" + if i < len(p) - 1: + p_str += "x" + if i < len(p) - 2: + p_str += r"^" + f"{len(p)-i-1}" + + p_str += r"}$" + p_str = p_str.replace("e+00", r"{") + p_str = p_str.replace("e-0", r"\cdot10^{-") + p_str = p_str.replace("e+0", r"\cdot10^{") + p_str = p_str.replace("x", r"}x") + return p_str + +plots_dir = os.path.join(LOGOS_ROOT_DIR, "evaluation", "plots") + + +for metric in LINE_FORMATTING_DATA.keys(): + + # Read data from CSV + path = os.path.join( + LOGOS_ROOT_DIR, "evaluation", "results", f"8.4.1-scalability-{metric}.csv" + ) + data = pd.read_csv(path) + data.columns = [x.strip() for x in data.columns] + + # Extract data columns + x = data[list(data.columns)[0]] + x = x * LINE_FORMATTING_DATA[metric]["xaxis_mult"] + parse_time = data["Parse Time"] + prep_time = data["Prep Time"] + + fig, ax1 = plt.subplots(1, 1, figsize=(6, 4)) + + # Plot 1 - Parse Time + if LINE_FORMATTING_DATA[metric]["loglog"]: + ax1.set_xscale("log") + ax1.set_yscale("log") + ax1.plot( + x, + parse_time, + marker="o", + color=LINE_FORMATTING_DATA[metric]["color"], + markersize=15, + ) + ax1.set_xlabel(LINE_FORMATTING_DATA[metric]["xlabel"], fontsize=FONTSIZE) + ax1.set_ylabel("Time (s)", fontsize=FONTSIZE) + ax1.tick_params(axis="both", which="major", labelsize=FONTSIZE) + + # Add trendline + pfsi = LINE_FORMATTING_DATA[metric]["parse_fit_start_idx"] + pfei = LINE_FORMATTING_DATA[metric]["parse_fit_end_idx"] + pfit_coeffs = np.polyfit( + x[pfsi:pfei], + parse_time[pfsi:pfei], + LINE_FORMATTING_DATA[metric]["parse_polyfit_deg"], + ) + trendline_parse = np.polyval(pfit_coeffs, x[pfsi:pfei]) + ax1.plot( + x[pfsi:pfei], + trendline_parse, + "--", + color="black", + label=form_polynomial_string(pfit_coeffs), + ) + + ax1.legend(loc="lower center", bbox_to_anchor=(0.5, 1.0001), fontsize=FONTSIZE) + + plt.tight_layout() + plt.show + plt.savefig(os.path.join(plots_dir, f"8.4.1-scalability-{metric}-parsing.jpg"), bbox_inches="tight") + + fig, ax2 = plt.subplots(1, 1, figsize=(6, 4)) + + # Plot 2 - Prep Time + if LINE_FORMATTING_DATA[metric]["loglog"]: + ax2.set_xscale("log") + ax2.set_yscale("log") + ax2.plot( + x, + prep_time, + marker="^", + color=LINE_FORMATTING_DATA[metric]["color"], + markersize=15, + ) + ax2.set_xlabel(LINE_FORMATTING_DATA[metric]["xlabel"], fontsize=FONTSIZE) + ax2.set_ylabel("Time (s)", fontsize=FONTSIZE) + ax2.tick_params(axis="both", which="major", labelsize=FONTSIZE) + + # Add linear trendline + afsi = LINE_FORMATTING_DATA[metric]["agg_fit_start_idx"] + afei = LINE_FORMATTING_DATA[metric]["agg_fit_end_idx"] + afit_coeffs = np.polyfit( + x[afsi:afei], + prep_time[afsi:afei], + LINE_FORMATTING_DATA[metric]["agg_polyfit_deg"], + ) + trendline_prep = np.polyval(afit_coeffs, x[afsi:afei]) + ax2.plot( + x[afsi:], + trendline_prep, + "--", + color="black", + label=form_polynomial_string(afit_coeffs), + ) + ax2.legend(loc="lower center", bbox_to_anchor=(0.5, 1.0001), fontsize=FONTSIZE) + + plt.tight_layout() + plt.show + plt.savefig(os.path.join(plots_dir, f"8.4.1-scalability-{metric}-aggregation.jpg"), bbox_inches="tight") diff --git a/evaluation/8.4-data-transformation/8.4.1-scalability/runlog-length.txt b/evaluation/8.4-data-transformation/8.4.1-scalability/runlog-length.txt new file mode 100644 index 0000000..2ff3a52 --- /dev/null +++ b/evaluation/8.4-data-transformation/8.4.1-scalability/runlog-length.txt @@ -0,0 +1,108 @@ +Generated log of length 10 +Initialized Sawmill with log file log_10.log +Work directory set to ../../../../dataset-files/scaling/length +Parsing file: log_10.log +Parsing complete in 0.073786 seconds! +Number of templates: 7 +Number of parsed variables: 3 +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 36 edges not in the graph, 6 are banned. +The number of modifiable edges is 30. +Preparation complete in 0.028782 seconds! 6 of the 36 possible edges were auto-rejected. +Shape of prepared log: (10, 6) +Generated log of length 100 +Initialized Sawmill with log file log_100.log +Work directory set to ../../../../dataset-files/scaling/length +Parsing file: log_100.log +Parsing complete in 0.052841 seconds! +Number of templates: 10 +Number of parsed variables: 11 +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 900 edges not in the graph, 30 are banned. +The number of modifiable edges is 870. +Preparation complete in 0.257197 seconds! 30 of the 900 possible edges were auto-rejected. +Shape of prepared log: (100, 30) +Generated log of length 1000 +Initialized Sawmill with log file log_1000.log +Work directory set to ../../../../dataset-files/scaling/length +Parsing file: log_1000.log +Parsing complete in 0.165637 seconds! +Number of templates: 10 +Number of parsed variables: 11 +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 900 edges not in the graph, 30 are banned. +The number of modifiable edges is 870. +Preparation complete in 2.075973 seconds! 30 of the 900 possible edges were auto-rejected. +Shape of prepared log: (1000, 30) +Generated log of length 10000 +Initialized Sawmill with log file log_10000.log +Work directory set to ../../../../dataset-files/scaling/length +Parsing file: log_10000.log +Parsing complete in 1.528339 seconds! +Number of templates: 10 +Number of parsed variables: 11 +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 900 edges not in the graph, 30 are banned. +The number of modifiable edges is 870. +Preparation complete in 19.934519 seconds! 30 of the 900 possible edges were auto-rejected. +Shape of prepared log: (10000, 30) +Generated log of length 100000 +Initialized Sawmill with log file log_100000.log +Work directory set to ../../../../dataset-files/scaling/length +Parsing file: log_100000.log +Parsing complete in 12.803159 seconds! +Number of templates: 10 +Number of parsed variables: 11 +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 900 edges not in the graph, 30 are banned. +The number of modifiable edges is 870. +Preparation complete in 198.660864 seconds! 30 of the 900 possible edges were auto-rejected. +Shape of prepared log: (100000, 30) +Generated log of length 1000000 +Initialized Sawmill with log file log_1000000.log +Work directory set to ../../../../dataset-files/scaling/length +Parsing file: log_1000000.log +Parsing complete in 127.965621 seconds! +Number of templates: 10 +Number of parsed variables: 11 +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 900 edges not in the graph, 30 are banned. +The number of modifiable edges is 870. +Preparation complete in 1993.915313 seconds! 30 of the 900 possible edges were auto-rejected. +Shape of prepared log: (1000000, 30) diff --git a/evaluation/8.4-data-transformation/8.4.1-scalability/runlog-templates.txt b/evaluation/8.4-data-transformation/8.4.1-scalability/runlog-templates.txt new file mode 100644 index 0000000..462f40f --- /dev/null +++ b/evaluation/8.4-data-transformation/8.4.1-scalability/runlog-templates.txt @@ -0,0 +1,72 @@ +Generated log with 10 templates +Initialized Sawmill with log file log_10.log +Work directory set to ../../../../dataset-files/scaling/templates +Parsing file: log_10.log +Parsing complete in 1.527421 seconds! +Number of templates: 10 +Number of parsed variables: 11 +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 900 edges not in the graph, 30 are banned. +The number of modifiable edges is 870. +Preparation complete in 19.000356 seconds! 30 of the 900 possible edges were auto-rejected. +Shape of prepared log: (10000, 30) +Generated log with 100 templates +Initialized Sawmill with log file log_100.log +Work directory set to ../../../../dataset-files/scaling/templates +Parsing file: log_100.log +Parsing complete in 2.504695 seconds! +Number of templates: 100 +Number of parsed variables: 101 +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 90000 edges not in the graph, 300 are banned. +The number of modifiable edges is 89700. +Preparation complete in 173.596132 seconds! 300 of the 90000 possible edges were auto-rejected. +Shape of prepared log: (10000, 300) +Generated log with 1000 templates +Initialized Sawmill with log file log_1000.log +Work directory set to ../../../../dataset-files/scaling/templates +Parsing file: log_1000.log +Parsing complete in 14.623135 seconds! +Number of templates: 1000 +Number of parsed variables: 1000 +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 8982009 edges not in the graph, 2997 are banned. +The number of modifiable edges is 8979012. +Preparation complete in 1717.454760 seconds! 2997 of the 8982009 possible edges were auto-rejected. +Shape of prepared log: (10000, 2997) +Generated log with 10000 templates +Initialized Sawmill with log file log_10000.log +Work directory set to ../../../../dataset-files/scaling/templates +Parsing file: log_10000.log +Parsing complete in 62.520005 seconds! +Number of templates: 6324 +Number of parsed variables: 2654 +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 63345681 edges not in the graph, 7959 are banned. +The number of modifiable edges is 63337722. +Preparation complete in 4549.655866 seconds! 7959 of the 63345681 possible edges were auto-rejected. +Shape of prepared log: (10000, 7959) diff --git a/evaluation/8.4-data-transformation/8.4.1-scalability/runlog-variables.txt b/evaluation/8.4-data-transformation/8.4.1-scalability/runlog-variables.txt new file mode 100644 index 0000000..2a696a7 --- /dev/null +++ b/evaluation/8.4-data-transformation/8.4.1-scalability/runlog-variables.txt @@ -0,0 +1,170 @@ +Generated log with 10 variables +Initialized Sawmill with log file log_10.log +Work directory set to ./../../../dataset-files/scaling/variables +Parsing file: log_10.log +Parsing complete in 2.531545 seconds! +Shape of parsed log: (10000, 102) +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 90000 edges not in the graph, 300 are banned. +The number of modifiable edges is 89700. +Preparation complete in 184.099773 seconds! 300 of the 90000 possible edges were auto-rejected. +Shape of prepared log: (10000, 300) +Generated log with 20 variables +Initialized Sawmill with log file log_20.log +Work directory set to ./../../../dataset-files/scaling/variables +Parsing file: log_20.log +Parsing complete in 2.599183 seconds! +Shape of parsed log: (10000, 202) +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 360000 edges not in the graph, 600 are banned. +The number of modifiable edges is 359400. +Preparation complete in 365.219374 seconds! 600 of the 360000 possible edges were auto-rejected. +Shape of prepared log: (10000, 600) +Generated log with 30 variables +Initialized Sawmill with log file log_30.log +Work directory set to ./../../../dataset-files/scaling/variables +Parsing file: log_30.log +Parsing complete in 3.078163 seconds! +Shape of parsed log: (10000, 302) +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 810000 edges not in the graph, 900 are banned. +The number of modifiable edges is 809100. +Preparation complete in 547.166823 seconds! 900 of the 810000 possible edges were auto-rejected. +Shape of prepared log: (10000, 900) +Generated log with 40 variables +Initialized Sawmill with log file log_40.log +Work directory set to ./../../../dataset-files/scaling/variables +Parsing file: log_40.log +Parsing complete in 3.735306 seconds! +Shape of parsed log: (10000, 402) +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 1440000 edges not in the graph, 1200 are banned. +The number of modifiable edges is 1438800. +Preparation complete in 728.730740 seconds! 1200 of the 1440000 possible edges were auto-rejected. +Shape of prepared log: (10000, 1200) +Generated log with 50 variables +Initialized Sawmill with log file log_50.log +Work directory set to ./../../../dataset-files/scaling/variables +Parsing file: log_50.log +Parsing complete in 4.228224 seconds! +Shape of parsed log: (10000, 502) +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 2250000 edges not in the graph, 1500 are banned. +The number of modifiable edges is 2248500. +Preparation complete in 909.883947 seconds! 1500 of the 2250000 possible edges were auto-rejected. +Shape of prepared log: (10000, 1500) +Generated log with 60 variables +Initialized Sawmill with log file log_60.log +Work directory set to ./../../../dataset-files/scaling/variables +Parsing file: log_60.log +Parsing complete in 4.676527 seconds! +Shape of parsed log: (10000, 602) +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 3240000 edges not in the graph, 1800 are banned. +The number of modifiable edges is 3238200. +Preparation complete in 1095.806113 seconds! 1800 of the 3240000 possible edges were auto-rejected. +Shape of prepared log: (10000, 1800) +Generated log with 70 variables +Initialized Sawmill with log file log_70.log +Work directory set to ./../../../dataset-files/scaling/variables +Parsing file: log_70.log +Parsing complete in 5.212300 seconds! +Shape of parsed log: (10000, 702) +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 4410000 edges not in the graph, 2100 are banned. +The number of modifiable edges is 4407900. +Preparation complete in 1280.085128 seconds! 2100 of the 4410000 possible edges were auto-rejected. +Shape of prepared log: (10000, 2100) +Generated log with 80 variables +Initialized Sawmill with log file log_80.log +Work directory set to ./../../../dataset-files/scaling/variables +Parsing file: log_80.log +Parsing complete in 5.472014 seconds! +Shape of parsed log: (10000, 802) +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 5760000 edges not in the graph, 2400 are banned. +The number of modifiable edges is 5757600. +Preparation complete in 1455.640509 seconds! 2400 of the 5760000 possible edges were auto-rejected. +Shape of prepared log: (10000, 2400) +Generated log with 90 variables +Initialized Sawmill with log file log_90.log +Work directory set to ./../../../dataset-files/scaling/variables +Parsing file: log_90.log +Parsing complete in 6.142651 seconds! +Shape of parsed log: (10000, 902) +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 7290000 edges not in the graph, 2700 are banned. +The number of modifiable edges is 7287300. +Preparation complete in 1638.210211 seconds! 2700 of the 7290000 possible edges were auto-rejected. +Shape of prepared log: (10000, 2700) +Generated log with 100 variables +Initialized Sawmill with log file log_100.log +Work directory set to ./../../../dataset-files/scaling/variables +Parsing file: log_100.log +Parsing complete in 6.606853 seconds! +Shape of parsed log: (10000, 1002) +Causal unit set to LineID (tag: LineID) +Determining the causal unit assignment... +Calculating aggregates for each causal unit... +Successfully prepared the log with causal unit LineID (tag: LineID) +Initialized ECCS! +The graph has 0 nodes and 0 edges. +Of the 0 edges in the graph, 0 are fixed. +Of the 9000000 edges not in the graph, 3000 are banned. +The number of modifiable edges is 8997000. +Preparation complete in 1824.231829 seconds! 3000 of the 9000000 possible edges were auto-rejected. +Shape of prepared log: (10000, 3000) diff --git a/evaluation/8.4-data-transformation/8.4.1-scalability/runner-length.py b/evaluation/8.4-data-transformation/8.4.1-scalability/runner-length.py new file mode 100644 index 0000000..04bab35 --- /dev/null +++ b/evaluation/8.4-data-transformation/8.4.1-scalability/runner-length.py @@ -0,0 +1,64 @@ +import sys +import os + +sys.path.append("../../../") +from src.logos.logos import LOGos +from src.definitions import LOGOS_ROOT_DIR +from gen_scaling_logs import gen_log + + +def main(): + length_exp_min = 1 + length_exp_max = 6 + lengths = [10**i for i in range(length_exp_min, length_exp_max + 1)] + + resultsdir = os.path.join(LOGOS_ROOT_DIR, "evaluation", "results") + workdir = os.path.join(LOGOS_ROOT_DIR, "dataset_files", "scaling", "templates") + if not os.path.exists(workdir): + os.makedirs(workdir) + + f = open("runlog-length.txt", "w+") + fr1 = open(os.path.join(resultsdir, "8.4.1-scalability-length.csv"), "w+") + fr1.write("Length, Parse Time, Prep Time\n") + sys.stdout = f + + for l in lengths: + # Generate log + L = l + S = 10 + V = 1 + C = 10 + filename = os.path.join(workdir, f"log_{l}.log") + gen_log(L, S, V, C, filename) + print(f"Generated log of length {l}") + + # Analyze log + s = LOGos(filename, workdir=workdir, skip_writeout=True) + parse_time = s.parse( + regex_dict={"LineID": r"line_\d+"}, sim_thresh=(12 / 13), force=True + ) + print(f"Number of templates: {len(s.parsed_templates)}") + print(f"Number of parsed variables: {len(s.parsed_variables)}") + s.set_causal_unit("LineID") + d = {k: "zero_imp" for k in s.parsed_log.columns[2:]} + prep_time = s.prepare( + custom_agg={"LineID": ["mode"]}, + custom_imp=d, + ignore_uninteresting=False, + force=True, + drop_bad_aggs=False, + reject_prunable_edges=False, + ) + print(f"Shape of prepared log: {s.prepared_log.shape}") + s.prepared_log.head(10) + + fr1.write(f"{l},{parse_time},{prep_time}\n") + fr1.flush() + f.flush() + + f.close() + fr1.close() + + +if __name__ == "__main__": + main() diff --git a/evaluation/8.4-data-transformation/8.4.1-scalability/runner-templates.py b/evaluation/8.4-data-transformation/8.4.1-scalability/runner-templates.py new file mode 100644 index 0000000..603d3a7 --- /dev/null +++ b/evaluation/8.4-data-transformation/8.4.1-scalability/runner-templates.py @@ -0,0 +1,64 @@ +import sys +import os + +sys.path.append("../../../") +from src.logos.logos import LOGos +from src.definitions import LOGOS_ROOT_DIR +from gen_scaling_logs import gen_log + + +def main(): + template_exp_min = 1 + template_exp_max = 4 + templates = [10**i for i in range(template_exp_min, template_exp_max + 1)] + + resultsdir = os.path.join(LOGOS_ROOT_DIR, "evaluation", "results") + workdir = os.path.join(LOGOS_ROOT_DIR, "dataset_files", "scaling", "templates") + if not os.path.exists(workdir): + os.makedirs(workdir) + + f = open("runlog-templates.txt", "w+") + fr1 = open(os.path.join(resultsdir, "8.4.1-scalability-templates.csv"), "w+") + fr1.write("Templates, Parse Time, Prep Time\n") + sys.stdout = f + + for t in templates: + # Generate log + L = 10000 + S = t + V = 1 + C = 10 + filename = os.path.join(workdir, f"log_{t}.log") + gen_log(L, S, V, C, filename) + print(f"Generated log with {t} templates") + + # Analyze log + s = LOGos(filename, workdir=workdir, skip_writeout=True) + parse_time = s.parse( + regex_dict={"LineID": r"line_\d+"}, sim_thresh=12 / 13, force=True + ) + print(f"Number of templates: {len(s.parsed_templates)}") + print(f"Number of parsed variables: {len(s.parsed_variables)}") + s.set_causal_unit("LineID") + d = {k: "zero_imp" for k in s.parsed_log.columns[2:]} + prep_time = s.prepare( + custom_agg={"LineID": ["mode"]}, + custom_imp=d, + ignore_uninteresting=False, + force=True, + drop_bad_aggs=False, + reject_prunable_edges=False, + ) + print(f"Shape of prepared log: {s.prepared_log.shape}") + s.prepared_log.head(10) + + fr1.write(f"{t},{parse_time},{prep_time}\n") + fr1.flush() + f.flush() + + f.close() + fr1.close() + + +if __name__ == "__main__": + main() diff --git a/evaluation/8.4-data-transformation/8.4.1-scalability/runner-variables.py b/evaluation/8.4-data-transformation/8.4.1-scalability/runner-variables.py new file mode 100644 index 0000000..16dd7d3 --- /dev/null +++ b/evaluation/8.4-data-transformation/8.4.1-scalability/runner-variables.py @@ -0,0 +1,63 @@ +import sys +import os + +sys.path.append("../../../") +from src.logos.logos import LOGos +from src.definitions import LOGOS_ROOT_DIR +from gen_scaling_logs import gen_log + + +def main(): + variable_min = 1 + variable_max = 10 + variables = [10 * i for i in range(variable_min, variable_max + 1)] + + resultsdir = os.path.join(LOGOS_ROOT_DIR, "evaluation", "results") + workdir = os.path.join(LOGOS_ROOT_DIR, "dataset_files", "scaling", "variables") + if not os.path.exists(workdir): + os.makedirs(workdir) + + f = open("runlog-variables.txt", "w+") + fr1 = open(os.path.join(resultsdir, "8.4.1-scalability-variables.csv"), "w+") + fr1.write("variables, Parse Time, Prep Time\n") + sys.stdout = f + + for v in variables: + # Generate log + L = 10000 + S = 10 + V = v + C = 100 - v + filename = os.path.join(workdir, f"log_{v}.log") + gen_log(L, S, V, C, filename) + print(f"Generated log with {v} variables") + + # Analyze log + s = LOGos(filename, workdir=workdir, skip_writeout=True) + parse_time = s.parse( + regex_dict={"LineID": r"line_\d+"}, sim_thresh=((C + 2) / 102), force=True + ) + print(f"Shape of parsed log: {s.parsed_log.shape}") + s.set_causal_unit("LineID") + d = {k: "zero_imp" for k in s.parsed_log.columns[2:]} + prep_time = s.prepare( + custom_agg={"LineID": ["mode"]}, + custom_imp=d, + ignore_uninteresting=False, + force=True, + drop_bad_aggs=False, + reject_prunable_edges=False, + ) + print(f"Shape of prepared log: {s.prepared_log.shape}") + s.prepared_log.head(10) + + fr1.write(f"{v},{parse_time},{prep_time}\n") + fr1.flush() + f.flush() + + f.close() + fr1.close() + + +if __name__ == "__main__": + main() diff --git a/evaluation/8.4-data-transformation/8.4.2-variable-tagging/PostgreSQL_tags.pkl b/evaluation/8.4-data-transformation/8.4.2-variable-tagging/PostgreSQL_tags.pkl new file mode 100644 index 0000000..1be6dca Binary files /dev/null and b/evaluation/8.4-data-transformation/8.4.2-variable-tagging/PostgreSQL_tags.pkl differ diff --git a/evaluation/8.4-data-transformation/8.4.2-variable-tagging/Proprietary_tags.pkl b/evaluation/8.4-data-transformation/8.4.2-variable-tagging/Proprietary_tags.pkl new file mode 100644 index 0000000..b9afb3d Binary files /dev/null and b/evaluation/8.4-data-transformation/8.4.2-variable-tagging/Proprietary_tags.pkl differ diff --git a/evaluation/8.4-data-transformation/8.4.2-variable-tagging/tagging.ipynb b/evaluation/8.4-data-transformation/8.4.2-variable-tagging/tagging.ipynb new file mode 100644 index 0000000..ada63ab --- /dev/null +++ b/evaluation/8.4-data-transformation/8.4.2-variable-tagging/tagging.ipynb @@ -0,0 +1,546 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd \n", + "# PostgreSQL dataset\n", + "vars_filename = '~/causal-log/datasets/tpc-ds/parameter_sweep_1.log_parsed_variables_None_None.pkl'\n", + "templates_filename = '~/causal-log/datasets/tpc-ds/parameter_sweep_1.log_parsed_templates_None_None.pkl'\n", + "vars_df = pd.read_pickle(vars_filename)\n", + "templates_df = pd.read_pickle(templates_filename)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameTagTypeIsUninterestingOccurrencesPreceding 3 tokensExamplesFrom regex
0DateDatenumFalse78080[][2023-11-06, 2023-11-07, 2023-11-08, 2023-11-0...True
1TimeTimenumFalse78080[][16:34:40.799, 16:34:40.810, 16:34:40.811, 16:...True
2sessionIDsessionIDstrFalse78080[][65495bf0.179a, 65496dbc.231b, 65497f35.2c04, ...True
3tIDtIDstrTrue78080[][, 3/2461, 3/2462, 3/0, 3/2463]True
4aea309d3_23portnumFalse128[127.0.0.1, port, =][52708, 39780, 50446, 45248, 56574]False
\n", + "
" + ], + "text/plain": [ + " Name Tag Type IsUninteresting Occurrences \\\n", + "0 Date Date num False 78080 \n", + "1 Time Time num False 78080 \n", + "2 sessionID sessionID str False 78080 \n", + "3 tID tID str True 78080 \n", + "4 aea309d3_23 port num False 128 \n", + "\n", + " Preceding 3 tokens Examples \\\n", + "0 [] [2023-11-06, 2023-11-07, 2023-11-08, 2023-11-0... \n", + "1 [] [16:34:40.799, 16:34:40.810, 16:34:40.811, 16:... \n", + "2 [] [65495bf0.179a, 65496dbc.231b, 65497f35.2c04, ... \n", + "3 [] [, 3/2461, 3/2462, 3/0, 3/2463] \n", + "4 [127.0.0.1, port, =] [52708, 39780, 50446, 45248, 56574] \n", + "\n", + " From regex \n", + "0 True \n", + "1 True \n", + "2 True \n", + "3 True \n", + "4 False " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "vars_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6d74dea0c532460cbde699e37f880ecd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/67 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot a histogram of the types, which will be a categorical variable from TagOrigin\n", + "import matplotlib.pyplot as plt\n", + "from src.logos.tag_utils import TagOrigin\n", + "import numpy as np\n", + "import copy\n", + "\n", + "\n", + "datasets = ['PostgreSQL']\n", + "\n", + "d_scaled = { TagOrigin.PRECEDING: np.array([0.0]),\n", + " TagOrigin.GPT_3POINT5_TURBO: np.array([0.0]), \n", + " TagOrigin.GPT_4: np.array([0.0]), \n", + " TagOrigin.NAME: np.array([0.0])\n", + "}\n", + "\n", + "for i in range(len(datasets)):\n", + " dataset_total = float(sum(d.values())[i]) / 100.0\n", + "\n", + " d_scaled[TagOrigin.PRECEDING][i] = d[TagOrigin.PRECEDING][i] / dataset_total\n", + " d_scaled[TagOrigin.GPT_3POINT5_TURBO][i] = d[TagOrigin.GPT_3POINT5_TURBO][i] / dataset_total\n", + " d_scaled[TagOrigin.GPT_4][i] = d[TagOrigin.GPT_4][i] / dataset_total\n", + " d_scaled[TagOrigin.NAME][i] = d[TagOrigin.NAME][i] / dataset_total\n", + "\n", + "\n", + "width = 0.3\n", + "\n", + "fig, ax = plt.subplots()\n", + "bottom = np.zeros(len(datasets))\n", + "\n", + "colors = [\"#B8C9E9\", \"#9EB2D9\", \"#7F9ABA\", \"#D3D3D3\"]\n", + "labels = ['Use preceding 3 tokens', '+ Use GPT-3.5-Turbo', '+ Use GPT-4', 'Fall back to variable name']\n", + "for k, v in d_scaled.items():\n", + " p = ax.bar(datasets, v, width, label=labels[k], bottom=bottom, color= colors[k])\n", + "\n", + " # Add text labels to the center of each bar \n", + " # Add a white background to make the text more visible\n", + " for bar in p:\n", + " ax.text(bar.get_x() + bar.get_width() / 2, bar.get_height() / 2 + bottom, f\"{(bar.get_height()):.2f} %\", \n", + " ha='center', va='center', color='black', fontsize=8, fontweight='bold',\n", + " bbox=dict(facecolor='white', edgecolor='none', pad=0.2, alpha=0.85, boxstyle='round'))\n", + "\n", + " # Make the first bar dotted and second and third slanted in different directions\n", + " if k == TagOrigin.PRECEDING:\n", + " p[0].set_hatch('o')\n", + " elif k == TagOrigin.GPT_3POINT5_TURBO:\n", + " p[0].set_hatch('\\\\')\n", + " elif k == TagOrigin.GPT_4:\n", + " p[0].set_hatch('/')\n", + "\n", + " bottom += v\n", + "\n", + "\n", + "ax.legend(loc=\"upper right\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "datasets = {\n", + " \"PostgreSQL\": {\n", + " \"vars_filename\": \"~/causal-log/datasets/tpc-ds/parameter_sweep_1.log_parsed_variables_None_None.pkl\",\n", + " \"templates_filename\": \"~/causal-log/datasets/tpc-ds/parameter_sweep_1.log_parsed_templates_None_None.pkl\",\n", + " },\n", + " \"XYZ\\n10 vars\": {\n", + " \"vars_filename\": \"~/causal-log/datasets/xyz_extended/log_2023-12-22_13:13:01.log_parsed_variables_None_None.pkl\",\n", + " \"templates_filename\": \"~/causal-log/datasets/xyz_extended/log_2023-12-22_13:13:01.log_parsed_templates_None_None.pkl\",\n", + " }, \n", + " \"XYZ\\n100 vars\": {\n", + " \"vars_filename\": \"~/causal-log/datasets/xyz_extended/log_2023-12-22_13:17:29.log_parsed_variables_None_None.pkl\",\n", + " \"templates_filename\": \"~/causal-log/datasets/xyz_extended/log_2023-12-22_13:17:29.log_parsed_templates_None_None.pkl\",\n", + " },\n", + " \"XYZ\\n1000 vars\": {\n", + " \"vars_filename\": \"~/causal-log/datasets/xyz_extended/log_2023-12-22_13:27:02.log_parsed_variables_None_None.pkl\",\n", + " \"templates_filename\": \"~/causal-log/datasets/xyz_extended/log_2023-12-22_13:27:02.log_parsed_templates_None_None.pkl\",\n", + " },\n", + " \"OpenStack\\nCinder\": {\n", + " \"vars_filename\": \"~/causal-log/evaluation/datasets/Openstack/Cinder/Cinder_combined_all.log_parsed_variables_None_None.pkl\",\n", + " \"templates_filename\": \"~/causal-log/evaluation/datasets/Openstack/Cinder/Cinder_combined_all.log_parsed_templates_None_None.pkl\",\n", + " },\n", + " \"OpenStack\\nNeutron\": {\n", + " \"vars_filename\": \"~/causal-log/evaluation/datasets/Openstack/Neutron/Neutron_combined_all.log_parsed_variables_None_None.pkl\",\n", + " \"templates_filename\": \"~/causal-log/evaluation/datasets/Openstack/Neutron/Neutron_combined_all.log_parsed_templates_None_None.pkl\",\n", + " },\n", + " \"OpenStack\\nNova\": {\n", + " \"vars_filename\": \"~/causal-log/evaluation/datasets/Openstack/Nova/Nova_combined_all.log_parsed_variables_None_None.pkl\",\n", + " \"templates_filename\": \"~/causal-log/evaluation/datasets/Openstack/Nova/Nova_combined_all.log_parsed_templates_None_None.pkl\",\n", + " }, \n", + " \"Proprietary\": {\n", + " \"vars_filename\": \"~/causal-log/datasets/proprietary_logs/proprietary_eval/proprietary_1000users_10faulty_20pctfailfaulty_10pctfailnormal.log_parsed_variables_None_None.pkl\",\n", + " \"templates_filename\": \"~/causal-log/datasets/proprietary_logs/proprietary_eval/proprietary_1000users_10faulty_20pctfailfaulty_10pctfailnormal.log_parsed_templates_None_None.pkl\",\n", + "\n", + " }, \n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'd_scaled' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[2], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43md_scaled\u001b[49m\n", + "\u001b[0;31mNameError\u001b[0m: name 'd_scaled' is not defined" + ] + } + ], + "source": [ + "d_scaled" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8AAAAHLCAYAAAAHjvFxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdZXRUVxeA4TdOQkiw4JKgLVJcC8Xdi5XiDi3Fi0tbWqDF3SW4UxxS3N1LKQUS3AMhQDz3+zHf3JnJaEKQDPtZi8XkyrlnjyR3zzEHRVEUhBBCCCGEEEIIO+f4oSsghBBCCCGEEEK8D5IACyGEEEIIIYT4JEgCLIQQQgghhBDikyAJsBBCCCGEEEKIT4IkwEIIIYQQQgghPgmSAAshhBBCCCGE+CRIAiyEEEIIIYQQ4pPg/KErIMTbio2N5f79+6RIkQIHB4cPXR0hhBBCCCHEe6QoCqGhoWTKlAlHR8ttvJIAiyTv/v37ZM2a9UNXQwghhBBCCPEB3blzhyxZslg8RhJgkeSlSJEC0Lzhvby8PnBthBBCCCGEEO/Ty5cvyZo1q5oXWCIJsEjytN2evby8JAEWQgghhBDiE2XLcEiZBEsIIYQQQgghxCdBEmAhhBBCCCGEEJ8ESYCFEEIIIYQQQnwSJAEWQgghhBBCCPFJkARYCCGEEEIIIcQnQRJgIYQQQgghhBCfBEmAhRBCCCGEEEJ8EiQBFkIIIYQQQgjxSZAEWAghhBBCCCHEJ0ESYCGEEEIIIYQQnwRJgIUQQgghhBBCfBIkARZCCCGEEEII8UmQBFgIIYQQQgghxCdBEmAhhBBCCCGEEJ8E5w9dASESy97lY0ju7kZMTCwPnzwnIioab08P0qRKEe+yXodF8DT4JQBpU3uR3N0t3mU8ex5KyKs3uLk4k8EnFU5Oet83BZWOd3lJxZjzq/iqTst4nxcR/oblU4bw+F4QrfuMJbPfZ/Eu417gVZZOGkS6zL607DUat2Qe8S7j4Lbl7NvkT6UGbSUOiQOQOPRJHBoSh05C4zh4ZCz7/PdSqW1lvmpZMd7XjXgTwfIhS3gc9JjWY9uS+bMs8S7j3tW7LB3kTzrfdLQc3QY3j/j/rT+4fH+Sj6NJxkbxvqYQBQoU+NBVSDAHRVGUD10JId7Gy5cv8fb2xv/3nmzbf5o1O44aHTOgc0Mql/4CR0cHi2XduP2QqUu28c+Nuwbbc/tmpG/7+uTMlsHi+bGxCgdOXmbMnA1G+xpVK8W39b7CO4WHXSfA1X+ulSRvxvQl5ZtKfRKHhsShI3HoSBwaHyqOn7tUT9JJI9hH8guSAIuE+dgSYG0+EBISgpeXl8VjJQEWSZ72DW9NgTzZ+P3HNrg4O5ncv+vQOSYs3GyxjL7t61PzqyIm90VFxzByykpOX75hsYwFo78na0Rdq/VNqsacX5Ukb8biSqo3lXFJHBoSh47EoSNxaHyIOA4eGZukk0Z7SX4PLt/P1P5T4n2eEJIAC/EB6SfA3p4eTBvZmQxpUwKgKAr/Bt6n56j5AFQqVYDB3RoblXHs/L+MnLIKgLqVitOtRQ1cXTQjBKKiY9i0+wRzV/8FwC+9WlC6cB6jMoZPXsGJC/8BMKJHM8oV+1zd9+LlawaOW0Lg3ccABIzcYTWui7cu8cvqX3kZ9pJyn3/JdzW7kdYrrU3PCUBkdCQbjv/Jwj2LcHRwpGPV9jQoWR9XZ1eby3gW+ozxmyZy5sZZMqXKSO96vSjsV8jiOUcyOyXJmzFTJA4NiUNH4tCRODQkDp14xeF7PP51/IiSRntJfvf57+XSpUvxPleIpJwAyyRYwm5kz5SWpeN7q8kvgIODA5/lyMzU4Z0A2HfiMncfPjM4T1EUNfn9vmUterapoya/AC7OTjSpWZZv6pQDYMSUlcT93ujOg6dq8jtnVHeD5BcgpVdyJg/riJenu02x/LZuDP0XD+BlmGYc8uF/jvDtpNacD7xg0/mvI15T97cGLNyzCIBYJZZ5fy2g7m8NeB3x2qYyzgdeoMXEVpy5cRaA+88fMGDJIH5bN8bquV/VaUmlBm3Zt8mfg9uW23Q9fW7JPGjZazTpMvuydNIg7gVejXcZmf0+o3WfsTy+F8TyKUOICH8T7zIkDg2JQ0fi0JE4NCQOncSIw5yPLWm0l+S3UtvK8T5XiKROEmBhN37u1YJkbi4m932WIzOdmlUFYO7qAIN9V67rxvs2qFrSbPntvtb9kYg7RnjNjiMAdG9RA78s6Uye7+7myvSRXSxEoHE+8AIH/j4IwKyuM9g0eAM96/QAYMCSQcTExlgto/eCfgD4pvNl3Y+rWdVvObky5gJg6PIRVs+PiY1hwJJBAHxXsxtbh25iVtcZABz4+yAXb1n/tthebsYkDg2JQ0fi0JE4NCQOnXeRBH+MSaO9JL8JiUOIpE4SYGE3vFMkt7i/YklNV43j568ZbL/4bxBgOfkFcHR0UJPoC1eDDPbtPaZJCPP4ZbJYhn7rtDmTt2jG4szqOoOcGXLg7upO3eJ1KJ6zGABnb56zeL6iKNx6cguAOd1m4uXhRWrP1EzrNBmAK3euGLVgx6VtaS6esxgNSzXA1dmVnBlyMKvrdABGrfnVahxgPzdjEoeGxKEjcehIHBoSh05iJsH2kjTaSxxC2ANJgMUn4014hMnt4RFRAKT29rRaRnh4JAARkVEG26OiNa2yqWwow5r7zx8AkDWt4R/H4rk0CfDzV88tnh+rxKqPHRx0s147OTqZPMaUZ6GabuKl85Qy2J4ptSbBD3nz0uL5+uzlZkzi0JA4dCQOHYlDQ+LQSYw47CVptJc4hLAXkgCLT8bT56EApElpuC5wyhSaSTpCX4VZLePO/8cPm2ttjo6xnFjaMudcsZxFAdh+RjdRlqIozN41F4C8mY0n4NKnn+gGvwpWHz9//cLkMabk/n936ek7ZhrUefeFPQCUz1fO4vlx2cvNmMShIXHoSBw6EoeGxKHzNnHYS9JoL3EIYU8kARZ24/j5fy3u/+vweQCa1iprsL1c8XwArNt1jOchr8yeHxkVzYGTfwNQvrjhJFftG2vGB09bss1iknv15j2LdQTo36AvADN3zmbwsqFsPrmFGr/UVvdn98lutYxOVTsC8M2Elsz7awGL9vrTfHwLAFp+1cLq+X7p/dTHNX6pzYbjGxmybBjTtmvGAXev0dVqGXEl9ZsxLYlDQ+LQkTh0JA4NiUMnIXHYS9JoL3EIYW8kARZ24/e5Gwm888hou6IorNlxhH0nLgNQo7zhOr4+qb3I+/+xu31GLyQyKtqojFdvwtWllHxSe5E2leH06vUrlwA0Y4PX7jxqsn5Xb96j168LrMaRJkUa/mgzFoAzN84yfcdMdd/6AWusng/QtGxjqhaqAsDao+tYeUgzy3WNwtVpU7G1TWXoX2v2rrmcvnEGgD/ajI3Xckz6kurNWFwSh4bEoSNx6EgcGhKHTnzisJek0V7iEMIeyTrAIsnTXwcYNK2xJb/IjZenB2ERkUz138rFfzWTQg3q8jWVyxQ0KuPxsxBa9Z8MaJY96tO+PvlzZcXZ2Ym7D58xcNwS9dhl43uTLo23URl7j11i7NwNAJQr/jl1KxYnS4Y0AOw/eZn5a3YDUCBPNia2mGM1rpjYGM4HXuBZ6DNyZ8qNXzpf254QPaFhoZy5cZZYJZYSuYqTwj2F9ZPiuPXkFv/eu0Yqz1QUzVHEavfpI5kt74ckuF6lGRKHhsShI3HoSBwaEoeOfhwdZn1jfA07SRqTWhxNMjaKd9lCJOV1gCUBFkme9g1frEBOzly+YfY4c8mv1r1HwbQfNM3sfhdnJ+b99h2Z0qU2e8yeYxf5fe5Gs/srlS5I/44NcLn7pdljkjpbEmD4+G7G7OWmUuKQOEDi0Cdx6HxMcQzaPMiw7CSWNJqTFOOQBFgkhCTAQnxA2jf8xpmDCH4Rysa/jrN13xl1f4cmVahXuQTJ3a3/AYmNVTjz9w2WbzrAlf+v9ZvKKzn9OjageIFcODo6WCkBXr8JZ/fRi/hv3MerN+EAlC6chy7Nq6stwgSVTkCkSYOtCTB8XDdj9nJTKXFIHFoSh47EofOxxJG50gtdmUkwaTQlqcYhCbBICEmAhfiA9BNgW5Lcj4IkwKqP5WbMXm4qJQ4NiUND4tCROHQ+hjjwPa4pK4kmjXEl5TgkARYJkZQTYJkESwjxQSW1CVrMkTg0JA4diUNH4tCQOAwl5aRRn73EIcSnQhJgIUSiSqo3Y/ZyUylx6EgcGhKHjsSh86HjsJek0V7iEOJTIgmw+OQ8CX7JxoDjLFq/l5VbD/H3f3csrt0bl6Io/P3fbVZuPcSi9XvZGHCcJ8Ev32GNk5akejMG9nFTCRKHPolDQ+LQkTh0PmQc9pA0SvIrRNIkY4BFkqft879u2gC8PN3NHvf4WQijZqzh38D7Jvf/0qsFpQvnsXit4+evMWLKSpP70qbyYvLQDiaXSNKKiYllyZ/7aF9sqMXrJGX1fm+c5Mem2csYO4lDR+LQkDh0JA6dDxHH2N71knTSaC/Jb8SbCFrmNF6SSghrZAywEB+B4ZNXEBMTa3LfvUfBtOo/WU1+m9QoQ/vGlWlQpYR6zIgpK9l16JzZ8ncePGeQ/HZqVpVWDSpQoWR+AJ4+f0mr/pO59yjY5PkxMbH8+Ic/K7ceVrfFKrHEKqbrbKuY2Jh4tWDHpSgKMbExb1UH/TiScouEVlJvWdGSOHQkDg2JQ0fi0PkQcST1pNFekt/lQ5bE+zwhkjppARZJnvYbH4AWdcvRvnEVg/2xsQo1O/4CQKZ0qZk0pD2pvD0Njtm0+yQzlu8AYNbPXcmZLYPB/hu3H9J95Jz/X6M8bRtVMlgSKTIqmp6j5nPzziNcnJ3YMmeo0ZJJU5dsY+u+0wBM7zyFHvN6Geyf0nESn2ex7dt/RVFYe3Q983cvULdl98nO5I4TSO6W3KYyXke8Zuiy4Vy5+4+67dvyLWhbqTUODtaXewK4dv+aURwj5wYk2RaJuCQOHYlDQ+LQkTh0JA6NeMXx/1mg4+NjShrtJfl9HPSY0ydOx/t8IaQFWIiPxMqth4mMijbYdvrSdQBcXZyZ+2t3o+QXoEHVktStVAyAaUu3G+2fuGgzAF2+qU77xpWNkltXF2fGD2oHQFR0DKcvXzfYHxEZpSa/80d/b5Q0AvRa0Idr9/+zJUzGbZpgkPwC3Hpyi0ZjmxAZHWn1/MjoSBqNbWKQ/AKsOLSSiZsn21SHf+5eNRkHJN0WibgkDh2JQ0Pi0JE4dCQOjcSaHdqUjy1ptJfkt/XYtvE+X4ikThJgYTcK5skOwJEzhkndss0HABjYpRGuLs5mz+/WoiYAV67f4XVYhLr9dVgE/wU9AKBBlZJmz/f0SMbvP7YBYPyCTQb7jpzR3ATkyp6RbBnTAjC86VACRu4gYOQOhjfVjAnuMa+nlSghNCyU3Rf2ALCq33ICRu5g14jt+KbzBeDPE5ssnK2x6aQmoc+dMTc7hm8lYOQOVvfXdO/edT6A0LBQq2X0WtDHbBxgPzdjEoeOxKEhcehIHDoSh8a7SII/xqTRXpLfhMQhRFInCbCwG0Xz5wDg7sNnBtuv3rwHQPq0KS2er58cP9Wb1Vn/sYuzk8UyMqdPDcCLl68Ntt99pKlTsf/XEaB8vnImH1sbE3zmxlkAmpVtQmpPzfUcHBwY3/Z3AObvXmjxfIAFuxcBMOrbn3By1MSUKnlKWpTXTIRx6rrl7lD6dTQXB9jPzZjEoSNxaEgcOhKHjsShkZhJsL0kjfYShxD2QBJgYTdehr62uD9lCtvGxr6NuIlvXF6e8R+TFZd2wipnJxeD7VExmq7f2oTWEm0C6+xo2CIe/f8yHB0S71eDvdyMSRw6EoeGxKEjcehIHBqJEYe9JI32EocQ9kISYGE3LlwNAiBLhjQG21N6aRJfc7Mza0VF62ZCTpvay+TjuOOL43r49AUAn+c0/MOSJb2mTvpjgw9dOWzysbXks2RuzczVKw6t5PlrzfViYmMYvnIkAB2rdrB4PkCHKu0B6O8/UJ1BOvhVMGuPrgOgWM6iFs/Xr6O5OPTZy82YxKEjcWhIHDoSh47EofE2cdhL0mgvcQhhT2QWaJHk6c8CDbB17lCD7swnL/zHsMkrANg4YyDJPZKZLGfdzqPMXf0Xef0yMW1EZ4N9vX5dwD837lK3UnF6tqlj8vzIqGi+/v53IqOi+bXPt5T8IrfBvrpdfgPg9x/bMHCc6WUHbJ0JesKmiew6/5fJfVuHbsLV2dXi+ZHRkdT9rYHJfVULVWFAw/5W63Dt/n8mxyyPnBtg9pwkN0upGRKHjsShIXHoSBw6EoeGyTgszAJtL0ljUomjScZG8S5XCJkFWoiPRN1KxY0muipeMJc6drff2MVGrbixsQoL1+1h7mpNQtm7XT2jcrVJ79Z9p9m0+6TR/uchr+gybKZadvECuQz2u7o406KuZnzswHFLmNJxklEZ0ztPtXkZpL71+9DyqxYG2/Jnzcefg9ZbTX4BXJ1d2ThonTpxllbnah35sUE/m+qQJ1Nuk3FYktRbJLQkDh2JQ0Pi0JE4dCQOjfjEkVSSRmvsJQ4h7JG0AIskT/uNT75cWZkwqB1OTsbf69x7FEz7QdPUnyuUzE9ev0zEKgrz1+xWt/frUJ8a5YuYvM6uQ+eYsHCz+nPz2l/i7ZWc4OehrNt1TN2++PcfyJQutdH5MTGx/PiHP5ev3SZgpGbNYe1Y3LcZcxsTG4Ojg6PNa/fGpSgKsUqsTWOHzdGP40hm6+V8tC0S8SRx6EgcGhKHjsShI3Fo6McxaPMg4zraSdKY1OKQFmCREJ9cC/D+/ftxcHAw+c/Dw4Ps2bPTsGFDVqxYQXS05TGT4t04c+YM33//PYULFyZlypQ4Ozvj6elJrly5qFWrFsOHD2ffvn1ERUVZLSs8PJxFixbRuHFjcubMiaenJ56enuTMmZPGjRuzePFiwsPDrZazePFi9X2yePHiRIjS0C+9WphMfkEzO/Oy8b1Jm0rzgThw8m/mrv7LIPn9pVcLs8kvQI3yRfill67VdfX2I8xdFaAmv3lzZGbZ+N4mk18AJydHxg1oS91KxdVtjg6Obz3hlJOjU4KTX9DMIP02yS/EP46k1iJhjsShI3FoSBw6EoeOxKGhH0dcSS1pNMde4hDCniWoBXj//v1UqlTJpmNLlCjB5s2byZAhQ7wrl9j0671v3z4qVqz4YSv0DkRHR/PDDz8we/Zsm46fNWsW3bp1M7t/06ZN9OzZk9u3b1ssx9fXl+nTp1OnjunxsaBJgNu310y+tGjRItq1a2dTHa3RfuOzceYgkrtb/0Pz9PlLDp3+h5DQ17i5ulDoM18+z5nF5iRSURSuXL/LxX+DiIiMwjtFcsoX/1xNrm0SVNr2Y5MYW1qAtT62Fgl7aVmROCQOLYlDQ+LQ+VjicPvsoq5OdpI0JtU4pAVYJMQn1wKsr3v37ly6dEn9d+zYMaZNm4avry8Ap06dokGDBkhP6/ejR48eavKbMWNGfvrpJwICAjh37hxHjx5lxYoV/PDDD2TLls1qWVOnTqVRo0Zq8lu/fn2WLl3K0aNHOXbsGMuWLaNhw4YABAUFUb9+fZsT7w8pbSovGlUrRbuvK9Oibnny5coarxZUBwcH8ufOSou65Wn3dWUaVSsVv+RXqD62Fgl7aVmROCQOLYlDQ+LQ+Vji0EqqSWNc9hKHEJ+Ct06A06VLR4ECBdR/pUuXpkePHpw9e5ZcuTQTAZ08eZKtW7e+dWWFZZcvX2bu3LkAFC5cmCtXrjBy5EiqVatG4cKFKVOmDC1atGDq1KncunWLgIAAChYsaLKsbdu20atXLxRFwdvbm927d7Np0yZatWpFmTJlKF26NC1btmTjxo3s2bMHb29vYmNj+e6779i9e7fJMoUw5WO5GbOXm0qJQ0Pi0JE4NCQOnY8hDrCfpNFe4hDiU/HOZoFOlSoVgwcPVn/euXPnu7qU+L/NmzerLe2//vorKVOmtHh8tWrV+PLLL422v3r1Su2q7OjoyJYtW6hSpYrZcipXrszmzZtxdHREURTatm1LWFhYwgMRSVpSvRmzl5tKiUNH4tCRODQkDp0PHYe9JI32EocQn5J3ugxSyZIl1ce3bt0y2PfkyROGDRtGkSJFSJkyJcmSJcPX15fWrVtz+PBhq2Xv3buXFi1a4Ofnh7u7uzr5VunSpenfvz979+5Vjw0KCsLBwcFg3HKlSpWMJvAyNTHTs2fPGDBgAHnz5sXd3Z306dNTrVo1Nm7cCBhO7BQUFGR0vq+vLw4ODup41zNnztCuXTv8/Pxwc3Mz2fU2JCSEMWPG8OWXX+Lj44OrqysZM2akXr16rFu3zmx3cv1xutrW94RYsGABT548AaBr166UL1/e6jlfffUVXbp0AeD+/fssXbo0wdd/G3cePGX45BVUb/8z1dv/zDd9JrB+1zFev7E+SRdolkQ6eeE/mvUar5bRc9R8Tl74j9hY27rxv34Tzsqth9Tz63T+lQkLN3HnwdO3CS3JSKo3Y2AfN5UgceiTOHQkDg2JQ+dDxmEPSaMkv0IkTe80AXZxcVEfx8TEqI8DAgLIlSsXv/32G+fPnyckJISIiAhu3brFsmXLKF++PD169CA2NtZkuX369KFKlSqsWrWKoKAgwsPDCQsL4/bt25w4cYIJEybQrFmzt67/pUuXyJ8/P+PGjePatWuEh4fz+PFjdu/ezddff03Xrl3jVd7s2bMpXbo0/v7+BAUFERkZaXTMnj17yJkzJ0OGDOHo0aM8ffqUqKgoHj58yNatW2natCl169bl1atXRue6uurWf/3nn3/iH/D/+fv7q4979epl83n6xy5cuDDB10+oCQs20XHIDE5c+E/dFvziFXNWBdDo+9/Zc+yihbM1SyXV6/obwyav4MXL1+r2qzfvMWzyCmp2/IV7j4ItlrH32CUaff87i9brvoCJio5h16HzdBwyg+GTVxAVHWOhhKQvqd6MaSX1m0otiUNH4tCRODQkDp0PFUdSTxrtJfm9d/VuvM8RIql7pwnwpUuX1MeZMmUC4Pz589SrV4+XL1/i4uJCnz592LdvHydPnmTOnDn4+fkBMGPGDIMu1Fpbt25l8uTJAHzxxRfMmjWL/fv3c+7cOfbt28f06dNp2LAhbm66X0SZM2fm0qVLBknZwoULDSbvunTpkjqhE8CLFy+oWbMmjx49AqB169bs2LGD06dPs2rVKsqUKcPcuXNtnvTp1KlT9OjRgyxZsjB9+nSOHz/O4cOHGTNmjHrMkSNHqFWrFs+ePSN9+vT8+uuvbNmyhTNnzrBlyxZatWoFwPbt22nbtq3RNYoWLao+HjhwoMkWaWtCQkK4cOECAHny5CFv3rw2n/vZZ5+RJ08eQNPS/eZN/P+Ivo3DZzRJf+dm1Vg2vjfzfv2OMf1bUam0Zpzz73M3svfYJZPnPn4WQvtB09Tk9Pcf27BsfG+mj+zM8O+b4uriDED7QdN4/CzEZBl7jl1k7NwNABT6zJf5o79n8e8/MGlIe7q3qAHAiQv/MXLKSpviiYmN4dT10wSc/4tbT25ZP8GEl2Gh7Lm4l/2XDxAaFpqgMgIfBRJw/i/O3DhLTKz15D2p3ozpS8o3lfokDh2JQ0fi0JA4dD5EHEk9abSX5HfpIH/rBwphZ956GaSRI0fy008/GR0THR1N+fLlOX78OABLliyhdevWlCxZklOnTuHk5MT27dupXr26wXnPnz+nXLlyXLlyBUdHRy5evEj+/PnV/W3atGHp0qVkz56dy5cv4+npabKOwcHBpE5tuB5rfJZB6tOnj5poT5482aglNCYmhsaNG7Np0yZ1W2BgoDr7tZavr6/a/btgwYIcPHjQ5NjcqKgo8uTJQ1BQEDVr1mT9+vV4eBgvTTBv3jy1q3FAQADVqlVT971+/ZpcuXLx8OFDAJydnalevTqVK1emVKlSFC1a1GSZ+o4cOUK5cuUA+Oabb1i50rZkTatFixasWrUKgOPHj1OqVCl1X2ItgxQREUFERIT688uXL8maNSsA04Z3Im+OzEbnrNlxRF3z19RySd/2ncTT5y/JkTU9Ewa1I7lHMoP9kVHRdBk2k/uPn5PXLxPTRnQ22P/6TTiNvv8d0CTgTWqWMereHnjnEV1HaL4wCRi5w2KM5wMvMGDJIKPt6wesIYV7CovngmappombJ7Hr/F8G26sWqsKPDfrZNOt1aFgojf8w7knxR5uxFPYrZPa8I5md7GqpDolDQ+LQkTg0JA4diUPH5jh8j8e/7I8oabSX5Dedbzq2r94e7/OF+KSXQYrr9evXHDhwgGrVqqnJb/bs2WnWrBknT57k1KlTAHTu3Nko+QXN5FnamYxjY2OZOXOmwX5tcle0aFGzyS9glPzGR0REhDoeuESJEia7ATs5OTFnzhySJUtmtM+cGTNmmJ2YStudO1myZCxZssRsotq5c2d1bHXcMcvJkydn06ZNpE+fHtB8CbF9+3b69+9P+fLl8fb2pmTJkowaNYp79+6ZLP/pU9041YSs3ay9dtyyEtOYMWPw9vZW/2mT398HtDGZ/AI0rVmWL/JmB2DL3lMG+54Ev+Tp85cATB3eySj5BXB1cWbSkA4A/Bt4Xz1ea+ehcwBUKl2QprXKmkww/bKmZ0QP613zn758qia/xXMWo3sNXVd7UwmpKf77lqrJ77flW9CsbBMAdl/Yw9qj620qQ/9aPWp9R/GcxQAYsGQQz0KfWTw3qbZIxCVx6EgcOhKHhsShI3HoJMbs0KZ8bEmjvSS/LUe3iff5QiR1b50A//zzzwYTSXl6elKxYkX2798PaJZJ+vPPP3FzczNYHqdjx45my/zyyy/5/PPPAYyW1MmYMSMABw8e5MaNG29bfZNOnz7NixcvANRux6akT5+eGjVq2FRm1qxZLU4mtXnzZgAqVKiAj4+PxbK++uorAI4dO2a0r2TJkly5coVhw4apiaFWdHQ0p06dYsSIEeTKlYs//vjD6PzQUF03WUtfMJijf472OUxsgwcPJiQkRP13584dAHJnz2j2HAcHB3q2rQvAwnV7DPYdPn0FgIqlCqhdnU1J5e1JkxplADh02nCM9dqdRwGoXs58yyhAuWKfW9wPMHOnppW4Z50ejG71K41KN2TXCN23s4GPAq2WseKQpuV+df+VtKvchk7VOrKqn+ZGZP7uBVbPD3qs63K9a8R26pesx+hWv9K9ZjcAJmyaZLUMe7kZkzh0JA4diUND4tCROHQSOwn+GJNGe0l+ExKHEEndOxsD7Ofnx48//silS5coXLgwoFmnFjSTNWm3maPtOvvff/8ZTBbVpo3mm6pnz55RoEABvvnmGxYtWsT169cTre7aegIUK1bM4rHFixe3qcwvvvjC4v7Tp08DsGvXLqPZqeP+Gz9+PKBrDY8rderUjBo1itu3b/P3338zb948unXrZrDmb3h4OAMHDmTkyJEG56ZIoetea2qiLWv0z9Efh52Y3Nzc8PLyMvgHWO3W6+xk+u3+IlTzxz1LhjRWr53C0x2AkNDXBtuDX2jiTpvScpcLWxz+5wgAVb6orG5zcHCgR63vAPjvgeX3uv443VTJU6qPU3umNnmMKdfuXwOge42uBs9rnWK1ADh944zF87Xs5WZM4tCROHQkDg2JQ0fi0EmsJNhekkZ7iUMIe/DWCXD37t3VSaQuX77M9evXefHiBTdv3uSPP/4gXbp06rHBwZoZdFOnTo2zs/mWNtB1v1UUhefPn6vbq1SpwvTp03F3dyc8PJzVq1fToUMHcufOTZYsWejWrZs6iVNC6V/PWmustf1aqVKlsrj/8ePHNpWjz5a1dvPly0enTp2YNWsWFy9e5N9//6VBgwbq/tGjRxtMlpU2bVr1sbkE2xLtpGFxy/oYaJNUF2cng+3J3FwM/rfk2XNNC7mbq+lj3ZO5mtweH17umiT6fvADg+3HrmmGFKRJYTlRd3TQfaz1E1394f76x5iSylPzfj11/bTB9jtPNa3tmVJnsni+Pnu5GZM4dCQOHYlDQ+LQkTh03jYOe0ka7SUOIezFWyfA6dKlo0CBAhQoUID8+fOTM2dOvL29LZ5jywQ8lnz//fcEBQUxadIkateurV7v3r17zJkzhyJFijBs2LC3ukZic3Jysrhfu0xUrVq1jGantvQvvvLkycOGDRv48ssvAU23aO2axqAZ0O7oqHlbnDt3Lt7lnz17Vn2s7cb+vjx+9sLi/mtB9wGoWtawNf6LvL4AzF+z2+pav5v/P3640Ge+BttLFdLMfn3g5N8Wz9dfXsmcEc01793uc77nxsMbREZHsvHEJs7c0Dy3liagAs3nK1/WfAD8ML83z0KDefnmJV1na1qQfdP5Wv0MFs1RBNC09G49vY2wyDBuPLxB9zk9AOhTz/blscB+bsYkDh2JQ0fi0JA4dCQOnYTGYS9Jo73EIYQ9eafLIMWlnZjq2bNnREdHWzxW2/ro4OBgsvU0Xbp09O7dm23bthEcHMyZM2cYNmwYKVOmRFEUfvvtN4MZmuND/3pPnjyxeKy1/bZKk0bTqhcZGal+oWDLv4RwdHSkQ4cO6s/63ce9vb0pVEiTYP37779cu3bN5nL1j8+dO7fBhFjvQ/+xiwmPiDK5L/DOI2av3AVA01pfGuzLl0v3x8R/417M2bT7pPr485yGf4C6NNfMxj1vzV9cvWl6grGwiEgGjltiIQKNL7IXpEJ+zTjv7nN6UPe3Bsz6/7jgcW1/x8nR8pcpAL+1/AWA6w+u02JiS5qMa07Q4yAAJnUYb/V8J0cn/mgzFoCp26bTYMzXavJbIf9XFPK13KXflKR+M6YlcehIHDoSh4bEoSNx6MQ3DntJGu0lDiHszXtNgLUJW2RkJOfPn7d47MmTmmQjd+7cuLpa7lbq6OhI0aJFGTVqFHv26CY4WrNmjcFxtrY86y+7dOaM5bGO2rG7b6tIkSJqefpjnt8V7brMYPy86C9PNHXqVJvL1D+2adOmCa9cAoW+DqfXr/ON1uk9fOYfdfmhUoXyGI31dXBw4JdeLQBYufUwa3YcISxc9xpERkUzdclWZizXLF30S68WRs9Z1oxpqVRK8/7uOWo+l67dIiY2Vt3/8OkLWvefTOBd27q6D20ymHFtf1e7GhfPWYyVfZfZnHgmd0vO1qGb6FK9s5owd6zSnq1DN5HcLblNZRT2K8SKPkspn0+zLJa3hxfj2/3B0CbG63PbKqnejMUlcehIHDoSh4bEoSNx6Ngah70kjfYShxD26J2tA2zKyZMn1cmtunfvbrTEkdaxY8coW7YsAN999x0zZsyIV/1Sp07N8+fPqV69Ort27VK3nzhxgtKlSwOwc+dOszM4h4eHkyFDBkJCQihRooSajMf16NEjfH19CQ8PByyvA9y2bVujZYv0zZ07l65dNcvdzJ49W30cH4qi2Jzk//rrrwwfPhyACRMm0LdvX3Xfq1evyJEjB0+ePMHJyYkDBw6oXabNOXLkCBUqVCAmJoZkyZJx8+ZNdcZurcRaBzgu7bpf1hQvkJOfe7UwGgOstevQOSYs3GyxjH4d6lOjfBGT+6KiYxg4bgmXr922WMaC0d+TNaKu1fomVUcyW2+hTnLrVZohcehIHDoSh4bEoSNx6GjjGBnwi/E+O0kak1ocTTI2inf5Qsg6wDYqWbKkOmvyvHnzDFprtUJCQtTkz9HRke7duxvsX716tcXJn06fPq1OYuXn52ewTz8hs7SEUrJkydTZpk+dOsWUKVOMjomNjaVr165q8vu22rZtqy5b1L9/fw4ePGjx+MOHD3PgwAGDbT///DMDBgzg/v37Fs+9cOGCOpO0o6Mj9erVM9jv6enJokWLAM3Y5Lp167Jv3z6z5e3fv5+6deuq45hHjRpllPy+D0v+6EmTmmVM7hvcrTG/9mlpNvkFqFG+CLN+7kqBPNmM9uXLlZVZP3c1m/yCZnKt8QPbMaBzIxxNfBHRvPaXrJv2I1kzflyTg30ISa1FwhyJQ0fi0JE4NCQOHYlDRxtHXEktaTTHXuIQwp691xZggPPnz1OqVCkiIyNxdXXlhx9+oF69eiRPnpxz584xduxYbt68CcCAAQP4/fffDc739fUlJCSEBg0a8NVXX5EnTx6SJ0/Os2fPOHz4MNOmTSM4OBgnJyeOHz9utExR1qxZuXv3Ln5+fkyePJm8efOqE1SlT59eXQYoODiY/Pnzq2ORW7duTcuWLfHx8eH69etMmTKFo0ePUrJkSbWFOCgoiOzZsxvV15YWYIDjx49TsWJFIiIicHJy4ptvvqFhw4b4+fkRGxvLgwcPOHPmDBs3buTSpUtMmzaNHj16qOf379+fCRMm4OTkRJUqVahcuTKFCxfGx8cHRVG4desWu3btwt/fn4iICAB69erF5MmTTdZnypQp9OnTR509uGHDhjRp0oScOXPi4ODAjRs3WL9+PRs3blSPadmyJUuXLjXZEq3fAtyxY0fKlStn8fkAqF+/vjp23BztNz4bZw4iubsbMTGxPHz6gsjIKLxSeJAmZQqL55vyOiyCp8EvAUib2ovk7vH/4/HsRSgvQ9/g6upChrQpcdJfhimodLzLSypsaQHW+thaJOylZUXikDi0JA4diUPjY4kD3+PqQ3tJGpNqHNICLBIiKbcAv/cEGCAgIICmTZvy8uVLs8d8//33TJ06VZ2RWEubUFri5ubG7NmzTXaxnTVrFt99953J8+J2y71w4QLVqlUzO9FVu3btKF++PB07dgQ0E3fFnfgpPgkwaJLgZs2acefOHavH+vv7qy3VoOnKPHDgQLUl1hJHR0d69erF+PHjjZ5jfX/++Sc9e/a0Wh8nJycGDRrEL7/8YrY8/QTYVufOnbO6ZnTcBDhJkARY9bHcjNnLTaXEoSFx6EgcOhKHxkcRx/8T4KSaNMaVlOOQBFgkRFJOgN9rF2it6tWrc/36dYYMGULhwoXx8vLCzc2NbNmy0bJlSw4dOsT06dNNJlL79u1jypQpNG7cmIIFC+Lj44OzszNeXl4UKVKE/v37c+XKFbPjS7t378769eupXr066dKls7gecaFChbhy5Qr9+vUjd+7cuLm5kTZtWipVqsSKFStYtGiRQRJvyzhUa0qXLs1///3H7NmzqVOnDpkyZcLV1ZVkyZKRNWtWqlevzm+//cbVq1cNkl+Afv368eDBA/z9/enYsSPFixcnTZo0ODs74+bmRvr06fnqq68YMmQIV65cYeLEiRaTX9C0+l67do2FCxfSqFEjfH198fAw/CPn5OTEwYMH+fXXX62WJ0RcH1u3PHvpXihxSBxaEoeOxKHxscSRlJNGffYShxCfigS1AAudTp06sWDBArJkyWJTq609mTlzJt9//z0AlSpVYseOHbi5vf9fuAlpAX72PJSQV29wc3Emg08qw+7JNoiJieXhk+dEREXj7elBmlTx7GZtxy3AY86vSrotEthJywoSh5bEoSNx6EgcGh8yjoNHxtpF0mgPya+0AIuESMotwJIAv4WwsDCyZcvG06dPadKkCWvXrv3QVXrv+vTpo44hbtasGStXrnzvrcC2JsCxsQoHTl5mzJwNRvsaVSvFt/W+wjuF5T/cIaFvWLvjCGt2HDXaN6BzQyqX/gJHR8szcd+4/ZCcsQ0tHpOUVf+5VpK8GdOXlG8q9UkcGhKHjsShI3FofKg4fu5SPUknjWAfyS9IAiwSJiknwNJf1YIbN25g7vuBmJgYunfvztOnTwHNLM6fogkTJlC/fn1As+5ynz59Plhddh+5YHZfVHQMwyYtN5n8Amz86wRNe47jzoOnZsu4/eApTXuOM5n8Avwx70/6/76YqGjzY7B3HTpH95FzzO63B/bQLc9euhdKHBoSh47EoSNxaHyoOJJ60mgvye/B5fvjfY4QSZ20AFvQrl07Tp48yTfffEOpUqVIly4dYWFhXLx4kXnz5nH27FkAqlatSkBAgM1r8Nqb169fM2nSJKKjowFo37690WzY75L+OsC/9GpB6cJ5jI4ZPnkFJy78B8CIHs0oV+xzdd+Ll68ZOG4JgXcfA7Bu2o94eRp+ex0S+oamPccB4O3pwbSRncmQNiWgWX/538D79Bw1H4BKpQowuFtjozocO/8vI6esAmDr0E1sOP4nC/cswtHBkY5V29OgZH1cnV1tjvtZ6DPGb5rImRtnyZQqI73r9aKwXyGbzwe4eOsSv6z+lZdhLyn3+Zd8V7Mbab1sX6YpMjrSKI5MTZsn2RaJuCQODYlDR+LQkTg0JA6deMWhNwu0zXX8iJJGe0l+9/nv5dKlS/E+V4ik3AIsCbAF7dq1w9/f3+IxX375JZs2bSJNmjTvqVYiLv0EGGDXwhEGX0bcefCUjkNmADBnVHf8sqQzKiMsIpLW/Sfz8lUYzWt/ScemVQ32z1qxk41/ncAvSzqmDOtEMjcXozKu3rynJsELx/QgSwbde0JRFGp0+AWA71vWYsbyHSZj2ThoHcndkluN+XzgBQYsGWS0vUL+rxjaZLDV8wF+WzeGA38brzf9R5uxNiXSryNe02hsE6PtI+cGAEnwZswMiUND4tCROHQkDg2JQ8fmOOKZAH9sSaO9JL+V2lZmav8p8T5fiKScAEsXaAsGDx7Mb7/9RqVKlfDz88PT0xM3NzcyZcpE/fr1Wb58OQcPHpTk9yPzz427Bj+v2XEEgO4taphMfgHc3VyZPrILAKu3HyEmNlbdFxMTy8a/TgDw+49tTCa/AJ/lyEynZprEee7qAIN9V67r6tSgakkAfNP5su7H1azqt5xcGXMBMHT5CKvxxcTGqMnvdzW7sXXoJmZ11ST4B/4+yMVb1r/JPR94QU1+Z3WdwabBG+hZR7Om9IAlg4iJtb6UVu8F/czGAUm3W15cEoeGxKEjcehIHBoSh05ixBHXx5g02kvym5A4hEjqJAG2IG/evAwZMoS9e/dy8+ZNQkNDCQ8P5969e2zatIlvv/1Wlv35iLRpVBGAC1eDDLbvPaZJCPP4ZbJ4vrZLM8DDJy/0Hj9XH6f0stw6W7Gk5tuw4+evGWy/+K+mTtrkF2BOt5l4eXiR2jM10zpNBuDKnStmx51rnQ/UjHUunrMYDUs1wNXZlZwZcjCr63QARq351eL5AJO3aL7tndV1Bjkz5MDd1Z26xetQPGcxAM7ePGfxfEVRuPXkltk4tOzlZkzi0JA4dCQOHYlDQ+LQScwk2F6SRnuJQwh7INmbsBvh4ZEARERGGWzXTkqVytvT5rIi9cqIiIq2+bw34RGm6xahKS+1Xh30u2k7OTqpj2MVXeuzKc9CnwFQOk8pg+2ZUmsS/JA3L43Oiev+8wcAZE1r+Ae4eC5NAvz81XOjc/Tp19FcHFr2cjMmcWhIHDoSh47EoSFx6CRGHPaSNNpLHELYC0mAhd249zgYAO8Upltpo2MsJ5b6La9eessheXvaPg7r6fNQANKkNFwXOOX/ywt9FaZuC34VrD5+/vqF+thUEqkv9/+7GU/fMdOgzrsv7AGgfL5yVutZLGdRALaf0Y1FVhSF2bvmApA3s/FEYvr062guDn32cjMmcWhIHDoSh47EoSFx6LxNHPaSNNpLHELYE0mAhd04ckbzx7l88c8NtrdvXBmAaUu2WexefPXmPfWxfgKbJpXu8eEz/1isw1+HzwPQtFZZg+3liucDYN2uYzwPeQXANxNaMu+vBSza60/z8S0AaPlVC4vlA/il91Mf1/ilNhuOb2TIsmFM264ZB9y9RlerZfRv0BeAmTtnM3jZUDaf3EKNX2qr+7P7WJ/Fu1PVjmbjMCWp34xpSRwaEoeOxKEjcWhIHDoJicNekkZ7iUMIeyMJsLArPqm9SJvKcOa3+pVLAJqxwWt3ml7D9+rNe/T6dQEAAzobLwg/uOvXAPwyfQ2Bdx4Z7VcUhTU7jrDvxGUAapQvYlSvvP8fg9xn9EKqFqoCwNqj61h5SLM0Uo3C1WlTsbVNca4fsEZ9PHvXXE7fOANoZnC2ZRmjNCnS8EebsQCcuXGW6TtmmizbkqZlG5uMw5KkejMWl8ShIXHoSBw6EoeGxKETnzjsJWm0lziEsEeyDJJI8vSXQVo2vjfp0ngbHbP32CXGzt0AQLnin1O3YnF1maL9Jy8zf81uAArkycb4ge1wdDRc0zk2VmHYpOWcvnwD0LQql/wiN16eHoRFRDLVfysX/9VMCjWoy9dULlPQqA6Pn4XQqv9kAAJG7iA0LJQzN84Sq8RSIldxUrinMDrHmltPbvHvvWuk8kxF0RxFrHafjismNobzgRd4FvqM3Jly45fON951iBvHxVwprZ6TpJbqsEDi0JA4dCQOHYlDQ+LQ0Y+jw6xvjK9hJ0ljUoujSUbjL/6FsCYpL4MkCbBI8rRv+Fk/dyVntgxmj9tz7CK/z91odn+l0gXp37EBLs6mk8io6Bh+mb6GExeumdwP5pNfrXuPgmk/aBoBI02vA2wPjmS2LQn/2G7G7OWmUuKQOEDi0Cdx6HxMcQzabLiWfVJLGs1JinFIAiwSQhJgIT4g7Rt+48xBJHe3/Efi9Ztwdh+9iP/Gfbx6Ew5A6cJ56NK8utoibM2dB0/Z+Ndxtu47o27r0KQK9SqXsHp90LQmO94uY9O1kiJbE2D4uG7G7OWmUuKQOLQkDh2JQ+djiSNzpRe6MpNg0mhKUo1DEmCREJIAC/EBxScB/mgElf7QNXhn4pMAw8dzM2YvN5USh4bEoSFx6EgcOh9DHPge15SVRJPGuJJyHJIAi4RIygmwTIIlhPigktoELeZIHBoSh47EoSNxaEgchpJy0qjPXuIQ4lMhCbAQIlEl1Zsxe7mplDh0JA4NiUNH4tD50HHYS9JoL3EI8SmRBFjYFUVR+Pu/26zceohF6/eyMeA4T4JfxquMyKho9h67xJI/97Pkz/3sPXaJyKjoeJXxJPglGwOOs2j9XlZuPcTf/92xuAaxPUmqN2NgHzeVIHHokzg0JA4diUPnQ8ZhD0mjJL9CJE0yBlgkedo+/0O6NWH07HUmj0mbyovJQzuYXCJJKyYmliV/7mPl1sMm99etVJzvW9bCycn890aPn4UwasYa/g28b3L/L71aULpwHrseA1zv98ZJfmyavYyxkzh0JA4NiUNH4tD5EHGM7V0vSSeN9pL8RryJoGVO4yWphLAmKY8BlgRYJHn66wBrdWpWlfCIKO48eMqBk3+r2xeN/YHM6VMblRETE8uPf/hz+dptAIrk86N4gVy8fPWGM3/f5PqtB4BmneBxA9qaTIK1SxxpNalRhhSe7gS/CGXTnlPq9n4d6lMja3ebYlMUhVglNt7r++qLVWIBcHRIeIePmNgYHB0ccXBwsHrsmsj/kuTNWFxJ9aYyLolDR+LQkDh0JA6d9x3HvfB1STpptJfkd/mQJWxfvT3e5wohCbAQH5B+AtyibnnaNqqEo6MuUYuMiqbnqPncvPMIF2cntswZarAfYOqSbWzddxqA339sQ5F8fgb7bz94SqchM/5/jXK0b1zFYH9srELNjr8AkCldaiYNaU8qb0+DYzbtPsmM5Zr1f62tA/w64jVDlw3nyt1/1G3flm9B20qtbUpCAa7dv0aPeb0Mtk3pOInPs9h2c6UoCmuPrmf+7gXqtuw+2ZnccQLJ3ZKbPe9IZqckeTNmisShI3FoSBw6EoeOxKERrzj+Pwt0fHxMSaO9JL+Pgx5z+sTpeJ8vRFJOgGUMsLAb7RpXpn3jykbJrauLM+MHtQMgKjqG05evG+yPiIxSk9/5o783Sn4BsmVMy+8/tgFg5dbDRmOCT1+6rl5r7q/djZJfgAZVS1K3UjGrcURGR9JobBOD5BdgxaGVTNw82er5AP/cvWqU/AL0WtCHa/f/s6mMcZsmGCS/ALee3KLR2CZERkdaPDepj03Tkjh0JA4NiUNH4tCRODQSa3ZoUz62pNFekt/WY9vG+3whkjpJgIXdqFPBfHLp6ZFMTWDHL9hksO/IGc0f6FzZM5ItY1qzZRTJ50fhz/3+f45hcrps8wEABnZphKuLs9kyurWoaSECjU0nNwOQO2NudgzfSsDIHazuvxKAXecDCA0LtVpGrwV9ABjedCgBI3cQMHIHw5sOBaDHvJ5Wzw8NC2X3hT0ArOq3nICRO9g1Yju+6XwB+PPEJgtna9jLzZjEoSNxaEgcOhKHjsSh8S6S4I8xabSX5DchcQiR1EkCLOyGs7PlcbLasb8vXr422H730TMAiuXPYfUaJQrm0pzz8JnB9qs37wGQPm1Ki+dbSo61FuxeBMCob39Sx/6mSp6SFuU1k1Scum65q5J2zC9A+XzlTD7WP8aUMzfOAtCsbBNSe2qeNwcHB8a3/R2A+bsXWo0D7OdmTOLQkTg0JA4diUNH4tBIzCTYXpJGe4lDCHsgCbD4ZMRNfOPy8rQ+Xiok1HIZKVOYHxtrK21y6uxomCxHx2i6Xb/NZFa2iomN0dTBycVge9T/6xCfSbns5WZM4tCRODQkDh2JQ0fi0EiMOOwlabSXOISwF5IAC7sRZWWt3odPXwDweU7DX/pZ0qcBMBobbMrZv29qzsmQxmB7Si9N4nvvUbDlOkbHWL1GhyrtAejvP1BdOzj4VTBrj2qWeCqWs6jF8/UT5ENXDpt8bC2JLpm7BKAZd/z89QtAkxQPXzkSgI5VO1iNQ5+93IxJHDoSh4bEoSNx6EgcGm8Th70kjfYShxD2RBJgYTcWrNtjdl9kVDR/zNsIQMv6XxnsK1f8cwDOXQnk3JVAs2Xcvv+E67cfAvBlsc8N9vXv0ACAgeOW8PpNuNkyNu0+YSECja9LNwQg6HEQNX6pTfWfa/HNBM1snFULVSGFewqrZUzvPBWAUWt/o/rPtaj+cy1Grf0N0MwEbU0K9xTUKFwNgObjW1D951rUGlWX6w80XxLUL1HXahlxJfWbMS2JQ0fi0JA4dCQOHYlDIyFx2EvSaC9xCGFvZBkkkeTFZ9pzIYQQQgghhH2RZZCEEEIIIYQQQog4JAEWQgghhBBCCPFJsL4mixBCJGGKohAVFUVsrOWln4QQQgjxcXN0dMTFxQUHB4cPXRWRhEkCLISwSzExMTx9+pTQ0FCioqI+dHWEEEIIkQhcXFxIkSIFadOmxcnJ9mUZhdCSBFgIYXdiYmK4c+cOEREReHt74+npiZOTk3xjLIQQQiRRiqIQExPDq1evePHiBWFhYWTNmlWSYBFvkgALIezO06dPiYiIIFu2bLi7u3/o6gghhBAikXh6euLt7c3t27d5+vQp6dOn/9BVEkmMTIIlhLAriqIQGhqKt7e3JL9C2IGKFSvi4OBAxYoVE6W8ChUq4ODgwPjx4xOlPGE7X19fHBwcaNeuXYLO/+mnn3BwcJDePHZs7dq1ODg4kCdPHovDl9zd3fHy8iI0NBRZ0VXElyTAQgi7EhUVRVRUFJ6enh+6Kkleu3bt1JvNoKAgm87R3uD6+vq+07oJkRBr167l4MGD+Pj40L179w9dHSFEHI0bNyZfvnz8999/TJs2zeKxKVKkUP/mCxEf0gVaCGFXtLM9a8cEDe7amMplChod9/hZCK36T1Z//v3HNmROn5oXoa959PQFv8/dSGRUNADLxvcmXRpvozL2HLvI73M3AlDoM19+aFMHZydHnoe84lrgfWat3AVA8QI5+bVPSxwdDVstYmJj+fF3fy5fuw1A52bVqFAyP2HhkTx98ZKAwxfYd/wSAIO6fG0UR7V2P8X36RGJyNfXl1u3btG2bVsWL178oasjrIiNjWXEiBEA9OvXj+TJk3/gGgkh4nJ0dGTo0KG0bNmSsWPH0rVrV7OfVe3feVnlQcSXtAALIeyStovc2LkbeB0WYbS/928LAciRNT0bZwykSD4/0qXxJo9vJsoXz8eGGQPJlC4VAKNmrDE6//WbcDX57dysGn8MaEO2jGnJlC41+XNno1H10sz5pRsApy/f4MCpv43K2Hf8kpr8Thveiaa1ypIujTfZM/tQLH9OBnf9mk7NqlqMQwhhm3Xr1nH16lXc3d357rvvPnR1hBBmNG/enMyZM/PkyRPmzJlj9jjpCi8SShJgIYTd27L3lMHPT4Jf8vT5SwCmDu9Eco9kRue4ujgzaUgHAP4NvK8er7Xz0DkAKpUuSNNaZU3+IfbLmp4RPZoBMGb2eqP9f8z7U61D3hyZTda9ac2yfJE3u8k4hBC2mzJlCgD169cnRYoUH7g2QghznJycaN68OQDTp0+XFl6R6CQBFkLYvYXr9hj8fPj0FQAqliqAq4v5kSCpvD1pUqMMAIdO/2Owb+3OowBUL1fI4rXLFftcffzsRaju8XPd47x+mcye7+DgQM+2dU3GIYSwzdWrVzl6VPOZbdmy5QeujRDCGu3nNDAwkH379n3g2gh7IwmwEOKT8yL0DQBZMqSxemwKT81M0iGhrw22B794BUDalF42X/fl/68LEPJK99haNy5nJ/v5VR0eHs7UqVOpWLEiPj4+uLi4kDp1avLmzUutWrWYOHGixQm3YmJi8Pf3p27dumTKlAk3NzfSpElDuXLlmDhxImFhYWbPjTub8H///UePHj3InTs3Hh4eNk/2pS3n1q1bAPj7+6uThWn/xZ2x+Pnz5yxatIhWrVqRL18+PD09cXV1JUOGDNSoUYO5c+cSGRlp9doAS5YsoUKFCqRKlQpPT08KFizIL7/8wsuXml4K2jr89NNPZst49uwZAwYMIG/evLi7u5M+fXqqVavGxo2abv2LFy+2aQK08PBwpk+fTpUqVciQIQOurq6kS5eOqlWrsmDBAqKjo63Gc/z4cZo2bUqGDBlIliwZfn5+dOnShX///dem58MWa9ZohjEkT56cmjVrmj1OO/GbdhK3e/fu0bdvX/LkyYOHhwc+Pj7UqVOHnTt3Wrze69evWb16NZ06daJw4cJ4e3vj4uKCj48PFSpUYPz48bx69cpiGXFfx71799K0aVOyZs2Ki4uL0URz9+/fZ9CgQRQtWlS9Xvr06SlYsCAtWrRg8eLF6nvElJCQEMaMGcOXX36Jj48Prq6uZMyYkXr16rFu3TqbZtrdsWMHtWvXxsfHBw8PD/LkyUPfvn25d++e1XMT4sWLF4wcOZL8+fPj6elJ6tSpqVSpEitXrjR5/ObNm9XnddWqVVbL79evHw4ODjg7O3P//v141S3ue+nBgwcMHDiQ/PnzkyJFChwcHNi/f7/BOW/z+03r8uXLtGnThixZspAsWTKyZctGq1atOHv2rMl6mfPw4UOGDh1K8eLFSZ06NW5ubmTNmpVmzZqxe/duk+eMHj1afX7/+OMPs2WfOXMGV1dXHBwcqFSpkskW3qJFi+Ln5wdg9vUUIqFkEiwhhN1zcXYy+DmZm4vB/5ZoW2rdXE0f657M1eZ6uOqV4Wah5TkubbIdN46k5sGDB1StWpUrV64YbH/+/DnPnz/n2rVr7Ny5k/v375tcoub27dvUr1+fCxcuGGwPDg7myJEjHDlyhFmzZrFt2zby5MljsS6bNm2iZcuWvH792uJxiaVIkSJqwqzv0aNHBAQEEBAQwOzZs9m+fTsZMmQwWUZUVBRNmzZl06ZNBtsvX77M5cuXWbZsGX/99ZfVuly6dIlq1arx6NEjdVt4eDi7d+9m9+7ddOnShTJlylgt58KFCzRo0MAoridPnrBnzx727NnDnDlz2LJli9l1OidNmkT//v0NboCDgoKYN28eK1asUBPXt6VtQSpatCguLtY/9wCnT5+mTp06PH78WN0WFhbG9u3b2b59O3379mXChAkmz61Tpw4HDhww2v706VMOHjzIwYMHmTlzJtu3b+ezzz6zWpehQ4cyevRos/sPHTpE3bp1jRLcx48f8/jxYy5fvsyqVatImzYtdevWNTp/z549NG/enGfPnhlsf/jwIVu3bmXr1q3Url2b1atXm51hv2/fvkyaNMlg23///cekSZNYtmwZ27dvtxpnfAQGBlKtWjVu3Lihbnv9+jX79+9n//79/PnnnyxfvhxnZ93v2jp16pAxY0YePHjA4sWL+eabb8yWHx0dzbJlywCoWbMmmTKZ76ljzfHjx6lXrx5Pnz41e0xi/H5btmwZHTp0MJgV+c6dOyxfvpw1a9Ywb948m+q7fPlyunbtavT78e7du6xdu5a1a9fSsWNHZs+ebfD8Dho0iJ07d3Lo0CGGDx9O9erVKVy4sEEZb968oWXLlkRFRZEyZUqWLFmCo6PpL3lLlSpFYGCg1S+chIgvSYCFEHavatkvDH7+Iq8vAPPX7KZJjbJGszPr2/z/cbeFPvM12F6qUB5OXLjGgZN/07RWWbPnv3ipu4HI4JNS73Eq9fHDpy/IkDYl5lwLum8yjqTmhx9+UJPfVq1a8fXXX5MpUyacnJx48OABp0+fNkrutJ49e0a5cuW4c+cObm5udO7cmQoVKuDr68urV68ICAhgypQpXL9+nVq1anH27Fm8vY1n7gbNjWarVq3w8PBg+PDhlC9fHicnJ06dOmXT8lmLFi3i9evX1KhRg/v379OgQQN+/fVXg2PizloaExNDqVKlqFu3LkWKFCF9+vRERkYSGBjIsmXL2LlzJ+fOneObb74xahXS6tWrl/r85M+fn/79+1OgQAFevnzJxo0bmTVrljpuzpwXL15Qs2ZNNflt3bo13377LT4+Ply/fp0pU6Ywd+5co5vwuK5fv06FChUICQnBy8uL77//npIlS5I1a1aePXvG5s2bmTNnDqdOnaJBgwYcOnTIKPHcuHEjffv2BcDb25uBAweqLed79+7ljz/+oGXLlvj4+FisizVRUVGcOHECgBIlSth0zps3b2jatCkhISEMGjSI2rVr4+bmxokTJxgzZgwPHjxg4sSJZMuWjV69ehmdHx0dTcGCBalfvz7FixcnU6ZMKIrCrVu32LhxI2vWrCEwMJCGDRty/vx5kiUznodAa8OGDVy6dImCBQvSp08fChQoQFhYGOfPnwcgIiKCb775hpcvX5IiRQq6d+9OpUqVSJcunfoeO3r0qNq6H9eRI0eoVasWUVFRpE+fnh9++IFChQqRKVMm7t+/z+rVq9UEtm3btqxfbzyfweTJk9XkN1OmTAwePJiSJUsSHh7Otm3bmDx5Mk2bNuXNmzdG5yZU8+bNCQwMpFu3bjRp0gRvb28uXrzI77//zrVr11izZg2ZMmUySMqdnJxo164dY8aM4a+//uLu3btkyZLFZPnbtm1Tv/zo0KFDguv56tUrGjduTHh4OEOHDqVatWp4eHhw6dIlMmbMCCTO77ejR4/Srl07YmJi8PDwoG/fvlSvXh03NzdOnz7NmDFj6NKlC/nz57dY3zVr1tC6dWsURSFHjhz06NGDfPny4ePjQ1BQEAsWLGD79u0sWLAALy8vJk6cqJ7r6OjI0qVLKVSoECEhIXz77becOXMGd3d39Zi+ffuqvTtmzZpF1qxZzdalZMmSrFq1inv37nH9+nVy5coV7+dfCJMUIZK4kJAQBVBCQkI+dFXERyAsLEy5cuWKEhYWpiiKogDKwjE9lIBFI9V/uxaOUAAFUFrULWewT//f9y1rqcftWjjCYN+C0d+r+6YO72Ty/E2zByt+WdIpgNKoeimj/c1qlVUAxcvTXdk8e4jJMub80k29Ttw43rW2bduq1w4MDLTpnOzZsyuAkj17doPtYWFhiouLiwIo/fr1s1jGs2fPjLZ9++23ark3b940ed7Zs2eV5MmTK4AyZMgQo/0VKlRQ48mUKZNy69Ytm2IyRxtr27ZtrR577do1i/sXLlyo1m337t1G+8+ePas4ODgogFKmTBnlzZs3RsesXbtWLQNQRo4caXRM79691f2TJ0822h8dHa00aNDAoBxTr33Zspr3bpEiRZQnT56YjGnHjh2Ko6OjAihz58412BcREaFkypRJARRvb2/lypUrRudfunRJ8fLyUutRoUIFk9ex5sSJE2oZS5cutXis/nvexcVFOXDggNEx9+7dU7JkyaIASvLkyZXHjx8bHWPt9f7rr7/U52b+/Pkmj9F/DapUqaKEh4ebPG7Pnj3qcVu2bDF7zaioKKO/k5GRkYqvr68CKDVr1lRev35t8ty5c+eq1wgICDDY9+jRI8XDw0P9fD548MBkHZ2dndUybPnMmDJy5EiD52XFihVGx7x8+VIpVKiQAiiOjo7KpUuXDPZfv35d/Sz99ttvZq9Vv359BVB8fHyUyMjIeNdV/73k6empnD9/3uyxifH7rXDhwgqguLm5KcePHzfa/+jRIyVHjhxqneL+jlYURXny5Ini7e2tAEqHDh2UqKgok3UZMmSI+vxevXrVaP+yZcvU63z//ffq9s2bN6vbW7Zsae7pUB04cEA9ftWqVUb74/69F5+2+OQD9jOwTAghTChVKI/RWF8HBwd+6dUCgJVbD7NmxxHCwnXjLyOjopm6ZCszlu8A4JdeLYzG6WbNmJZKpQoA0HPUfC5du0WMXjfOh09f0Lr/ZALvaloQWtb7yqhuTWt9CcDLV2H0+nU+j5+FGOw/fOYfuo6YbTaOpCQ4OFjtlvfVV8bPhb7UqVMb/BwUFMTq1asBzYyg2nFhcRUpUoTvv/8ewOq6vGPHjiVbtmy2VD1R5M6d2+L+9u3bq10F//zzT6P9c+fOVcdgzps3z6BFRatJkyY0atTI7DUiIiLU56VEiRImWy6dnJyYM2eOxRbJQ4cOqRNK+fv7kzZtWpPH1axZkyZNmgDGr8emTZvUMZXDhw/n888/j3s6BQoUYOjQoWbrYau7d++qj9OlS2fzeV27djX5Xs2UKZPa9fn169f4+/sbHWPt9a5atSr169cHTL/e+hwdHZk/fz5ubm4m9z98+FB9bOmz5ezsjJeX4ZwFq1atIigoiGTJkrFkyRI8PDxMntu5c2dKliwJGL+W/v7+asvuhAkTTHbhr1y5Mp07dzZbt4SoW7cuLVq0MNqeIkUK5s6dC2jWh509e7bB/pw5c6o9Dcz9nnj06JHaZbtVq1Y2d5s3Z8CAARQqZHrCxMT4/XbixAm1R8APP/xAqVKljM5Ply6dURf1uGbNmkVISAiZM2dm5syZBt2b9f38889kzpyZ2NhYlixZYrS/ZcuW6mszY8YMduzYwaNHj+jYsSMA2bNnZ8aMGRbroq2z1s2bN60eL4StJAEWQtg17TJEcZUunId+HTQ3oPPX7KZB9zFUb/8z1dv/TN0uv7F13xkA+nWoT+nCpsdb9e/UkAJ5NElUvzGLqdVxlFpGmx+n8PKVZsKSBaO/x8vT+MbSO4UHC0ZrbmgC7z6mVf/J6vnV2//ML9M14x+LF8hpNo6kIk2aNLi6asZLL1261KbJkbS2bdumduurVauWxWO1CcD9+/e5ffu2yWNcXV1p2rSpzddPbIqi8PDhQ65du6aO3718+TKZM2uWwjLV/Vg76UyRIkUsdmFs06aN2X2nT5/mxYsXgOam3pz06dNTo0YNs/s3b94MQN68eSlYsKDZ40D3epw6dcrgNdfG4+DgQNu2bc2e3759+7de6/PJkyfq41SpUlk40vja5jRq1IiUKVMCmJ0QKG4d/vvvP4PXW9u121p38y+//NLihEXabrSg6Z4fH9rXskKFCla7mmtfy2PHjhls18afKlUqGjRoYPb8t+lGbIql16dkyZLq58TU69OpUydAM0b58OHDRvuXLVumvl8To96WZh5PjN9v+jG2bt3a7Pl16tQhTRrzX6Rq3w9169Y1+4ULaL5M0c4TEPf9oDVz5kz1S8b27dvz7bff8uTJE7WbtLkhKvr0vwzV/6JHiLclY4CFEHbN0sRRNcoXIVf2jMxYvoPL1wyTpXy5svJD69rkzGZ6QiJt2eMHtmPv8UuMn/8nsXFmSW1e+0ua1iprMvnVypoxLeum/ciqbYdZt9P4RmJwt8ZUKJHf4jjlpMDNzY3mzZuzdOlS1q1bx6lTp2jWrBkVK1akbNmyajJhyunTpwHNuExzLRKmPHz40GQrb+7cuU22cEZFRVmceThv3rxv1RK0bds2Zs2axcGDBwkNDTV7XNyJcsLDw7l+/ToAxYoVs3iN4sWLm913+fJl9bEt5Zgbj619Pf7991+bk9OoqCiCg4PVFp1Lly4B4OfnZ7YFGcDHxwdfX18CAwNtuo4pwcHB6mNbE2BXV1ezLXYALi4uFClShH379qmxxHXkyBGmTp3K7t27DeoQl6WJkQC++MLy2P9y5cqRI0cObt68Se/evVm+fDmNGjXiq6++okSJEuoXT6ZoX8tdu3bZ/FrGTUS08RcpUsTi57Nw4cK4urraPNu5NdbGc5csWZK///6ba9euERkZafA8fP3116RKlUqdnb1cuXIG52q/SChRogQFChR4q3p6enqSI0cOs/sT4/eb9rPt5uZm8QsyJycnChcuzJ49xkvqxcTEqK3Ic+bMYc6cOTbXwxTtBFeVK1fm0aNH6rwDAwcOpHz58jaVrf95fV8TFopPgyTAQohPWs5sGZg4uD2vwyJ4GqyZQTVtai+Su5v/9lufo6MDVct+QdWyX/DsRSgvQ9/g6upChrQpcbJx+SIvTw+6NK9OxyZVefj0BZGRUXil8CBNyhQJjisx6N8QKzYsgaJ/nKmb6enTp/PixQu2bNnCrVu3GDduHOPGjcPR0ZGiRYvSrFkzunTpYtQyoD8Lb3yYm3DHXBJ07949iy2agYGBVpcOMUVRFDp37syCBQtsOj7uUifaVlvAaiudpf3Pnz9PlHIS4/XQJoS2dElOnz79WyXA+l922LKMDGhanpycLM+6rp3Z2lRy+9NPP/Hzzz/bdC1rdbKWtLu4uLBlyxaaNGnCP//8w6lTpzh1SjN5n7u7O1999RVt2rShefPmRjEl5LWMW19bX0tnZ2dSp06daC151q6nfX0UReH58+cGM5EnS5aMVq1aMW3aNNasWcPUqVPVietOnjzJ33//DSRO66+lL/cgcT5P2s+2Le9bc5/t4ODgePXMMVWPuCpUqEDr1q3VYQL58uWz+XMBhu+1t+2GLoQ+SYCFEAJI7u5G8sxvN9tsmpQp3ippdXJyJHP61NYPfE/0x5namjhov6WPOwsygJeXF5s3b+bkyZOsWbOG/fv3c/78eWJiYjh9+jSnT59m/Pjx/PnnnwbL8MTExACQNm1adTkbW5gbS2ftBjGxLVy4UE1+CxcuTO/evSlVqhSZM2fGw8NDrU+bNm1YunSpzV82fCja16NQoULqMjG20Hbx1ve23ZttoX/Db6klVt/b1GvPnj3qTX6OHDno378/5cqVI1u2bCRPnlxt5RsxYgSjRo2yWp4t79d8+fJx6dIltmzZwpYtWzh48CDXr18nLCyMXbt2sWvXLiZOnMj27dsNEkfta1mrVi2L67ba4n28lol5vU6dOjFt2jRevXrFunXr1K742tZfd3d3k2OM48va65fYv98SSlsP0Dw3puYIMMVSD4M7d+4Y9CQJDAzk+vXrJsf8m6L/ebX2RYIQ8SEJsBBCCJPijr/Kly+fxeMjIiLU1sq4E1npK1mypDqhTmhoKPv372fx4sVs2LCBx48f07hxY27cuKEm4Noxa6GhoXz++efvLIH19fV9J8mndu3NXLlycfToUZMTWIH55Ez/xk9/PKsplvbrtyQ+efLE4lrJlsrRvh6vXr1KcPdQbV301yI2x5ZjLNFPgPVbwS159uwZMTExFt9r2nrFfa9rX+9UqVJx/Phxiy1uicnJyYmGDRvSsGFDQLPu9s6dO5kxYwZnzpzhzJkzdO3a1WA5pDRp0nD//n0iIyPf6rV8+PCh1dcpOjo6UWN+9OiRxSV0tPVxcHAw2Yr+xRdfUKJECU6dOsWiRYto27Yt4eHhrFq1CtB0k7ZlnOrbSozfb9r4goODrb5vzX229d/HiqK8ddfv2NhY2rRpw4sXL3BxccHZ2ZmwsDBatmzJiRMnbGrR1f+8vs9JC4X9k0mwhBCfhGfPQ7l55xH3Hj4jJibW+glxxMTEcu/hM27eecSz5+bHb1ryOiyCW/eecOveE16HRSSoDP043jX9sYdnzpyxevyFCxfUVgRr4xa1UqRIQb169Vi/fj09e/YENDfu+hPTFClSBNAk2Nrxch8DW1ugtN0p69evbzb5VRSFs2fPmtyXLFkycubMCVh/HSw9P/pjA9+mHO3rcfPmzQR3Z9V2NQ8MDOTZM/Pv5SdPnhAUFJSga8S9FsC1a9dsOicyMtLi5FTR0dHqeMm4iYL29a5UqZLFruTv+r2cMWNG2rdvz7FjxyhatCgAW7duNejNoX0tT58+neCxudrn9/z58xa70F64cCHRxv8Cajdva/tz585ttpVSOxnWwYMHuXnzJhs2bFC/xEvsSbvMSYzfb9rPdkREhPr+M0V/nG9crq6uajlHjhxJUD30jR8/Xl3TfOTIkWoPg3PnzjF8+HCbytD/vFpbv1iI+JAEWAhh1/Ydv0T19j/Tou9Euo2YTfvB06nVaRSzVuwkJNT82CWtkNA3zF/zF7U6jaL94Ol0GzGbFn0nUr39z+w+eoHYWOsthjduP6TXrwto9N1YOg+bSedhM2n03Vi+/3kuN25bTyBiYxWTcbxrFSpUULtrrlq1ymrrqH532CpVqsT7evrn6E8MVK9ePTXZnDx5crzLfVe0Y0sjIix/maFNCixN4rJp0yYePHhgdr/2uTl37pzFG1xTS5JoFS9eXG3RstR1+dGjR+zatcvsfu3yPYqiMGXKFLPHWVK1alW1DEt1Xrx48Vu3ymfKlEmdhMha0qTP1PJGWhs3blRbp7SxaNnyep87d44TJ07YXJe34eLiQoUKFdS66Y8p176WISEh8Z5BWksbf3BwMFu2bDF73MKFCxNUvjmWXp9Tp06pE0PFfX30tWjRguTJk6MoCosXL1afAz8/PypVqpSo9TUnMX6/6f/uXLp0qdnjtm3bZvELJ+374erVqxZ/B1hz/vx5NcktV64cgwYNokePHuos1+PGjePQoUNWy9F+Xl1cXNQvcYRIDJIACyHs2pg5G0xu3/jXCZr2HMedB+ZnYL394ClNe45jzY6jJvf/Me9P+v++mKjoGJP7AXYdOkf3kXP458Zdo33/BT2g+8g57Dx4zuz5UdExDJu03Gwc71L69OnV5YLOnj3L2LFjzR67d+9edb1NX19f9UZK6+bNmxw4cMDi9QICAtTH+uPb8ubNq9Zj1apVTJw40WI5gYGBrFy50uIxiUG7/MyNGzcsHqddE3bLli0mu4DeuHFDXd/TnC5duqg3yZ07dzY5Jnv9+vUG3VvjSpYsmbpM0qlTp0wmr7GxsXTt2pXw8HCz5VSvXl3twj5u3DjWrFljse7asan6GjZsqD5/o0aNMjn79pUrV/jtt98slm0r7ayzJ0+etPmcWbNmmVwi5+HDh/Tv3x8ADw8Po2WctK/34cOH1dm79T158sTiUjXxdejQIZPX0YqMjFQ/e56engat0m3btlW7Effv35+DBw9avNbhw4eNPsdt27ZVezb07dvXZFfoAwcOqGvzJpbNmzebfO+9evWKrl27Apo1lLWPTUmRIgXNmmmWmJszZw579+4FoF27du9tTHNi/H4rU6aM2utm2rRpJr9cefLkCX369LFYdq9evfD09AQ0SxdZ+rINNAn1xYsXDbaFh4fTsmVLIiMj8fLyYunSpWqX7IULF5I2bVpiY2Np3bo1L1++tFi+9vNapkwZtV5CJAYZAyyEsHsjejSjXDHdpBsvXr5m4LglBN59TMchM1g37UejpYpCQt/QacgMALw9PZg2sjMZ0qYENK1W/wbep+eo+Vy+dpvx8/9kcLfGRtc9dv5fJiz8/7qKlYrTrUUNXF00v3ajomPYtPsEc1f/xcRFm0npldzkesO/TF/N6cs3TMbxPkyYMIE9e/bw+PFjhgwZwv79+2nVqhV58uTB2dmZu3fvsmXLFvz9/YmOjsbR0ZGFCxcajUG7ffs2lSpVIl++fDRq1IjixYurkyLduXOH1atXqzezhQsXplSpUgbnz5o1i9OnT3Pz5k369evHpk2baNOmDfnz58fNzY1nz55x4cIFdu7cyd69e2nUqFGiTGBjSdmyZdm3bx+nTp1i7Nix1KpVS538y93dXY2vTZs2/Pjjj9y/f58yZcowcOBAChQoQHh4OHv37mXy5MlERERQtGhRs92gixUrRufOnZk7dy7Hjh2jRIkS/PjjjxQoUICXL1+yYcMGZs2aRcmSJdWbRlM38D/99BNr167l4cOH9O7dmzNnztCyZUt8fHy4fv06U6ZM4ejRo1bLWbFiBSVLliQ4OJjmzZuzbNkymjdvTu7cuXFycuLx48ecO3eOLVu2cPz4cfr160e9evXU811dXZk2bRpNmjTh+fPnlC5dmoEDB1KxYkUURWH//v38/vvvgGbstKUEzxYNGjTA39+f27dvc/36dXLlymXxeB8fHzw8PKhWrRp9+vShdu3auLm5cfLkSUaPHs39+/cBTfIedzbiNm3asGXLFl6/fk2FChUYNGiQuuzU0aNHmThxIg8fPqRMmTJm11CNjz179jBq1CjKly9PnTp1+OKLL/Dx8SEsLIxr164xe/Zs9X3VsWNHg6V23NzcWLNmDRUrVuTVq1dUrlyZb775hoYNG+Ln50dsbCwPHjzgzJkzbNy4kUuXLjFt2jS1RRk0X5SNGjWK/v37ExQURLFixRg8eDAlS5YkPDyc7du3M2nSJDJnzsybN2+sjmO3VfHixfn22285cOAATZo0wcvLi4sXL/L777+rX6h8//33VodjdOrUiUWLFqmzMTs6OtKuXbtEqaOtEuP324wZM6hQoQIRERFUrlyZvn37UqNGDdzc3Dh9+jRjxozh4cOHFC5cmPPnz5v8XKdPnx5/f3+aNGnCgwcPKF68OO3ataNWrVpkyZKFqKgo7t69y8mTJ1m3bh03b95ky5YtBs/xgAEDuHLlCqBJxvVnzs+QIQPz58+nYcOG3Lp1ix49epjtARIaGqq2ADdq1Ohtn2IhDClCJHEhISEKoISEhHzoqoiPQFhYmHLlyhUlLCxMURRFmTOquxKwaKTRv02zBytenu4KoDSv/aXR/kbVSimA4pclnbJ59hCTZUwd3kkBFEBZOKaHwb5dC0eo+75vWcvk+QGLRirf1CmnHrdr4QiDfQtGf6/uMxXH+3L16lXl888/V+ti7l/KlCmVrVu3mixj3759Vs8HlM8++0y5efOmyTIePHiglC9f3qZy2rdvb3R+hQoVFECpUKFCojwvd+/eVVKnTm3y+vrXiIyMVKpXr262ru7u7sqaNWuUtm3bKoCSPXt2k9eLiIhQ6tata7YcPz8/5fr16+rPY8eONVnO+fPnFR8fH7PltGvXTlmwYIH688OHD02W8++//yoFChSw6fX4+eefTZYxbtw4xcHBweQ5Hh4eytatWxPldYuKilIyZMhgsS6Kohi8BqdOnVLSpk1rNqaePXuaLad9+/Zmz3NyclImT56sjBw5Ut1minbfyJEjLcamX46lfw0aNFDevHljsoxjx44pWbNmtakcf39/k2X07NnT7Dlp06ZVTp48qWTPnl0BlLZt21qMyZZYb968qfj5+Zm9ZuPGjZWoqCibys2XL596XrVq1RJUt7isfZ7jetvfb4qiKIsXL1ZcXFxMnuPs7KzMmzdPad26tfq71pzNmzeb/d2m/8/R0VHZu3evet6uXbvUz3PTpk3Nlt+pk+5v55o1a8zGoq33gwcPTB4T9++9+LTFJx+QBFgkeZIAC33yB/HdiIqKUpYtW6Y0adJEyZ49u+Lh4aG4uroqGTJkUKpUqaKMGzdOefHihdnzo6Ojlf379yuDBw9WKlWqpOTKlUtJkSKF4uLioqRPn16pXr26Mnv2bCU8PNxqXbZu3aq0bNlSyZEjh+Lh4aG4uLgoPj4+StmyZZV+/fopBw4cMHleYifAiqIo169fVzp27KjkypVLSZYsmckEWFE0z9/UqVOV4sWLKx4eHoq7u7uSK1cupVu3bso///yjKIptN8yxsbHKokWLlHLlyine3t6Kh4eH8vnnnytDhgxRgoODlefPn6t1mDVrltlynjx5ovTr10/JnTu34ubmpqRNm1apVKmSsmLFCkVRFGXSpElqOZY+S9HR0cqKFSuUxo0bK9myZVPc3d0VV1dXJWPGjErFihWVYcOGKWfOnLH4HB45ckT5+uuvlXTp0ilubm5K9uzZlQ4dOihXrlxRFCXxXrfBgwcrgJI3b16zx8R9DW7fvq307NlTyZkzp5IsWTIlTZo0Ss2aNZXt27dbvd7SpUuV8uXLKylSpFDjat26tXLixAlFUZRES4BDQ0OV9evXK927d1dKly6tZMuWTUmWLJmSLFkyxdfXV2nWrJnZL6b0hYeHK7Nnz1bq1KmjZMqUSXF1dVWSJUumZM2aValevbry22+/KVevXrVYxrZt25QaNWooqVOnVpIlS6bkypVL6dmzp3Lnzh1FUZRETYAVRVGCg4OVIUOGKJ9//rni4eGheHt7K1999ZWybNmyeJU7evRotdyVK1cmqG5xxTcB1kro7zetCxcuKC1btlRfw8yZMyvNmjVTjh8/riiKojRo0EABlFKlSlksJyQkRBk/frxSuXJlJX369IqLi4vi7u6u+Pn5KXXr1lUmTpyo3L59Wz3+6dOnSsaMGRVAyZw5sxIcHGy27FevXim5c+dWACVVqlTK3bt3jY7RfmloKZGWv/dCX3zyAQdF+cgXHBTCipcvX+Lt7U1ISAheXl4fujriAwsPDycwMBA/Pz91kiIhPhWHDx9Wx7vu3r07QZORgaZb6IIFC8iSJQt37txJzCp+MLdv3yZPnjxERERw+PBhvvzyS6Nj2rVrh7+/P9mzZ3/r2adF0tGyZUtWrFhBqlSpePDgAW5ubh+6Su9Mrly5uHHjBq1atbI4YdaHdOvWLXLmzElMTAzHjh2jdOnSJo+Tv/dCX3zyAZkESwghhLAT2slxXFxc1HGn8RUWFsamTZsAzN54JkXZsmVTJxsbNWrUB66N+Fi8ePFCnTyuZcuWdp38njp1Sp2072P+bI8ePZqYmBhq1qz5UddTJF2SAAshhBBJwNOnTw2WsIlr165dzJkzB9AsZ5IyZUqTx924ccPs0kIxMTF0795dXYYq7gzHSd3QoUPx9vZm165d8ZoRWtivqVOnqrOqd+vW7QPX5u1Ymizu2bNndO7cGdBMfta8efP3Va14uXPnDosXL8bJyUldO1iIxCazQAshhBBJwOXLl2nQoAFNmzalatWq5MyZE0dHR27dusXmzZtZtmwZMTExuLu7M3r0aLPljBo1ipMnT/LNN99QqlQp0qVLR1hYGBcvXmTevHnqjMFVq1alTp067yu89yJ16tQsXbqUM2fOGKw1LT4d0dHRBAUFERERwb59+9TPSv369cmfP/8Hrt3bqVatGn5+fjRq1IgvvvgCb29vnj9/zpEjR5g5c6a61viwYcNImzbtB66taXfu3GHw4MHkyJGDggULfujqCDslCbAQQgiRRLx8+ZIFCxawYMECk/u9vLxYu3YtefIYL6ml759//mHkyJFm93/55ZesWrXqva2F+j7Vq1fPYEkm8Wm5e/euulazlre3t9X1d5MCRVHYt28f+/btM3vMd999x5AhQ95jreKnbNmylC1b9kNXQ9g5SYCFEEKIJKB48eIsXryYnTt3cuHCBZ48ecKLFy/w8vIiV65c1KxZkx49euDj42OxnMGDB5MnTx52795NUFAQT548ISoqijRp0lC8eHGaN2/ON998g6OjjJIS9i1dunSUKVOG3377jZw5c37o6rw1f39/tmzZwsGDB3nw4AFPnjzB2dmZDBkyUK5cObp06SLJpRCAzAItkjyZBVrok1khhRBCCPsnf++FPpkFWgghhBBCCCGEiEMSYCGEEEIIIYQQnwRJgIUQQgghhBBCfBIkARZCCCGEEEII8UmQBFgIIYQQQgghxCdBEmAhhBBCCCGEEJ8ESYCFEEJ89Nq1a4eDgwO+vr4fuioiCXBwcMDBwYGffvrJaN/ixYvV/UFBQe+9bsI2+/fvV1+n/fv3f+jqCCHsiCTAQgghTNImnfFJFHx9fSVRFeI9evz4Mf7+/vTo0YOyZcvi5+dHihQpcHNzI2PGjNSoUYNZs2bx+vXrD11VIYT4KDh/6AoIIcS79NdPOy3u/+fuVXot6GNy3/TOU8mTKbfVa/zx53h2X9hjct/WoZtwdXa1eH5kdCR1f2tgcl+NwtXp18B0/ar9VNNq3YQQ9m3z5s107tzZ5L6HDx/y8OFDAgIC+P3331m/fj3FihVL8LV8fX25desWbdu2ZfHixQkuRwghPiRpARZCfNK0ye/wpkMJGLmDgJE7GN50KAA95vW0en5oWKia/K7qt5yAkTvYNWI7vul8AfjzxCarZWw6uRmA3Blzs2P4VgJG7mB1/5UA7DofQGhYaLzjsjeLFy9GURTpsireWrt27VAUBUVR7KKngoODA7lz56Zz587MnDmTTZs2cfLkSQ4ePMjSpUupUaMGALdu3aJatWrcv3//A9dYCCE+LEmAhRCfrFglVn1cPl85k4/1jzHlzI2zADQr24TUnqkBzQ3p+La/AzB/90Kr9ViwexEAo779CSdHJwBSJU9Ji/LfAHDq+mmrZQghPk1t27bl2rVrzJ07l+7du1O/fn1KlChB+fLladWqFTt37mTSpEkAPH/+nPHjx3/gGgshxIclCbAQQryFmNgYAJydXAy2R8VEA6gJrSXaJNvZ0XBUSvT/y3B0kF/VQgjTnJ2tj2br0aMHnp6eABw6dOhdV0kIIT5qclclhPhk6SeWh64cNvnYWvJZMncJAFYcWsnz1y8ATVI8fOVIADpW7WC1Hh2qtAegv/9AFEUBIPhVMGuPrgOgWM6iVstIKsLDw5k6dSoVK1bEx8cHFxcXUqdOTd68ealVqxYTJ0402c3Z2izQcWf9PXXqFC1atCBLliy4ubmROXNmWrduzT///GO1jm/evGHUqFF88cUXJE+enDRp0lCuXDkWLlyIoiiJMjutdrKwdu3aGdQ3a9asJEuWjKxZs9K+fXuuXr1qtoy49YiNjWXhwoVUqlSJ9OnT4+joqJav7+zZs3Tr1o28efPi6elJ8uTJyZs3L927d+fatWs21f/y5cv88MMPFCxYkFSpUuHi4kKGDBmoWrUqf/zxBw8ePDB77sOHDxk6dCjFixcnderUuLm5kTVrVpo1a8bu3bttuv6KFSuoWLEiqVKlwtPTkwIFCjBy5EhevHhh9Vxrs0BXrFgRBwcHKlasCMC9e/fo27cvuXLlwt3dnTRp0lCjRg127NhhU12XLFlChQoV1LoWLFiQX375hZcvXwKWZ6xOLM7OziRLlgzQfAbjS/uc3Lp1CwB/f3+13tp/2ucrrsOHD9O6dWt8fX1JliwZKVOmpEiRIgwbNownT54kOCbQtGiXKVMGBwcHXFxcWL58udEx169fp0+fPhQsWBBvb2/c3d3JkSMH7dq14/Rp871rTH3O16xZQ5UqVfDx8cHd3Z28efMyYMAAgoODLdbz2rVr/PDDDxQoUIAUKVLg6upKpkyZKFy4MB06dGD16tVERES81XMhhLCdTIIlhPikTe88lR7zejJq7W9G+6Z0nGT1/BTuKahRuBq7zv9F8/EtjPbXL1HXahlfl27Iwj2LCHocRI1fahvsq1qoCincU1gtIyl48OABVatW5cqVKwbbnz9/zvPnz7l27Ro7d+7k/v37b9VNc+bMmfTq1Yvo6Gh12/3791m2bBkbNmxgx44dfPXVVybPvXv3LpUrV+a///5Tt71584YjR45w5MgRNm7cSM+e1seGx8fChQvp2rWrQX3v3r3L4sWLWblyJUuXLqVp06YWywgPD6dGjRoWE8jY2Fj69+/P5MmT1S9atK5du8a1a9eYP38+M2bMoEuXLibLiImJ4ccffzRZxqNHj3j06BF79uzhypUrJidJWr58OV27djWakfju3busXbuWtWvX0rFjR2bPnm2yZTM6Oppvv/2WtWvXGmz/+++/+fvvv1m2bJnNSbQtjhw5QsOGDXn69Km6LTw8nICAAAICAhg3bhz9+/c3eW5UVBRNmzZl0ybDeQAuX77M5cuXWbZsGX/99Vei1dWSPXv2qDF89tln7+WasbGx9OzZkxkzZhhsj4iI4Pz585w/f57p06ezdu1aqlWrFu/y79+/T40aNbh8+TLu7u6sXbuWOnXqGBwzfvx4hgwZQlRUlMH2wMBAAgMDWbJkCcOGDeOXX36xGkvr1q1ZtmyZwfZr164xbtw4Nm7cyKFDh8iQIYPRuWvXrqVVq1ZERkYabH/w4AEPHjzgwoULLFq0iEuXLlGgQIH4PAVCiASSBFgI8UnLkyk3UzpOMpoJ2tYZoAH61u9DWq+0LD+4Ut2WP2s+fms5yuoM0ACuzq5sHLSOPgv7E/Q4SN3euVpHmpRpbFsgScAPP/ygJr+tWrXi66+/JlOmTDg5OfHgwQNOnz5tlCzE165duzh58iQFCxakV69eFCxYkLCwMDZu3MiUKVN48+YNrVu35r///sPV1fC1iYqKok6dOmryW6dOHTp37kyWLFm4e/cuc+fOZevWrW/daqXv/PnzrFixgnTp0jF48GBKlixJeHg427dvZ/LkyURERNCyZUv8/PwoXry42XIGDhzIxYsXqV+/Pu3atSN79uw8evRIbWUEzfM/c+ZMAL766ivatWtHjhw58PDw4MKFC0yePJm///6brl27kiFDBurXr290nS5durBwoWZce8aMGdWld7y9vXny5AknT55k3bp1Juu4Zs0aWrdujaIo5MiRgx49epAvXz58fHwICgpiwYIFbN++nQULFuDl5cXEiRONyujfv7+a/Gpb37744gtCQkJYu3Yt8+bNo3nz5ra/ABY8ePCAhg0b4ujoyNixYylXrhyurq4cPnyYX375hRcvXjB48GBq1apF/vz5jc7v1auX+n7Onz8//fv3p0CBArx8+ZKNGzcya9asRKurKaGhody5c4c1a9YYPJe9evWKd1mLFi3i9evX1KhRg/v379OgQQN+/fVXg2OSJ09u8POgQYPU5NfPz4+BAwdStGhRXr9+zebNm5k+fTohISHUrVuXkydPUqhQIZvrc+PGDapVq0ZgYCBeXl5s2bLF6EutcePGMWDAAAC++OILunfvTu7cuUmZMiX//vsv06dP59ixY4waNYq0adNa/GJr+PDhHD16lIYNG9KmTRv18zVjxgy2bdumtjKvXLnS4LxHjx7Rvn17IiMjSZcuHT169KB06dKkTZuWsLAwrl+/zoEDB/jzzz9tjl0I8fYclLhf4QqRxLx8+RJvb29CQkLw8vL60NURH1h4eDiBgYH4+fmRLFkyq8sg6dOOxX2bMbcxsTE4Ojji4OCQoPMVRSFWibVp7PC7XgapXbt2+Pv7A5oWE1tmzNUuk5I9e3aD7qXh4eF4eXkRFRVFv379LLbwBgcHkzp1apN1iVuulv7zXbt2bTZu3GiU4P72228MGzYMgA0bNtCoUSOD/VOmTKF3794A9O7dW504SN8PP/zA9OnT1Z/37dtntuunJdrnCSB79uwcP37cqPVo3759VK9enejoaEqUKMHJkycN9u/fv59KlSqpPw8bNoxRo0aZvN5ff/1F9erVAZg/fz4dO3Y0OiY8PJw6deqwd+9esmfPzvXr1w1aYTdv3kyDBprlusqUKcP27dtJmTKlyevduXOHrFmzqj8/ffqUXLlyERISQocOHZgzZ47JFt6hQ4cyevRoHB0duXLlCnnz5lX3Xbp0icKFCxMbG0vRokU5cOCAOq5Va8mSJbRt21b9eeTIkUZdixcvXkz79pphB6be1xUrVuTAgQOA5rU5cuQImTNnNjjm8OHDfPXVVyiKQs+ePZkyZYrB/nPnzlGsWDEURaFMmTLs2bMHd3d3g2PWrVtn0LJvqq7x9dNPP/Hzzz+b3Ofk5MSUKVP4/vvvE1y+rcsg6b9WBQoU4NChQ0bvlZ07d1KnTh1iY2MpWbIkJ06cMNiv//7W/5xdunSJ6tWr8/DhQ3x8fNi5cydFixoOE7ly5QqFCxcmKiqKkSNHMnLkSKPfybGxsbRt25Zly5bh6enJ7du3SZUqlcnrA/z6668MHTrUoAxFUahZsyYBAQE4Oztz//59fHx81P0LFy5UP2uWWnjDwsIAjN4jwrK4f+/Fpy0++YCMARZCiP9zdHB86wmnnBydEpz8giaRsyX5TWqCg4PVbojmuh9rxU1+4yNZsmQsWrTIKPkF6Nmzp7rd1ERAs2fPBiBLliyMHTvWZPl//PEHmTJlSnD9TJkwYYLJrpOVKlVS13c9deqUxfGKefLksZg8aeNp3LixyeQXNM+dNrm/desW+/btM1mGh4cH69atM5v8AgbJL8CsWbMICQkhc+bMzJw50+zETT///DOZM2cmNjaWJUuWGOybPXs2sbGaL6nmzp1rlPwCtGnThlq1apmtV3xNmzbNKPkFKFeuHKVKlQJMv5fmzp2rdhGfN2+eycSmSZMmRl/CvCtVqlTh8uXLb5X8xsesWbPU12r+/Pkm3ys1a9akQwfNHAknT57k1KlTVss9evQoFSpU4OHDh2TNmpVDhw4ZJb+g+UxFRUVRvHhxk8kvgKOjI9OmTcPNzY1Xr16Z7bkAUKxYMYYMGWK03cHBgb59+wKa7vnHjh0z2P/w4UMAUqVKZbF7s7u7uyS/QrxHkgALIYR459KkSaMmn0uXLjUY75qYqlWrRrp06UzuS5EiBblza7q137x502DfvXv31AmnmjZtipubm8ky3N3drY7HjY9UqVKpraqmaBMEwOLY1ubNm+PkZPqLk5cvX6qT+DRp0sRifT7//HPSpk0LYHAz/+zZM44fP65eK75fAmzerFnrum7dumafW9BM1lSmTBmj64Mu/oIFC1KsWDGzZeg/Z28jZcqURmNK9WnrEPe9BLq6FilSxGT3aK02bdq8ZS0Nfffdd1y6dIlLly5x/PhxFi1aRKVKldizZw/Nmzc3amV9V7Tx58+fX/2iwBTtFzz655iza9cuqlWrxvPnz8mbNy9Hjhwx6CGgb8uWLYDmCx9LX0imTJmSggULAsbvN33ffvut2XL034tx3wsZM2YENPMcvO3wDiFE4pEEWAghxDvn5uamjndct24duXLlYsCAAWzfvt2mmXttZW2CH23rcmhoqMH2y5cvq48tJVeAxbG48VWkSBGLy9gULlxY/eLg0qVLZo/74osvzO47d+6c2hrXokULo9l74/7TTpakbb0CzVhlbYtm+fLlbQ8QzcRZ58+fB2DOnDlWr69tidO/fkREhDo2u0SJEhavV7JkyXjVz5zcuXPj6Gj+Nsnceyk8PJzr168D7/e9BJAuXToKFChAgQIFKFWqFO3atWPv3r38+uuvXLx4kYoVKxIQEJCo14xL/7WylPyC5v3v4qJZQk7/MxjXunXrqF+/Pm/evKFo0aIcOnTIqJeB1q1bt9Rx+oMHD7b6ftP2rNB/v8Vl6feKfo+VuO+F+vXrq63fjRo1onLlykyaNIkzZ84QExNjtkwhxLslCbAQQgiT9Fs8bJ0uQnucqdaS6dOnU69ePUBzkzpu3Djq1KlDmjRpKFGiBOPGjSMkJOSt6uzh4WFxvzahiXvz+fz5c/Wx/hg+U6ztjw9zrdVazs7O6g22paVW9McuxvX48eME1e3NmzfqY/1ZkLWtWrYKDg5OUIu//vWfP3+uvresPWfp06eP97VMsfW9pP1yQUv/C533+V6yZOjQoeoEa507d35nPTDA8LNk7bVycXEhTZo0gOX394wZM4iMjMTNzY0///zT4vOWGO/3uCy9F/S/JIn7eyVNmjRs3ryZzJkzoygK+/bto2/fvuoSYF9//TVbt25NUH2FEAkns0ALIYQwSX9MmnaSFmu0y9vEnREWwMvLi82bN3Py5EnWrFnD/v37OX/+PDExMZw+fZrTp08zfvx4/vzzT7UbrL17m/Hi+sx1fwbDm/I5c+ZQtmxZm8q0lFTHh/71O3XqZPMsxKbGcUPiPWefmgYNGnDy5Elu377NyZMnbX4fvI3Eeq2+/vprNmzYQEREBM2bN2fXrl2kSGF6eTj999uIESNsHrJg6ndWYihfvjzXr19n/fr1bN++nYMHD3L37l11NvCNGzdSo0YNNmzYYPVLFyFE4pAEWAghhEn6XfsePnxIvnz5LB4fERGhtn5ZmsiqZMmSajfV0NBQ9u/fz+LFi9mwYQOPHz+mcePG3Lhx471OCqOf7Flb5igxl0F69OiRxf3R0dFqy1hCJwfTtrCBpiUrIWuNascFg2Z5oPjQr7eiKAm6vv4kStaeM2v73zX9ur7P95I1+q2mt27demcJsP5nyZb397NnzwDL7+8ffviB0qVLM2DAAI4dO0bt2rXZsWOHyYnQ9N/vLi4uH8XausmSJaNly5a0bNkS0Mw+vm3bNqZNm8a1a9fYtWsXQ4cONTnzvBAi8UkXaCGEECbpjys9c+aM1eMvXLigtr5YGpOqL0WKFNSrV4/169er63A+ePCAw4cPJ6DGCac/UZG1WC3Nxhxf58+ft9gd9cKFC0RGRgIk+Ea+cOHCakvckSNHElRGkSJF1DIOHjwYr3NdXV3V5zeh10+WLJk6gZm12YJtmU34XUqWLBk5c+YE3u97yZp79+6pj00ljrawpUXXzc1Nfa2sTbp17tw5dXZ4a+/vH3/8kdGjRwOaZajq1Kljsttyjhw58Pb2BhL+fnvX/Pz86NGjB6dOnSJLliyAZp1sIcT7IQmwEOKTEPgokIDzf3HmxlliYuM/+UhMbAynrp8m4Pxf3HpyK0F1eBkWyp6Le9l/+QChYaHWTzBBP453rUKFCuoETatWrbI6DnjZsmXq4ypVqsT7evrn6I85fR+yZMlCnjx5AFi7di0REREmjwsPD2ft2rWJdt3g4GB1xlpTFi5cqD6uWrVqgq7h4+ND6dKlAVixYkWCWh1Tp06tthiuWbOG+/fvx+v8+vXrA3D16lV27doV7+uDLv5Lly5x7tw5s8fpP2cfiva9fO7cOf7++2+zx8Vd6uldiY2NZf369erP2pmP40u71qq5z4eW9rX6+++/jdav1jd//nyjcywZPHiwutb1wYMHqVu3rtHwDCcnJ2rXrg1AQEAA//zzj9VyPxQvLy91Urf3/TtPiE+ZJMBCCLsWGhZK9Z9r0XX2d4zfNJHBy4ZSa1RdzgdesLmM84EXqDWqLkOXD2f8pol0ntmN6j/XsjmJVRSFCZsm0uSPZvy+cRyj14+l8R/N+OPP8TZPLmUqjnctffr06vi5s2fPml0bF2Dv3r3qOrq+vr5qwqN18+ZNDhw4YPF6+rPT+vn5JbTaCda1a1cA7t69y6BBg0we8+OPP8Y7+bOmb9++JruKHjhwgLlz5wKa2YStzX5sybBhwwDNkkhNmjSxOPN2REQEM2bMIDw83GD7wIEDAc1kQU2bNrU4Ydndu3cNfu7Vq5fa6ti+fXuLSSHAtm3buHjxosG2rl27qi2QXbp0Uceb61u+fDnbt2+3WPb70KVLF7WunTt3NjmGfv369WzcuPGtrzVv3jyLMwrHxsbSr18/dZbl8uXL4+vrm6BraSdAu3HjhsXjunfvrk4O1aVLF16+fGl0TEBAAAsWLAA0wyJsfX8PGzaMkSNHArBv3z7q1atn9F4dPHgwTk5OxMbG0qRJE6P3o76YmBiWL19u8ZiE2rVrl8UhAyEhIeoXBB/id54QnypJgIUQdq3xH83Uxz1qfUfxnJplSQYsGcSz0GdWz3/68ikDlmiSoeI5i9G9RleTZVviv28pu87/BcC35VvQrKxmLdbdF/aw9uh6S6dajeNdmzBhgjqT65AhQ6hRowZLly7lxIkTnDlzhk2bNtGpUydq1KhBVFQUjo6OLFy40GhSptu3b1OxYkXy58/PsGHD+PPPPzl16hSnTp1iw4YNNG/enBkzZgCaLrvWlk95F3r06KF2w5w8eTL16tVj8+bNnD17ls2bN1O3bl2mT59usMzO207yU6hQIe7du0exYsWYMWMGp06d4vDhwwwZMoSaNWsSHR2Ns7Oz+twkVO3atdXJpw4ePMjnn3/Ozz//zJ49ezh//jxHjhzB39+fTp06kTFjRnr06GHUNbtevXp07NgRgKNHj5IvXz7GjBnDwYMHOX/+PLt372bs2LEUKVJETbi10qdPj7+/Pw4ODjx48IDixYvTvXt39fk9ceIE69evZ+DAgeTMmZO6dety+/Zto+fq+++/BzRdh4sXL87ixYs5c+YMe/fupXv37rRp0ybRlxZKiGLFiqlr3B47dowSJUrg7+/PmTNn2LdvHz/88APNmzdPlPdSly5dyJ49O71792bVqlUcO3aMCxcusH//fiZNmkSRIkWYPHkyoGlxfJv3krYXwKlTpxg7diwXLlzg+vXrXL9+3aCLdcGCBenXrx+g6cZftGhR5s2bx+nTpzlw4AD9+/enbt26xMTE4Orqypw5c+JVj59++kl9j+3Zs4cGDRoYtEoXLFiQ8ePHA3DlyhUKFCjAgAED2LlzJ+fOnePYsWOsXLmSnj17kjVrVlq1apWoy7FprVy5kuzZs1OnTh2mTJnCnj17OHfuHAcPHmTmzJmUKVNGfd66deuW6NcXQpgmk2AJIT4Ju0Zsx8HBgfol67HxxCZm7ZzNhE2TGN3qV4vnzdypadXsWacHdYvXAaBhqQbU+EXTxS7wUSB+6S1/c7/i0EoAVvdfSarkKQH4ukwjvpnQkvm7F9DsyyYWzw96rOtyrR/H+5AxY0YOHjxIo0aN+OeffwgICDC7jmjKlClZtmwZlSpVMlvelStXuHLlitn9n332GRs2bPggM/26urqybds2KleuzI0bN9i6davREiXVq1enT58+1KpVC9B1CU2owoUL06NHD7p3706PHj1M1snf3z9RvhCYNGkSqVOnZtSoUTx8+JCffvrJ7LHJkyc3ObP0nDlzcHd3Z8aMGdy/f58hQ4aYPL9QoUJG277++ms2bdpEu3btCA4OZvbs2WqvgbgcHR1Nzso7ceJE7t+/z4YNG7h69Srt27c32O/n58fq1avVMbgf0rRp07h//z5bt27l77//pl27dgb7/fz8WLFiBbly5QLe7r107949pkyZwpQpU8we8/nnn7Ns2bIEd38GTcvurFmzCA4OZvDgwQwePFjdV6FCBfbv36/+PHbsWF6/fs3MmTO5ceMGXbp0MSrP29ubNWvWULhw4XjXZdSoUURHRzN27FgCAgL4+uuv2bhxozp7eO/evUmePDm9e/cmJCSEcePGMW7cOJNlubq6vvVn2ZyoqCi2b99usWdCt27d1DkQhBDvniTAQgi7ZqqLcTVqMpNZNp1f7aeapsv92bauywDKT6aPbT7+W5vL6Dyzq/WD3pG8efNy8eJFVq9erbbcPnnyhOjoaFKnTk3+/PmpWbMmnTt3Viefiat8+fLs37+fXbt2cfz4ce7cucOjR48IDw8nderUFCpUiK+//pp27drh5ub2niPUyZYtGxcuXGDChAmsXbuWGzdu4ObmxmeffUabNm3o2rUrmzdvVo83F298dOrUiQIFCjBp0iQOHz7M06dP8fHxoUqVKgwcONDq7Nu2cnBwYMSIEbRu3ZrZs2ezd+9ebt68SUhICB4eHmTNmpUiRYpQvXp1GjVqZHIWbicnJ6ZNm0b79u2ZM2cO+/fv5969e0RGRpImTRq++OILatasSevWrU3WoV69egQGBjJv3jy2b9/O33//TXBwMM7OzmTIkIH8+fNTuXJlmjRpQtasWY3Od3FxYf369Sxbtoy5c+dy8eJFoqKiyJ49O40aNaJ///6JtnzT23J1dWXz5s34+/uzYMECLl26ZFRX/S96EvpeOnPmDDt27OD48eMEBgby6NEjXrx4gYeHB5kyZaJo0aI0atSIBg0a4OLi8lYxZc6cmZMnTzJmzBgOHDjA3bt3jbofazk6OjJjxgy++eYb5syZw6FDh3j06BFubm7kyJGD2rVr07t377daC3nMmDHExMQwbtw4tm/fTuPGjVm/fr2aBHfu3Jn69eszZ84cAgIC+Pfff3nx4gVubm5kzpyZggULUq1aNRo3bmww03limTRpEtWqVWPv3r1cvHiRBw8e8OTJE5ycnMiaNStlypShU6dOlCtXLtGvLYQwz0GxdQCaEB+ply9f4u3tTUhICF5eXh+6OuIDCw8PJzAwED8/v3f2jb74tP36668MHz4cZ2dnQkNDE/Q+8/X15datW7Rt25bFixcnfiVFknD48GHKly8PwO7duxM0eZwQnyr5ey/0xScfkDHAQgghhI0URWH16tWApvuy3HSJt7FypWZ4hIuLC8WKvZ9x/UII8amTBFgIIYT4v6CgIIvr8o4YMUKdTbdt27bvq1oiCXr69KnFiZV27dqlTv5Uv359UqZM+X4qJoQQnzgZAyyEEEL83+LFi1m0aBHffvstX375JZkyZSIqKop//vkHf39/dZKffPnyqbP8CmHK5cuXadCgAU2bNqVq1arkzJkTR0dHbt26xebNm1m2bBkxMTG4u7szevToD11dIYT4ZEgCLIQQQui5ffu2xTWPP/vsM7Zt2/ZBJ+sSScPLly9ZsGCBut5tXF5eXqxdu5Y8efK855oJIcSnSxJgIYQQ4v86duyIt7c3AQEBXL9+nSdPnvDmzRt1pupGjRrRoUMHdZZZIczRrlO8c+dOLly4wJMnT3jx4gVeXl7kypWLmjVr0qNHj7eaBVkIIUT8ySzQIsmTWaCFPpkVUgghhLB/8vde6JNZoIUQQgghhBBCiDgkARZCCCGEEEII8UmQBFgIIYQQQgghxCdBEmAhhBBCCCGEEJ8ESYCFEEIIIYQQQnwSJAEWQgghhBBCCPFJkARYCCHER69du3Y4ODjg6+v7oasiRJLj6+uLg4MD7dq1+9BVEUKID04SYCGEECZpk04HBweCgoJsOkd7oy2Javw8ePCAyZMnU7duXXLmzImXlxeurq74+PhQtGhROnbsyJo1a3jz5o3ZMvbv36++XnH/eXh4kD17dho2bMiKFSuIjo5Wz1u8eLHZ82z9V7FiRZvijIiIYOPGjQwePJiqVauSJ08eUqdOjYuLC2nSpKFs2bKMGDGCu3fvvu1TavH5iPvvp59+eiflmvsnnw8hhPhwnD90BYQQ4l36ad5f3Au8ytJJg0iX2ZeWvUbjlswj3uUc3LacfZv8qdSgLV/VaRnv8yPC37B8yhAe3wuidZ+xZPb7LN5lxI1jzA8N4l2G+LhEREQwbNgwZsyYQVhYmNH+p0+f8vTpU86dO8fChQtJkSIFvXv3ZtCgQXh42P4+DgsL4/bt29y+fZtNmzYxefJkNm/eTIYMGRIzHKvu3LnD119/bXJfcHAwx44d49ixY0ycOJEZM2bQtm3b91o/IYQQ9k8SYCGE3cvs9xmt+4xl6aRBLJ8yJEFJsDbp3bfJ3+BnW7kl86Blr9EsnzKEpZMGJSgJjhvHp5QAL168mMWLF3/oaiSqp0+fUr9+fY4dOwZA8uTJadasGZUrVyZbtmykSJGCZ8+ecf36df766y927NhBaGgoo0aNonbt2pQuXdps2d27d+e7775Tf3716hWnT59mwoQJBAUFcerUKRo0aMDx48dp2LAhxYsXN1nOqVOn6NChg8ky9SVPntzmuNOlS0elSpUoUaIE2bNnJ2PGjLi4uHDv3j22bdvG8uXLef36Ne3bt8fHx4fatWvbXLY5CxcupESJEhbrZKsSJUpw6dIlk/vu379PjRo1AGjQoAG//vqryeNcXV1tvp4QQojEJQmwEOKTYI9JsEi6YmJiaNq0qZr81q9fn3nz5plMxKpWrUq3bt149OgR48aNY/LkyVbLT5cuHQUKFDDYVrp0aVq2bEnJkiW5fv06J0+eZOvWrdSrV4+UKVOaLOfp06cWy4yvHDly8PDhQxwcHEzub9SoEV26dKFcuXJERUUxbNiwREmA/fz83rruWsmTJzdblqenp/o4ZcqUiXZNIYQQiUfGAAshPhna5PHxvSCWTxlCRLj58ZTmfFWnJZUatGXfJn8Oblse7/O1SXC6zL4snTSIe4FX412GNg6RdE2aNIn9+/cDULduXTZu3Gi1FTJ9+vSMHz+eQ4cO4ePjk6DrpkqVisGDB6s/79y5M0HlJJSjo6PZ5FerZMmSVK5cGYBz587x6tWr91E1IYQQnwhJgIUQnxR7SoKTovDwcKZOnUrFihXx8fHBxcWF1KlTkzdvXmrVqsXEiRNNTrhlbRbouJMZnTp1ihYtWpAlSxbc3NzInDkzrVu35p9//rFaxzdv3jBq1Ci++OILkidPTpo0aShXrhwLFy5EURSDSZC0SWx8REREMGHCBAA8PDxYsGABjo62/zkuU6YMOXPmjPd1tUqWLKk+vnXrVoLLeZdSpEihPo6IiPiANUlcQUFB6nvHWpd+SzM3609cFhQUREREBJMnT6Z06dKkTZvW6sRe2s9H1qxZSZYsGVmzZqV9+/ZcvWrb76ItW7bQpEkT9fOVJk0aypQpw9ixY+ULCyHER0+6QAshPjn20h06qXnw4AFVq1blypUrBtufP3/O8+fPuXbtGjt37uT+/fuMHz8+wdeZOXMmvXr1Mpjp+P79+yxbtowNGzawY8cOvvrqK5Pn3r17l8qVK/Pff/+p2968ecORI0c4cuQIGzdupGfPngmuG8CuXbt4+PAhAN988028xp8mBhcXF/VxTEzMe722LZ48ecKePXsASJs2LWnSpPnANfq4PX36lEaNGnH+/Hmbjl+4cCFdu3Y1+HzcvXuXxYsXs3LlSpYuXUrTpk1NnhseHs63337Lxo0bDbYHBwdz/Phxjh8/zrRp09i2bRuFCxdOaEhCCPFOSQuwEOKTZC8twUnJDz/8oCa/rVq1YsOGDRw/fpxTp06xefNmRowYQaFChd7qGrt27eKHH34gf/78LFy4kFOnTnHw4EH69OmDo6Mjb968oXXr1kRGRhqdGxUVRZ06ddTkt06dOvz555+cPn2aP//8k9q1a7N161aGDx/+VnU8cOCA+rhmzZpvVVZC6E/glClTpvd+fVMiIiIIDAxk3rx5lClThufPnwPQu3fvRCl/6NChZM+eHTc3N1KlSkWRIkXo06cP165dS5TyP6SOHTty4cIF2rRpw7Zt2zhz5gwbN26kVKlSRseeP3+ebt26kS5dOqZNm8aJEyc4cOAAAwcOxM3NjYiICFq2bMnp06f/1959h0V1tG0Av5cuHRRUbGDBnqig0dhAjb1h1ESNYi8RNdbY0fiZmFhjjMbeY29YsIMFRUDUaOyKGjuKBUFAYL4/9t2zu7CNJgL377r2ymbPzJx5dmdxnzPnzNG4L19fXyn5/fzzz7Fu3TqEh4fj0KFD6NOnD2QyGR4/foymTZvi0aNHORo3EVFmcQaYiAoszgR/PAkJCQgICAAAjB49WuMMb7t27TB9+nTExMRkej+hoaFo3bo1du3apbbSbsOGDVG4cGFMnjwZDx48wP79++Hj46NWd/Hixfjnn38AyBOv+fPnS9s8PDzQoUMHDBs2DIsWLcp0/wBI+wCAWrVqZamtjEpOTpZOvwZg8P17c0JwcDC8vb21bu/VqxfGjh2bLfs6c+aM9DwpKQkXL17ExYsXsXDhQkyZMgX+/v56r03+VP3zzz9YsWIF+vXrJ72mbVxdunQJZcqUQWhoqNotsBo1aoQWLVqgefPm+PDhA77//nuEhYWp1d2/fz+2bt0KAGjatCkOHDig9h1r3rw56tWrh4EDByImJgajRo3Cli1bsjNUIqJswRlgIirQOBP8ccTExODDhw8AoPX0YwVHR8dM78fCwgKrV6/WeJuZ4cOHS6+fOnUq3fa//voLAFCyZEnMmqV5kbHffvsty7Omqisr61rM6uXLl7hy5YrGR1RUVIb2GRcXhxMnTuCrr75CaGgoAKBMmTLo2rVr5oLIQa6urjh8+DDWrl2b5dsFFS9eHEOHDsWmTZtw7tw5aXa0X79+MDU1RWpqKqZPn45JkyZlU+8/viZNmqglv/rMnTtX4/2fvb29MWDAAADya4TTzgL/+eefAOSn0Gv7jg0YMADNmjUDAOzcuRNPnjwxuF9ERB8LE2AiKvCYBOe8woULSz+Y169fr3b9YXb66quvtF5Ta2NjgwoVKgAA7t69q7bt0aNH0gJAXbp0gbm5ucY2ChUqpPX6SEPFxsZKz3XdP3f9+vWoXr26xkefPn107mP69OnSIkkymQzW1tbw8vKSFu1ydnbG7t27tcb5MSjup3v58mVERERg586d6N27N/777z/4+vpi5cqVWW7//v37WLRoEb799lvUqVMHtWrVQseOHbFixQqcPn0adnZ2AIBZs2bh0qVL2RHWR9ejh+FnnTg4OKBDB+33D1fc8xkAjh49Kj1PTk6WTt1v3rw5SpUqpbUNRRKdnJycqUXiiIhyGhNgIiIwCc5p5ubm+OabbwAA27dvR/ny5TFu3DgcOHAAr1+/zrb9VKqk+/RxxeyyahIKAFeuXJGee3h46GzD09Mzk72TU13hOC4uLkttZZSbmxvGjh2Ly5cvZ9siRc+fP8/UTLXifrrVqlWDh4cHfHx8sHr1ahw6dAgxMTHo378/fvrpp0z3y8rKSm3Br7Tq1Kkjnc4uhEh3antcXJzWuFTHS2777LPPDC5bs2ZNmJhov/qtRo0a0oEq1WvF7969i/h4+d9ETdcWq1Ld/im9T0RECkyAiYj+h0mwOtVrIoUQBtVRlNN0PeWiRYvQrl07APLb78yePRtt2rRB4cKFUbt2bcyePRtv3rzJUp8tLXVfw6243VDa1Y8Viy4Buk9LNmS7PqqrGkdHR2st98MPP0AIofYw1JAhQ6TZ1StXruD27dt4/fo17t69i99++y1bV55evHhxpmeqNWnatClGjBgBQD6TbeiteTLj22+/ha2tLQD1xckA+WnA2uKqXr16jvUpoxwcHAwuq+9zNzExkQ4SqV6Lr/pcXxuqp1dn5Xp+IqKcwgSYiEgFk2ClQoUKSc/fv39vUB3FjKamU3ttbW0REBCAc+fOYfTo0fDw8ICxsTFSU1MRERGBcePGwd3dHWfPns2eAD5RqitdX7hwIUf24ezsLM2uVq1aFeXKlZNO980LFKfppqamYufOnTm2HxMTE7i7uwNAnl212NjY2OCy2bHQV15dLIyISIEJMBHla5lJHpkEy6kuRqW4b60uiYmJ0unMuhayqlOnDubMmYOIiAi8evUKAQEB6NSpEwD56bRff/21wQl3dlGdRdM1K2vIdn0aN24sPT948GCW2voUTJs2Ld1MteKR2WtAVWfZ79+/n0091UxbQufl5aU1rozMxqtSnIEAyJN7XXLi9Phnz57p3J6cnCzN2qp+h1Wf62tD9W9FVha0IyLKKUyAiShfy2zyyCRY/drC8+fP6y1/6dIl6dRiQ69LtLGxQbt27bBjxw4MHz4cAPDkyROcPn06Ez3OvKpVq0rP9cWq7R6phmrRogWKFi0KANi8eXOWE+r8SHU21traOsf2k5ycLN0L+GPcE1n1+m/V0+7TiomJwcuXL7N9/xcvXtS5AN2lS5eke2RXq1ZNer1s2bLS5QXnzp3TuQ/V2yeptkFE9KlgAkxE+VpWkseCngQ3btxYWjBn8+bNeme9NmzYID1v2rRphvenWkf1VkEfQ8mSJaVTYbdt24bExESN5RISErBt27Ys7cvc3ByjRo0CIJ/lGzBggN7ZwIJG9T3Oyettt2zZIl13rjozn1McHBxgb28PQPeBFEO+b5kRExODvXv3at2+atUq6bnidkaA/FRxxftz5MgRPHz4UGsbK1askOrk5n2miYi0YQJMRPlaVpPHgpwEFy1aVLrlT2RkpNZ74wLA8ePHpfvourq6on379mrb7969m26RobQOHz4sPXdzc8tstzNt0KBBAICHDx9i/PjxGsuMHTsWjx8/zvK+Ro0aJd0Pec+ePejcubPepF/XjGFesWnTJr0LnW3duhVLly4FANjZ2aUbSwBw79496RZPmpKsV69e6T39OiwsDH5+fgDkp0EPGTLEsCCySPVzv3PnTrrtN27cwJQpU3Js/6NGjdJ4GvOJEyewbNkyAPKV0GvXrq22fejQoQCApKQk9OvXT7qvt6pVq1ZJ3+NOnTqhePHi2d19IqIs074WPhFRPqBIHjf+PhHr549Hz5GzUMJN961y0lIkwevnj8fG3yeix4ifYW6he7XhtBq1kd+rM2jPWrX/N5SmOICvMtRGZsydOxfHjh3D8+fPMXHiRAQHB+O7776Du7s7TExM8PDhQ+zduxdr165FcnIyjIyMsGrVqnQL8zx48ADe3t6oUqUKfHx84OnpiRIlSgAA/vvvP2zZsgVbt24FIL8Vi75breQEPz8/rF69GleuXMGCBQtw+/ZtDBgwACVLlsTDhw+xbNky7N+/H3Xq1JFO88zsgkAmJibYtm0b2rVrh7CwMOzatQtHjhzBt99+C29vb5QuXRo2NjaIi4vD3bt3cfLkSWzZskWqr2+160/V0qVLMXDgQHTs2BGNGjVCxYoVYWdnh7i4ONy4cQPbt2/HgQMHAMjf299//z1T15G+efMG3t7e+Oyzz9CxY0d4eHigePHiMDY2xoMHD7Bv3z6sX79eOt13zJgxem9/lV2+//57BAQE4P379/Dy8sK0adNQs2ZNvHv3DseOHcPvv/8OJycnGBsbZ/vp8Z9//jmuXr0KDw8PTJgwAXXq1EFiYiIOHDiA+fPnIzk5GSYmJvjzzz/T1W3Tpg26dOmCbdu24fDhw6hbty5GjRqFSpUq4dWrV9i8ebM0g+zo6Ih58+Zla9+JiLILE2AiyvfyaxK8/OdhGaqfGcWLF8fJkyfh4+ODa9eu4fDhw2oztars7e2xYcMGeHt7a23v6tWruHr1qtbtlSpVws6dO3NlpVkzMzPs378fTZo0wZ07d7Bv3z7s27dPrUzz5s0xcuRItGrVCgBgYWGR6f05OzvjxIkTmDhxIpYsWYJ3795hxYoV0imkmtja2sLPzw8TJ07M9H5z27t377Bhwwa1U+bTcnBwwKJFi9C9e/cs7euff/7BP//8o3W7sbExpkyZgqlTp2ZpPxnRokULDB8+HAsXLsTDhw/Rv39/te2lS5dGQECANMayU40aNeDn54chQ4ZIs9+qzMzMsHbtWq0HoNatW4fk5GTs2rULkZGR+O6779KVcXFxwf79+6UDXEREnxomwESUr00boJwl/WVYhyy29lXWk84BXwFYk6Umsh5HxlSsWBH//PMPtmzZgt27dyM8PBzR0dFITk6Go6MjqlatipYtW2LAgAFab7XTsGFDBAcH49ChQwgNDcV///2HZ8+eISEhAY6Ojvj888/RqVMn9O7dG+bm5h81PlWlS5fGpUuXMHfuXGzbtg137tyBubk5KlWqhF69emHQoEEICAiQymf11kIWFhaYN28exo4di02bNuHYsWO4evUqXrx4gcTERNjb28PFxQUeHh5o0qQJfHx88uzsLyBPoPbt24fTp0/j+vXrePbsGaKjo2FmZoYiRYqgevXqaNmyJbp3756h+9um5eLigm3btuHs2bMICwvDo0eP8OLFCyQkJMDOzg4VK1aEl5cX+vfvD1dX1+wL0EC///476tati7/++gsXL17Ehw8fULp0afj4+GDMmDFq94rObv3790e1atUwf/58nD59Gi9evICTkxOaNm2KH3/8EVWqVNFa18LCAjt37sTevXuxZs0ahIaG4sWLF7CysoK7uzs6duwIPz+/HF24jIgoq2QiJ1ZZIPqI3r59Czs7O7x58wa2tra53R3KZQkJCYiKioKbm1uWZueItPm///s/TJkyBSYmJoiNjeU4IyLKBfz3nlRlJB/gIlhEREQGEkJI1+LWqFGDP7qIiIjyGCbARERE/3Pv3j2d90mdOnUqrly5AgDw9fX9WN0iIiKibMJrgImIiP5nzZo1WL16Nbp374769evDxcUFHz58wLVr17B27Vrp1jpVqlTBgAEDcrezRERElGFMgImIiFQ8ePBA5z2PK1WqhP379+fqYl1ERESUOUyAiYiI/qdfv36ws7PD4cOHcfv2bURHRyM+Pl5aqdrHxwd9+/aFmZlZbneViIiIMoEJMBER0f+UKlUKI0eOxMiRI3O7K0RERJQDuAgWERERERERFQhMgImIiIiIiKhAYAJMREREREREBQITYCIiIiIiIioQmAATERERERFRgcAEmIiIiIiIiAoEJsBERPTJ6927N2QyGVxdXXO7K0RERJSHMQEmIiKNFEmnTCbDvXv3DKrj6urKRDUTnjx5ggULFqBt27YoV64cbG1tYWZmBicnJ9SqVQv9+vXD1q1bER8fr7WN4OBg6fNK+7C0tESZMmXQsWNH/P3330hOTpbqrVmzRms9Qx9eXl5Zfg+WLFmi1uaaNWuy3CYREVFaJrndASKinDTtyAw8uv4Q68evhbOrM3r83AvmluYZbufkxmAErT0Ob98maNTDK8P1E+MTsXHiOjy/9xw9Z/miRKWSGW4jbRy/dPi/DLdBn5bExERMnjwZf/75J96/f59u+4sXL/DixQtcuHABq1atgo2NDX744QeMHz8elpaWBu/n/fv3ePDgAR48eIA9e/ZgwYIFCAgIQLFixbIznEx7/Pgxxo8fn9vdICKiAoAJMBHla/k1+c1MHHnZmjVr8t2M4IsXL9C+fXucPXsWAGBlZYWuXbuiSZMmKF26NGxsbPDy5Uvcvn0bR44cQWBgIGJjYzFjxgy0bt0adevW1dr2kCFD8P3330v//+7dO0RERGDu3Lm4d+8ewsPD0aFDB4SGhqJjx47w9PTU2E54eDj69u2rsU1VVlZWmX0bAAB+fn54+/YtnJ2d8fz58yy1RUREpAsTYCLK15j80qcoJSUFXbp0kZLf9u3bY/ny5XB2dk5XtlmzZhg8eDCePXuG2bNnY8GCBXrbd3Z2RrVq1dReq1u3Lnr06IE6derg9u3bCAsLw759+9CuXTvY29trbOfFixc628wOe/bswa5du+Dk5IQff/wRo0ePzvZ9EBERKfAaYCLK15j80qdo/vz5CA4OBgC0bdsWu3bt0pj8qipatCjmzJmDU6dOwcnJKVP7dXBwwIQJE6T/P3jwYKbayS6xsbHw8/MDAMyZMweOjo652h8iIsr/mAATUb7G5PfTkpCQgIULF8LLywtOTk4wNTWFo6MjKlasiFatWmHevHkaF9zStwq0YuGkadOmAZCfututWzeULFkS5ubmKFGiBHr27Ilr167p7WN8fDxmzJiBzz77DFZWVihcuDAaNGiAVatWQQihttiUIonNiMTERMydOxcAYGlpiZUrV8LIyPB/juvVq4dy5cpleL8KderUkZ7fv38/0+1khwkTJuDhw4fw8vJCr169crUvRERUMPAUaCLK15j8fjqePHmCZs2a4erVq2qvv3r1Cq9evcLNmzdx8OBBPH78GHPmzMn0fhYvXowRI0aorXT8+PFjbNiwATt37kRgYCAaNWqkse7Dhw/RpEkT3Lp1S3otPj4eISEhCAkJwa5duzB8+PBM9w0ADh06hKdPnwIAvv32W70zv9nN1NRUep6SkvJR960qNDQUS5YsgZmZGZYsWZJr/SAiooKFCTARkQomvzln2LBhUvL73XffoVOnTnBxcYGxsTGePHmCiIgI7NmzJ0v7OHToEMLCwlC9enWMGDEC1atXx/v377Fr1y78/vvviI+PR8+ePXHr1i2YmZmp1f3w4QPatGkjJb9t2rTBgAEDULJkSTx8+BDLli3Dvn37EB0dnaU+njhxQnresmXLLLWVGZcvX5aeu7i4fPT9A/L3euDAgUhNTcXYsWNRqVKlXOkHEREVPEyAiYj+h8lvzklISEBAQAAAYPTo0RpneNu1a4fp06cjJiYm0/sJDQ1F69atsWvXLrUEt2HDhihcuDAmT56MBw8eYP/+/fDx8VGru3jxYvzzzz8AgB9++AHz58+Xtnl4eKBDhw4YNmwYFi1alOn+AZD2AQC1atXKUlsZlZycLJ1+DSBb7t+bGbNnz8bly5dRtmxZTJ48OVf6QEREBROvASYiApPfnBYTE4MPHz4AgNbTjxWyshCShYUFVq9enW52FwCGDx8uvX7q1Kl02//66y8AQMmSJTFr1iyN7f/2229ZnjVVXVlZ12JWL1++xJUrVzQ+oqKiMrTPuLg4nDhxAl999RVCQ0MBAGXKlEHXrl0zF0QW3L59GzNmzAAA/Pnnn7CwsPjofSAiooKLCTARFXhMfnNe4cKFpeRz/fr1atfnZqevvvpK6zW1NjY2qFChAgDg7t27atsePXqE69evAwC6dOkCc3PN73+hQoXQpUuXLPUxNjZWeq7r/rnr169H9erVNT769Omjcx/Tp0+XFuqSyWSwtraGl5eXtGiXs7Mzdu/erTXOnDRo0CAkJCSgS5cuuXIKOBERFWw8BZqICjQmvx+Hubk5vvnmG6xfvx7bt29HeHg4unbtCi8vL3z55Zda70ObUfquJVXMLqsmoQBw5coV6bmHh4fONjw9PTPZOzkbGxvpeVxcHGxtbbPUXka4ubmhc+fOGDNmTLYtvvX8+XM8f/5c4zYrKyu4ublJ/79mzRocP34ctra2Bt3PmIiIKLsxASaiAovJr24ymUx6LoQwqI6inGpdhUWLFuH169fYu3cv7t+/j9mzZ2P27NkwMjJCrVq10LVrVwwcOBB2dnaZ7rOlpaXO7YrbDaVd/fjVq1fSc3332M3sPXgVChcuLD2Pjo7WmgD/8MMP+OGHH9Re0/S+ajJkyBB8//33Uh0LCwsUKVIkS++tNosXL8b06dM1bmvcuLE06xwdHY0xY8YAAGbMmJFrC3AREVHBxgSYiAokJr/6FSpUSHr+/v17g+rExcUB0Hxqr62tLQICAhAWFoatW7ciODgYFy9eREpKCiIiIhAREYE5c+Zg9+7dqFevXvYE8Qn6/PPPcezYMQDAhQsXsnRPX22cnZ1RrVq1bG83K1asWIGXL1/C3t4ehQsXxubNm9OVOXfunNpzxfXBTZo0+ei3iyIiovyJCTARFThMfg2juhjV06dPUaVKFZ3lExMT8fr163R106pTpw7q1KkDQH4qcnBwMNasWYOdO3fi+fPn+Prrr3Hnzh21BDynOTg4SM/13eYoq7dBaty4MebNmwcAOHjwIDp37pyl9nLbtGnTMG3aNL3lEhMTAQCvX7/Gd999p7f8X3/9JS1MFhQUxASYiIiyBRfBIqICJb8kvyc3Bme4TkZ99tln0vPz58/rLX/p0iXp1GLVurrY2NigXbt22LFjB4YPHw4AePLkCU6fPp2JHmde1apVpef6Yo2IiMjSvlq0aIGiRYsCADZv3pzlhJqIiIgMxwSYiAqM/JT8Bq09nuF6GdW4cWOYmMhPFNq8ebPe64A3bNggPW/atGmG96daR/VWQR9DyZIl4e7uDgDYtm2bNFuZVkJCArZt25alfZmbm2PUqFEA5KeMDxgwAKmpqVlqMy+YNm0ahBA6H6tXr5bKr169Wno9t+5XTERE+Q8TYCIqEPJb8uvt2yTDdTOqaNGi0i1/IiMjtd4bFwCOHz8una7q6uqK9u3bq22/e/cuTpw4oXN/hw8flp6rrhz8sQwaNAgA8PDhQ4wfP15jmbFjx+Lx48dZ3teoUaOk+yHv2bMHnTt31pv0qy7URURERJnDa4CJKN/Lj8lvZuLIjLlz5+LYsWN4/vw5Jk6ciODgYHz33Xdwd3eHiYkJHj58iL1792Lt2rVITk6GkZERVq1aBWNjY7V2Hjx4AG9vb1SpUgU+Pj7w9PREiRIlAAD//fcftmzZgq1btwIAatSogS+++OKjxKfKz88Pq1evxpUrV7BgwQLcvn0bAwYMQMmSJfHw4UMsW7YM+/fvR506dRAWFgbA8FWZ0zIxMcG2bdvQrl07hIWFYdeuXThy5Ai+/fZbeHt7o3Tp0rCxsUFcXBzu3r2LkydPYsuWLVJ9fatdExERkWZMgIkoX2PymzXFixfHyZMn4ePjg2vXruHw4cNqM7Wq7O3tsWHDBnh7e2tt7+rVq7h69arW7ZUqVcLOnTsznVhmhZmZGfbv348mTZrgzp072LdvH/bt26dWpnnz5hg5ciRatWoFANIqxZnh7OyMEydOYOLEiViyZAnevXuHFStWYMWKFVrr2Nraws/PDxMnTsz0fomIiAoyJsBElK8dX3MMWJO1Nn7p8H9Za+ArYPmwpVlsY0qW48isihUr4p9//sGWLVuwe/duhIeHIzo6GsnJyXB0dETVqlXRsmVLDBgwQOt9Zhs2bIjg4GAcOnQIoaGh+O+///Ds2TMkJCTA0dERn3/+OTp16oTevXvD3Dz3VsQuXbo0Ll26hLlz52Lbtm24c+cOzM3NUalSJfTq1QuDBg1CQECAVD6r99W1sLDAvHnzMHbsWGzatAnHjh3D1atX8eLFCyQmJsLe3h4uLi7w8PBAkyZN4OPjw9lfIiKiLJAJfauaEH3i3r59Czs7O7x58wa2tra53R3KZQkJCYiKioKbm1uWZueItPm///s/TJkyBSYmJoiNjeU4IyLKBfz3nlRlJB/gIlhEREQGEkJI1+LWqFGDP7qIiIjyGCbARERE/3Pv3j0kJydr3T516lRcuXIFAODr6/uxukVERETZhNcAExER/c+aNWuwevVqdO/eHfXr14eLiws+fPiAa9euYe3atQgODgYAVKlSBQMGDMjdzhIREVGGMQEmIiJS8eDBA533PK5UqRL279+fq4t1ERERUeYwASYiIvqffv36wc7ODocPH8bt27cRHR2N+Ph4aaVqHx8f9O3bF2ZmZrndVSIiIsoEJsBERET/U6pUKYwcORIjR47M7a4QERFRDuAiWERERERERFQgMAEmIiIiIiKiAoEJMBERERERERUITICJiIiIiIioQGACTERERERERAUCE2AiIiIiIiIqEJgAExER5QPTpk2DTCaDTCbL7a58skJCQuDj44NixYrBxMREer9ev36d213LVV5eXpDJZPDy8srtrhAR5TgmwEREpFFwcLCUIMhkMnzzzTd66/Tu3ZtJGH2S9u7di8aNG2P37t149uwZUlJScrtLRESUC0xyuwNERDnpypUrud2FHFOtWrWPur9t27Zh8uTJqF69+kfdL308igMX/v7+mDZtWu52JpuNHj0aKSkpcHFxwaxZs1C1alWYmZkBAGxtbXO5d0RE9LEwASYiIoMIIeDv74+dO3fmdleIMuTBgwe4desWAGDixIno2bNnLveIiIhyC0+BJiIivYoUKQIA2LVrFy5cuJDLvSHKmEePHknP3d3dc7EnRESU25gAExGRXsOHD4e5uTkAYOrUqbncG6KMSUxMlJ6bmprmYk+IiCi3MQEmIiK9SpUqhYEDBwIA9u3bh7CwsCy1Fx0djcmTJ6NmzZqwt7eHhYUFXF1d0bNnT5w+fTo7ugxAvvBRy5Yt4eTkBEtLS7i7u2Ps2LF4+vQpAMDV1RUymQy9e/fW2kZqaio2bNiA1q1bo1ixYjAzM4OTkxO8vb2xePFiJCUl6e1HUlISFi9eDG9vbzg5OcHMzAzFihVD69atsWHDBqSmpupt4+HDhxg6dCjKli0LCwsLuLi4oH379jh69KjB74c2ivdBYfr06WoLoGl6j548eYLFixejc+fOqFChAqysrGBubo4SJUqgQ4cO2LJli0FxJScnY+HChahTpw5sbW1hb28PT09PzJ8/H0lJSbh3757UhzVr1mQoLsWibN7e3tJr3t7eanFpavPy5csYOHAgKlSoAEtLS9jY2KBq1aoYOXIk7t27p3V/qgvHBQcH6+ybopyma63TruidkJCA2bNno1atWrCxsYGNjQ3q1KmDRYsWITk5We/7EBoaii5duqBYsWKwsLCAm5sbBg4ciBs3buitS0SU3/AaYCIiMsiECROwYsUKvH//HlOmTMGhQ4cy1c7hw4fRpUsXvH37Vu31+/fv4/79+9iwYQOGDh2KhQsXwsgo88dphw4disWLF6u9duvWLcyZMwcbNmzAgQMH9LYRExOD9u3bIyQkRO31Fy9eIDg4GMHBwVi0aBECAwNRpkwZjW3cu3cPrVq1wvXr19Vef/bsGQIDAxEYGIilS5diz549cHR01NjGqVOn0LZtW7X37MmTJ9i7dy/27t370ResSklJQcmSJTUmuI8fP0ZAQAACAgKwcuVK7Ny5E9bW1hrbefv2LVq0aIHQ0FC118+fP4/z589j8+bNWLp0aY7EoM0vv/yCyZMnp4vt6tWruHr1KpYsWYJly5ahV69eH6U/z549Q8uWLXHx4kW118PDwxEeHo7Dhw9j9+7dWr8r8+fPx5gxY9TiuXfvHpYvX46///4bW7duzcnuExF9cjgDTEREBilevDiGDBkCQJ7EZmam9uLFi2jXrh3evn0LU1NTjBw5EkFBQQgLC8PSpUvh5uYGAPjzzz8xYcKETPf1t99+k5LfUqVK4c8//8S5c+dw8uRJTJo0CW/evEHnzp0RHx+vtY2UlBS0bdtWSn4bN26Mbdu2ISIiAgEBAejYsSMA4Nq1a2jatCnevXuXro13796hadOmUvLbsWNHBAQEICIiAtu2bUPjxo0BAKdPn0a7du003prnwYMHUvJrZGSEwYMH4+jRowgPD8fKlStRoUIFTJs2Dfv378/0+3X48GFcvnxZ+v8hQ4bg8uXLao+ZM2dK24UQAIAmTZpg9uzZOHjwIM6fP4/g4GCsWrUK9erVAwAcOXIEQ4cO1brfb7/9Vkp+69evj82bNyMiIgKBgYHo0aMHwsLCMHjw4EzHNXPmTFy+fBmrVq2SXlu1apVaXIrPEQAWL16MiRMnIjU1FU5OTpgzZw7Onj2L06dPY9q0abCyskJiYiJ69+5t0AGU7NCpUydcvXoVw4cPx5EjR3D+/Hn8/fffqFy5MgD5WQ7Lly/XWHfXrl0YNWoUUlNTYWdnh59//hlnzpzBmTNn8H//938wNjZGjx498Pjx448SCxHRp4AzwEREZLAff/wRS5cuRVxcHKZOnYrjx49nqP7AgQORlJQEY2Nj7Nu3D82bN5e21a5dG126dEGDBg1w9epVzJkzB7169ULVqlUztI+nT5/C398fAFC+fHmcPXtWWsQLABo2bIjWrVvD29tb5+nLf/31F86ePQsA6NWrF9asWSOdkurh4YF27dph0qRJ+Pnnn3Hnzh3MmDEDv/76q1ob06dPx927dwEAkydPxowZM6RtHh4e+Prrr9GzZ09s3LgRZ86cwbJly6SDDAqjR4+WZn43bNiAbt26Sds8PT3RpUsXNGzYEBERERl6n1SlXRjK2dlZ5222jI2NcePGDZQvXz7dtsaNG6NPnz7w9/fHTz/9hPXr12Py5MmoUKGCWrk9e/YgMDAQgDzJ27Ztm9osZsuWLVGzZk2MGTMm03GVKFECJUqUwIsXL6TX3NzcNMYWHR2NsWPHAgBcXFwQGhqKUqVKSdvr16+P9u3bo2HDhoiLi8PAgQMRFRWV49cUK2Z5vby8pNdq1aqFFi1aoEqVKnj27BkWL16MQYMGqdVLSkqCn58fAMDOzg5nz56VkmYAqFevHjp06ID69etLK2QTERUEnAEmIiKDOTs7Sz+qg4KCEBQUZHDdsLAwhIeHAwAGDBiglvwqODg4YNmyZQDk196mPYXZEGvXrkVCQgIAYMGCBWrJr8KXX36pc2YSkM9CA4CTkxMWLVqkdo2swvTp01GpUiUAwPLly9UWW0pMTMSKFSsAAFWrVtV4mrJMJsPixYtRuHBhAMCiRYvUtj99+hS7du0CALRt21Yt+VWwsbGR3rOPRSaTaUx+VU2dOhVFihSBEAIBAQHptv/1118AgEKFCuGvv/7SeArvqFGjUKtWrezptB6rV6+WzgiYN2+eWvKrULNmTenMhEePHmH37t053q9hw4apJb8Kjo6O6NOnDwD5Nctv3rxR275nzx5pZnfKlClqya9CtWrVMGnSpOzvNBHRJ4wJMBERZcjYsWNhY2MDQP7D2lCqizX169dPa7n69etLP9Yzs8CTok6RIkXQqlUrreV0XcP5+PFjXLt2DQDQtWtXKd60TExMpCTk1atXiIyMlLadP38er1+/BiBfjMnY2FhjG7a2tujatSsA+XWmT548kbYFBQVJp0Ur9qNJnTp1MjxTnp1SU1Px+PFj3LhxA1euXMGVK1dw7do1lCxZEgBw6dIltfLJyck4ceIEAEiLlGkik8k+2j17FePG3t4enTp10lquf//+6erkpB49emjd5uHhAUB+SnpUVJTaNkXfZDIZfH19tbbRp08fjQd3iIjyKybARESUIYULF8YPP/wAAAgJCTF4MawrV64AAMzMzFCjRg2dZb/44gsA8kWrDFllWdN+atSooXMRrerVq8PMzExnG6p90dfXtPWyow3V63Jr166ts406dero3J7dhBDYsGEDvL29YW1tjRIlSqBSpUqoXr269FAs3KR6CjIA3LlzB+/fvwegTOK08fT0zJH+p6V432vVqqXztOaiRYvC1dVVrU5OUpxhoInqommxsbFq2xRjx83NTeNZEApOTk5SPEREBQETYCIiyrBRo0bB3t4eAKTrbfWJiYkBIP/RbmKiewmKYsWKAZAnWa9evcpQ3xTltc0qKhgbG2tddVnRV0B+2rcuir6mrfex2yhatKjO7dkpISEBbdq0Qc+ePREcHCwls9qk3a76mer7nPRtzy6K91rf+wwoPy/VzyenWFpaat2meoAn7QJqGYnnY44dIqLcxgSYiIgyzN7eHqNGjQIAnDt3Dvv27TO4bl473TI7+vuptJFdZs6cKS1g1bhxY2zduhW3b9/Gu3fvkJKSAiEEhBBo2LAhAOWq0XnBp/Q+Z4f8Fg8RUVYxASYiokz54YcfpMWbDJkFVsy2vnz5EsnJyTrLPn36FID8x7uDg0OG+qUoHx0drbNcSkqK1tll1ZnhZ8+e6WxH0de09bKjDdXY9bWhb3t2EUJIi3s1bNgQx48fR5cuXVCuXDlYWVmpzUpqmyFVjUvf56Rve3ZRvO+GvI+KzyvtGQSqsWu6R7JCXFxcZrqYIYr32JB4PtbYISL6FDABJiKiTLGxsZFuGxMZGSmtVqyN4tYzSUlJ0rWh2oSFhQEAKlSooPU6XW0Ui0FdvHhRZxJy+fJltVWbNfUVkM9wG9LXtPWyo43q1atLzxUraGujb3t2iYmJkRLALl26aL3O+t27d7hx44bGbeXKlYOFhQUA+WJhumTl9k4ZoXjfIyMjdR6gef78Oe7fv69WR0F1sTRdp+7fvHkzK101iGLsREVF4eXLl1rLRUdH4969ezneHyKiTwUTYCIiyjQ/Pz/pGkN/f3+dp7o2a9ZMer5q1Sqt5c6ePYurV6+mq2Oopk2bApAvvKQ4TVeTdevWad3m4uIirUS9detWvHv3TmO5lJQUrFmzBoB8xk31lj0eHh7SddJr167VmozHxsZi69atAIAqVaqgePHi0jZvb29p9ei1a9dq7W94eHi2LMikSEq1HRgAoJYc6prJXLFihdZE0sTEBI0aNQIAHDx4UOssrxAC69ev19vv7KAYa69fv8bOnTu1llu5cqU0ztOOT9XFpHQl7ps2bcpCTw2j6JsQQudYX7NmTZ46RZ2IKKuYABMRUaZZWVnhxx9/BCCfUT1w4IDWsnXq1JFW9F2+fDmOHTuWrsybN28waNAgAPLTSYcMGZLhPvn6+sLc3ByA/DTttCsQA/IkW3GfX20U9wmOjo7G8OHDNZaZPn26lKwPGDBA2i8AmJubS7fMuXLlCmbMmJGuvhACfn5+Uh8V91hWKF68ODp06AAACAgIkBJlVe/evZPes6xSJN937tzRWsbJyUlK7Ddt2qQxWQ4PD9d7iyxFn9+/f4/BgwdrPEAwb948tVtL5aQ+ffpIC06NHj0ajx49Slfm0qVL+PnnnwEAJUqUQMeOHdW2Ozg44LPPPgMgv6+wplPAT58+jd9//z2be59ex44dpc9zxowZGmfjr169ipkzZ+Z4X4iIPiVMgImIKEuGDBki/dDWlGyqWr58OczMzJCcnIzWrVtjzJgxOHHiBCIiIrB8+XLUqlVLun3LmDFj0p1iaggXFxfpmuTbt2/Dw8MDS5YsQXh4OE6fPo0pU6agadOmcHFxkVYY1rRQ0ODBg1GvXj0A8mSmadOm2LFjByIjI7F//358/fXXUlJbrlw5jQnf1KlTUbZsWQDAtGnT0LlzZ+zfvx+RkZHYsWMHmjRpIs3O1atXDwMHDkzXxty5c6VTa7t3746hQ4ciKCgI58+fx+rVq+Hh4YELFy5ky+2CvvzySwDyZHvp0qW4cuUKbt++jdu3b+P58+cA5AcmFPem/eeff9CgQQNs2rQJEREROHbsGEaPHo1GjRrBwsIC7u7uWvfVqVMnNG/eHACwc+dONGrUCFu3bkVkZCQOHTqEnj17YsyYMWq3d8rJBZ2cnJwwe/ZsAMDDhw/h4eGBBQsWICwsDGfOnMFPP/2EBg0a4N27d5DJZFi2bJnG2yUpDpw8e/YMDRs2xObNm3HhwgUcO3YMo0aNQrNmzT7KrZ3MzMzwxx9/AJCfjl23bl3MmjULoaGhOHv2LH755Rfp8y5fvnyO94eI6FOh+z4UREREehQqVAgTJ07EsGHD9JatUaMG9u7diy5duuDt27eYO3cu5s6dm67c0KFD8csvv2S6T+PHj8f9+/exdOlSPHjwAN9//73a9iJFimDbtm3o1KkTAOWpv6qMjY2xb98+tG/fHiEhITh+/DiOHz+erlzlypURGBgIa2vrdNtsbGxw7NgxtGrVCtevX8eOHTuwY8eOdOXq16+PgIAA6XRnVa6urggICED79u0RGxuLxYsXY/HixWplpk6dCplMluXrZceMGYPt27cjMTERgwcPVtvm6+srne49c+ZMhISE4OLFi4iIiED37t3Vyjo6OmLHjh2YOnWqzutdt2zZghYtWiAsLAwhISEICQlR216zZk0sXrxYShg1fU7Z6fvvv8fr168xZcoUPHv2DCNHjkxXxtzcHMuWLUPr1q01ttG/f38EBgZi9+7duHr1Krp166a2vXr16tixY4faqe455euvv8bs2bMxbtw4vH79GhMmTFDbbmlpia1bt2L27Nm4fft2jveHiOiTIIjyuDdv3ggA4s2bN7ndFfoEvH//Xly9elW8f/8+t7uS5wUFBQkAAoBYvXq1zrIJCQmiVKlSUnl9/7w8f/5cTJw4UdSoUUPY2toKc3NzUbp0adGjRw9x6tSpbIthz549onnz5sLR0VFYWFiI8uXLi+HDh4v//vtPCCGEnZ2dACB+/PFHrW2kpKSIdevWiZYtW4qiRYsKU1NTUbhwYeHl5SUWLVokEhMT9fYjMTFRLFq0SDRu3FgULlxYmJqaiqJFi4qWLVuK9evXi5SUFL1tPHjwQAwZMkSUKVNGmJmZiaJFi4o2bdqIgwcPCiGE8Pf3N+i91ycyMlJ069ZNlC5dWpibm0tt+vr6qpWLi4sTM2bMENWrVxcWFhbC2tpaVK5cWYwZM0Z6fxs3biwAiMaNG2vdX1JSkpg/f77w8PAQ1tbWwsbGRtSoUUP88ssv4v379+LChQtSHwIDAzMVk+pYDgoK0lv+0qVLYsCAAaJcuXKiUKFCwsrKSlSuXFmMGDFCREVF6a2fnJws/vzzT1G7dm1hZWUlrKysxGeffSZmzpwp4uPjhRBC6o+/v3+6+oZ+lobGFRISIjp16iScnZ2Fubm5KFOmjOjbt6+4evWqEMKwz4noU8N/70lVRvIBmRBc+YDytrdv38LOzg5v3ryBra1tbneHcllCQgKioqLg5uaW47NFlLc9fPgQpUqVAiBfsKlfv3653CPSZMOGDejZsycA+Snt5cqVy+UeEdGngP/ek6qM5AO8BpiIiAok1ZV469atm4s9IV0Un5OTk5N0PTUREVFmMQEmonyJJ7cUbHFxcXjy5InW7RcuXJAWsPLw8JDuHUwf16NHj/D+/Xut21esWCGtLN6rV68cXQSLiPIW/jtPmcVFsIgoXzEykh/X03bPVSoYoqOjUblyZXTs2BEtW7ZExYoVYW5ujsePH+PgwYNYuXIl3r9/D5lMhnnz5uV2dwusI0eOYNy4cfj222/h5eWFMmXKIDU1FXfu3MGWLVuwe/duAEDRokXTLeBERAWb4t95xb/7RIZiAkxE+YqJiQmMjIyQkJAAKyur3O4O5aKEhARs3rwZmzdv1rjdzMwMy5cvR6NGjT5yz0hVdHQ0/vjjD+mWPWkVL14c+/fvR+HChT9yz4joU5aQkAAjIyOYmDCdoYzhiCGifMXIyAiWlpZ49+4dfzAXYCVKlMCWLVtw8OBBhIeHIzo6GjExMbC0tISrqyuaNWuGYcOGoUyZMrnd1QKtbdu2WLJkCQ4dOoSrV68iOjoasbGxsLe3R+XKldGuXTsMHjxYug8yEZHCu3fvYGlpyRlgyjCuAk15HleBprTevHmDx48fo1ixYnBwcMjt7hAREVE2evXqFZ4+fQoXFxfY2dnldnfoE5CRfIAzwESU79jZ2eH9+/d4+vQp4uLiYGdnBxMTEy6gQ0RElEcJIZCcnIw3b94gNjYWDg4OTH4pU5gAE1G+VLRoUZiZmeH169d4+PBhbneHiIiIsoG5uTmKFi3KM7wo05gAE1G+JJPJ4OjoCAcHByQnJyMlJSW3u0RERERZYGxszDO6KMuYABNRviaTyWBqagpTU9Pc7goRERER5TIum0ZEREREREQFAmeAKd9o3eQLhJy/jiHdW8Lnqy+k15v3mQ4AWPHzUJQuXkRrfSEEZPfr6dzHhA2TcP5OJL5vORgdv+gg1WvxU2sAwPLv/0IZJ923VWk+vRUAYPPojXC0dgQAvIp7jW/mdAMAHPYP1Fk/6lkUBv31PQDg0NQD0mlAe8P34Y8Df6JhlQaY0mUS48jHcWxNuoX188fDuYQreoz4GeYWljrb1+Tk/o0I2rMW3h180ahNjwzXT0yIx8bfJ+L5o3voOXIWSrhVynAbj6KuM47/YRxyjEOJcSgxDjnGoZRdcTQaWi7j+77+EOvHr4WzqzN6/NwL5pbmGd/3xmAErT0Ob98maNTDK8P1E+MTsXHiOjy/9xw9Z/miRKWS6cp0Lu6T4XYzolq1ajnafk7ibZAoz1Mse67w97yRKOKgXP58075TWL3jOD6v5IrfxvXSet3ItTsPUdm4s859vYx9iW7zvgMAeJSrhXrudbEocLG0XV+yBABbQ7ZjxdGVAIAuX3aGibEJNp3aDADo0agbfL176W1DkbQBwOAWAxFx+zwi7pwHAPw9cj2K2GpP9BlH3o8jpIQxf8SoYBxyjEOJcSgxDjnGocQ4VLiGZmyfeST5BQpeApyR2yAxAaY8TzUBdnK0xca5I9W2x8UnwGforwCA/l2boWur+unauH73EYbPWGFQwnQx6hLGrRuf7vUd47bCppCN3vpCCMzeMxdHLx1Te71FjeYY1f4HgxZ2iH0fi69/65ru9d96zUINt8/11gcYh0JejCOkhDEA/ohRxTjkGIcS41BiHHKMQ4lx/E8GEuC8lPwCTIB1YQJMeZ5qArxhzg9wLpz+nnDHz17GrGU7AQANPCujrZcnShYrDAAIDruCFVuPAjBsxhAAUlJTcDHqEl7GvkQFlwpwc3bNcL9j38fi/J1IpIpU1C7vaVCyltb96Pu48egmHKwdUKtsTRgbGWeoPuNQyktxKBJggD9iVDEOOcahxDiUGIcc41BiHDA4Ac5ryS/ABFgXJsCU5ykG/JLpg1CudDGt5Y6d/Qe/Ltuldbt33eqY0OK3nOgiUbZSTYAB/ohRxTjkGIcS41BiHHKMQ6nAx2FAApwXk1+ACbAuXAWa8o1iTrpviN603mfY9eePGNqjFawtLaTX69Zwx6pf/DBhUKec7iJRjijhVgk9R87C80f3sPH3iUhMiM9wG43a9IB3B18E7VmLk/s3Zri+uYUleoz4Gc4lXLF+/ng8irqe4TYYhxLjkGMcSoxDiXHIMQ6l7IhDk7ya/JJunAGmPE9xxGfX4vGwKpTxP0xq7tXNnk4R5aC0M8AKBf5IvgrGIcc4lBiHEuOQYxxKBTYOHTPAeT355QywdpwBJiLKJ3gkX4lxyDEOJcahxDjkGIcS41CX15Nf0o0JMBFRPsIfMUqMQ45xKDEOJcYhxziUGIcck9/8jwkw5StCCPx764F0799dh0MRHfM2t7tF9FHxR4wS45BjHEqMQ4lxyDEOpYIeR35Jfh9df5jhOgUJrwGmPE9xzv/EwZ3x81/bNZYp4mCLBZP6arxFkkJKSiqM//syp7pJlG20XQOcVoG9pksDxiHHOJQYhxLjkGMcSgUmDpVrgPNT8rt+/FpEnIvIcN2M4DXARJ8A1eS3f9dm+K5DYzSuUxUA8OLVW3w3ZgEePYvRWDclJRVjf1ur9lqqSEWqSM1Sn1JSU5CVY0xCCKSkpmSpD4xDKb/EYaiCfiRfFeOQYxxKjEOJccgxDqWCFkd+S36dXZ0zXLcg4Qww5XmKIz4A0K1tQ/j6eMPISCZtT/qQjOEzVuDuf89gamKMvUsnqW0HgIXr9mNfUAQO+wfi5uOb8Fs+Qm377/3mo3JJw448CiGw7cwOrDi6UnqtjFMZLOg3F1bmVga1EZcYh0kbpuDqw2vSa90bdoOvd0/IZDIdNZUYh1x+jMN/2WGD6igUmCP5BmAccoxDiXEoMQ45xqGU7+NwDc2XyW+Pn3uhR7lvM9xGRnAGmOgT0PvrJujzdZN0ya2ZqQnmjO8NAPiQnIKIK7fVticmfcC+IPlpItceXk+XpADAiJUjcfPxLYP6MXvPXLVkCwDuR9+Hz6zOSEpO0ls/KTkJPrM6qyVbAPD3qU2YF7DAoD4wDqX8HIehCtqRfF0YhxzjUGIcSoxDjnEo5fc48mvym5k4ChImwJRvtGnsoXWbtaUFfh3bCwAwZ+UetW0h5+V/SMuXKY4RK0cCAKZ0mYTD/oE47B+IKV0mAQD8lg/X24fY97E4eukYAGDz6I047B+IQ1MPwNXZFQCw+9weHbXl9oQFAAAqFK+AwCn7cNg/EFvGbAIAHLp4GLHvY/W2wTjydxz8EcM4AMahwDiUGIcS45BjHEqa4mDyWzAxAaZ8w8RE98JAJYo6AgBev41Te/3hs5cAAI+qZaXXGlZpoPG5vms3z9+JBAB0/bIzHK3l+5PJZJjj+ysAYMXRVTrrA8DKo6sBADO6T4OxkTwmByt7dGsoP5Ul/LbuRQ1U+8g48mcc/BHDOBQYhxzjUGIcSoxDjnEopY2DyW/BxASYCoy0iW9attYZv64lLcUCSSbGpmqvf0hJBgApgdJFkQyZGJmovZ78vzaMZDn/tWUcSp9iHPwRwzhUMQ45xqHEOJQYhxzjUFKNg8lvwcQEmPKNDx+SdW5/+uI1AKByOfU/MiWLFgYAtWuDT109rfG5vmSnToXaAOTXh76Kk+8vJTUFUzb5AwD6Neursz4A9G3aBwAwZu2P0orFMe9isO2MfJVrj3K1dNZX7SPjyJ9x8EeMHONQYhxyjEOJcSgxDjnGoaSIg8lvwcRVoCnPU6z61qJhTYzu215jmaQPyeg09FckfUjG/43sjjqfVVDb1nbgTADAogELtV6TaeiKvXP3zMOhi0c0bts3aQ/MTMx01k9KTkLbmR00bmv2eVOM6zhGbx9uPr7FOP4nP8bhv+wwV/dUwTiUGIcc41BiHEqMQ45xqFC5D7Ah8lLy27m4T4bbzgiuAk30CTh06gL2HA1L9/qrN+8wcPJiJP1vhtizWnm17WamJujWVn49prtLBfzeb366NhYNWGjw7WpGtR+JHo26qb1WtVQV7B6/Q2+yBQBmJmbYNX67tFCTwoCv+mFsh9EG9YFxKOXXOHgkX4lxKDEOOcahxDiUGIcc48icvJT8km6cAaY8T/U+wArftK4PO1srxLyKxfZDZ6XX1/w6DC7OjunaSElJxdjf1mJet6XSa4prP7NyjWdKagqMZEYG3ys2LSEEUkWqQdeqasM4lPJLHCEllPvnkXwlxqHEOOQYhxLjUGIccowDBs8A58XklzPA2nEGmPKNiYM7S8+3HAjBss2HpeS3YtkS2DDnB43JLwAYGxth9jhftdeMZEZZXuDI2Mg408kWIF+xOCvJFsA4VOWXOFTxSL4S41BiHHKMQ4lxKDEOOcZhmLyY/JJunAGmPE9xxGfX4vGwtDDD1dsP8c+Ne0hM+gA7Gys09KyMIg66jwRJ7tXN2c4SZQPVGWAFHslXYhxKjEOOcSgxDiXGIVeg49AzA5yXk1/OAGvHGWDKV2QyGapWKIVubRuid6cm8PnqC8OTX6I8jEfylRiHEuOQYxxKjEOJccgxDs3ycvJLujEBJiLKJ/gjRolxKDEOOcahxDiUGIcc41DH5Dd/YwJMRJSP8EeMEuNQYhxyjEOJcSgxDjnGIcfkN/9jAkwFSlx8AjbtO4XmfaajeZ/paDPg/zB31R789+RFbneNKNvwR4wS41BiHHKMQ4lxKDEOuYIeR35Jfk9uDM5wnYKECTDlG0+ev9K5/fjZy/AZ+itW7zguvfYhOQWHTl1Ev4l/YsqCv3O6i0QfTUH/EaOKcSgxDjnGocQ4lBiHXEGNIz8lv0Frj+svWIAxAf5IgoODIZPJIJPJEBwcnNvdyZe+n7YUz1++0bjt2Nl/MGvZTgDA55VcseLnoVjz6zDMn9gHQ7q1AACcu3TL4H2lpKYg/HYEDl88gvvR9zPV37fvY3Hsn+MIvnICse9jM9VG1LMoHL54BOfvRCIlNSXD9RmHUn6JQ1VB/RGjCeNQYhxyjEOJcSgxDrmCFkd+S369fZtkuG5Bkm23QQoODoa3t7fGbYUKFYKTkxNq1qyJrl27omvXrjAxMcmO3eYZqu9PUFAQvLy8crdD+Yhi2XMAqOjmgj+mDlDbHhefAJ+hvwIABnT9Cp1b1kt3L9io/55h0NS/cNg/UO/+LkZdwrh149O9vmPcVtgUstFbXwiBeQHzcejiEbXXm33eFGM7jDboPrWx72Px9W9d073+W69ZqOH2ud76AONQyItxaLoNki4F+hYXaTAOJcYhxziUGIcS45DL93G4hubL5LdRDy/eBkmHjzID/P79ezx48AB79uxBjx498OWXX+Lp06cfY9cFyrRp06RZ5oLqRtRjvHj1Vu21g6cuAAC861ZHl1Zfanx/3EoVxVS/9AlMWi/evpCSFM9yHhjSYpC0TVMCpMnaoPVSstW9YTd0/bIzAODopWPYdmaHQW2o7suv1ffwLOcBABi3bjxexr5kHAUwDl0K2pF8XRiHEuOQYxxKjEOJccjl9zjya/JLuuVIAjxkyBBcvnxZepw9exZ//PEHXF1dAQDh4eHo0KEDsmnyOU/w8vKCEAJCCM7+5pAOTWsDAE5FXFN7fdvBMwCA5g10z8Q18Kisdx+LD/4FABjexg8/f/d/8KnbEYemHpC2Rz2L0tvG36c2AQC2jNmE3k16of9X/bB5tPyP+YqjK/XWv/dceWrsoakH0L5OO/z83f9hSMvBAIC5e+YzjnweB3/EMA6AcahiHHKMQ4lxKDEOOU1xMPktmHIkAXZ2dka1atWkR926deHn54fIyEiUL18eABAWFoZ9+/blxO6pgLK2KgQAeBMbp/Z6zOt3AIAi9rpPhzDE6WshAICmnymvrZDJZPBr9T0A4NaT2zrrq14X6mBlLz13tHbUWEaTm49vAgCGtBikNpvdxqMVACDiznmd9QHGoamPeSkO/ohhHAqMQ4lxyDEOJcahxDjk0sbB5Ldg+qiLYDk4OGDChAnS/x88ePBj7p7yOUWia25mqnF7IQuzLO/DtpA8iX4c80Tt9bM3QwEAhW0K66xvJFN+5VQTK9WzIVTLaOJg7QAACL8dofb6fy/+AwC4OLrorA8wDk19zEtx8EcM41DFOJQYhxzjUGIcSoxDTjUOJr8F00dfBbpOnTrS8/v35acOpl0hOTU1FatWrYK3tzeKFi0KIyMj9O7dW62d1NRUbNiwAa1bt0axYsVgZmYGJycneHt7Y/HixUhKStLah7TXyr5+/Rr+/v6oWrUqrK2t4ejoCG9vb2zatElnLK6urpDJZFLfzp8/j969e8PNzQ3m5uZqs0EZWQV69+7d6NKlC0qXLg0LCwvY29vD09MT06dPx6tX6W/1s2bNGshkMkyfPl16TbEv1ce9e/fU3r/jx49jzJgxqF+/PooUKQJTU1PY29ujRo0aGDNmDB48eKCzn15eXpDJZNIp3bdu3YKfnx8qVKgAS0tLaZ+dOnWCTCaDg4MDEhISdLaZnJyMYsWKQSaToXXr1jrLphV4MhKAfJVnVV987g4AOBH2r876r9/G6dwOAFO/mQwAGLJ0KO48vYOk5CTsOrcH5+/I961vwSOZTIYqpaoAAIat+AEvY2PwNv4tBv0ln+lzdXbVew13rbI1AchnFvdF7Mf7pPe48/QOhiz1AwCMbDeCceTzOPgjRo5xKDEOJcYhxziUGIcS45BTxJFRTH7zhxxZBdrf3x/Tpk3TWO7GjRuoVEm+8lrLli0RGBioVjcwMBBz587F0aNH1er5+vpizZo1AICYmBi0b98eISEhWvtTuXJlBAYGokyZMum2TZs2TUoW7969i6+++gp37tzR2E7Xrl2xceNGjatWu7q64v79+/D19UXdunUxbNgwJCcnq5VRvL2GrAL96tUrdO7cGcePa793l7OzM/bs2YO6detKr61ZswZ9+vTRWkchKipKug5b9T3QxtLSEhs2bICPj+ZV5Ly8vHDixAk0btwYI0eORI8ePRAXp55ERkVF4erVq2jTpg0AYNOmTfj222+17jMgIAAdOnQAAGzbtg2dO3fWG5fqKtAAcGjVVLWk5b8nL9Bv4p8AgIVT+qNS2RLp2nifmIQf/m8llvZbq3d/M7f/ghP/nkz3+mzfX/G562d668clxsFnlua4do3fDitzK71taFsxuHHVRpjUeYKGGukxDrm8GIdiFWiu7inHOJQYhxLjkGMcSoxDiXH8j2uowUXzWvLLVaC1++gzwJcvX5aeu7ikPzXwxx9/xNGjR9G+fXvs3LkT58+fx4EDB9Cqlfx6upSUFLRt21ZKfhs3boxt27YhIiICAQEB6NixIwDg2rVraNq0Kd69e6ezP9988w2ioqIwePBgHD16FOHh4Vi5ciXc3eWzhlu3bsXYsWN1thEeHg4/Pz+ULFkSixYtQmhoKE6fPo1ffvnF4PclMTERzZo1w/Hjx2FsbIyePXti06ZNCA0NxalTpzBz5kwULlwYz58/R+vWraXZcwDo2LEjLl++jCFDhkivqS5CpniUKKFM/JKTk1G8eHF8//33WL9+PUJCQnD+/Hns3r0b48aNg7W1NeLj49G9e3dcu6a+qFRaDx48wHfffQdLS0vMmjULISEhCA0NxR9//AFra2u0bNkSJUvK/0isXr1aZ1uK7UWKFEH79u0Nfv8UfhrRLd2MXaniReD9hfxLOnzGCly+eR8pqanS9qcvXqPnmAWIevjcoH1M6jwBs31/lU5t9SzngU2jNhiUbAGAlbkV9k3ag4HNB8DYSJ7I9GvaB/sm7TEo2QLkM4J/j1yPhlUaAADsLG0xp/dvBidbjCN/xMEj+XKMQ4lxKDEOOcahxDiUGEfG5LXkl3T7qDPAycnJaNiwIUJD5Udb1q1bh549e6a7h/DkyZMxY8YMjfv5888/4ecnP7WwV69e0um/qiZNmoSff5af1jBu3Dj8+uuvatvTzn7+/fff6Natm1qZ2NhYNGzYEJcuXYKRkREuXbqU7kiHYgYYAKpXr46TJ0/C3t5e7/ujaQZY0Wd7e3scPXoUHh4e6dq4f/8+6tWrhydPnqB79+7YuFH9i64al76P9d69eyhRogRMTTVfL/vw4UPUrVsXjx49wnfffYf169enK6OYAQbkBzPOnj2L0qVLa2xv6tSpmDFjBoyMjHD//n0pIVb1/PlzlCxZEh8+fMCIESOwYMECjW0lJiYiMTFR+v+3b9+iVKlS8PuuFdo3raOxzofkFPw4ex2u3NR9Wrch9wEmym1p7wPMI/lyjEOJcSgxDjnGocQ4lAp8HAbMAOfV5JczwNp9lBnguLg4nDhxAl999ZWU/JYpUwZdu6a/v6W7u7vW06cBeQIMAE5OTli0aJHG6/OmT58unWa9fPlytWQprbZt26ZLfgHAxsYGy5YtAyC/Xvavv/7SHuD/+qUt+dXn3bt3UlwzZszQmPwC8vdsypQpAOSnB6c93TgjXF1dtSa/AFCyZElp5jsgIEBvQj1r1iytyS8A9O3bFzKZDKmpqVi7VvNpxhs2bMCHDx+k8tr88ssvsLOzkx6lSpUCADT9Uvv1nqYmxpjzY2+MG+ADIw1j5pvW9bH9D90z/USfKh7Jl2McSoxDiXHIMQ4lxqHEOHTLq8kv6ZYjCfD06dPVFl+ytraGl5eXtPiTs7Mzdu/eDXPz9APgm2++gbGxcbrXAeDx48fS6bhdu3aFjY2NxnImJibSNbGvXr1CZGSk1r7quna2Tp06qFq1KgCkuyZZValSpdCwYUOt2/U5ceIE3rx5AwB6r3lt1KgRAODDhw84f17/7VUM9fbtW0RFReHff//FlStXcOXKFVhaWqpt08bMzAxdunTR2b6rqyuaNWsGANK13GkpTn/28PDAZ59pP+1zwoQJePPmjfT477//dO5bwchIhmZffoaDq6Zi0/xRWPrTYKyeNQyBK6agX5dmsLXO+BFHok8Ff8TIMQ4lxqHEOOQYhxLjUGIcmjH5zb8+6jXAbm5uGDt2LC5fvowaNWpoLKMr8bly5Yr0/IsvvtC5L9XtqvXSql27ts52FKtW37x5U+vK0rr6bIiICOXtU4oXL65xBWfFQ/V0g6dPn2Zpv/fv38ewYcPg6uoKOzs7lC1bFtWqVUP16tVRvXp1DBw4UCr74sULre1UqFABFhYWevfXv39/AMDt27dx6tQptW0RERHS56Rr9hcAzM3NYWtrq/bIqML2NnArVRQlijrC2PijXwpPlCP4I0aOcSgxDiXGIcc4lBiHEuNQx+Q3f8uRX/5DhgyRFl66cuUKbt++jdevX+Pu3bv47bff4OzsrLWug4OD1m0xMTHSc11tAECxYsU01ktLXztFixYFIL+mVtMtiADdfTbE8+eGLb6UVnx8xv8wKAQGBqJKlSpYtGiR2oJa2rx//17rNkPj79ixI4oUKQIg/WJYq1atAgBYWFige/fuBrVHROnxR4wc41BiHEqMQ45xKDEOJcYhx+Q3/8uRBNjZ2RnVqlVDtWrVULVqVZQrV07tNjW6aDv9OS199+Y0VHa0Y2iftUlJSZGeR0ZGalzBWdNDseJ1Rr148QLdu3dHfHw8rK2tMW3aNJw9exbPnz9HYmIihBAQQuDYsWNSHV3XABsav5mZGXr27AlA/RrmhIQE6Z7LPj4+mb6WWiElJRWPnr7E3f+e4eWr2Cy1RZQX8UeMHONQYhxKjEOOcSgxDqWCHkd+SX4T47Wvf0S5cBukrHB0dJSeP3v2TGdZ1dODVeulpa8dxXaZTJblmV5tChcuLD13cnKSDh7oe2Q2Udy+fTtev34NANi1axf8/f1Rt25dODk5wczMTCqna+Y8sxSnQb979w7btm0DAOzevVvqj77Tn3V5GxuPFVuPoFX/GegzYREGT/0L3UbNQ/M+03H0zCWkpmbLgudEeUJB/xGjwDiUGIcS45BjHEqMQ6mgxpGfkt+NE9dluF5BkqcSYNXrX8+dO6ezbFhYmMZ6aYWHh+tsR7G9QoUKaslhdqpZs6b0XHF/48wwdDb733//BSA/MKBYmEoT1WuTs0uVKlVQr149AMrToBWnP5cpUwZNmzbNdNu+Py7E1sAzGrf9tnw3xvy6Bh+SUzRuB4BDpy5ket9En6KC+iMmLcahxDiUGIcc41BiHEoFLY78lvw+v5e5yysLijyVALu4uKBy5coAgK1bt+Ldu3cay6WkpEgrDTs4OKBWrVpa29R2Sx5AnvwqFmbSlShmVbNmzaQVlxcuXKj3lkPaqC5EpevWT8nJyQDkpx6npqZqLBMfH6/x3r/ZQTELfOrUKQQFBUmnWvfu3TvLp6TbWVti3ewROLzaH4dX++PQqqlYOEW+vys3H2DOit0a6529eANzVwUAAJKSk7D59FY0n94KLX9qg21ntiMpWfMCaNq8jH2JCRsmofn0Vui9sC8uRl3KcCz/3L+Mzr99g+bTW+Gnrf+HF2+1L0SmCeNQym9xZERB+xGjDeNQYhxKjEOOcSgxDqWCEkd+TH57zvLNcP2CJE8lwAAwdOhQAEB0dDSGDx+uscz06dNx9epVAMCAAQM03m5JISAgAFu3bk33+rt37zBo0CAAgJGRkfQ8J9jb28PPzw8AcObMGYwcOVJrYgrIT8tesWJFuteLFy8uPb9z547W+hUqVAAgT3I1xZ6SkoL+/fvj8ePHBseQEd988w1sbGwghED37t2RmpoKmUym85ZUhijjUgTr5/yAYkXspddkMhkqlS0hJcFB567g4dOXavWEEPD/fTMAIC4xDm1ndsCqY/LZ6VSRiuVHVqLtzA6ISzTsvssXoy6h27zvcP6O/PZbj189wbh14zFz+y8GxzJz+y8Ys2Yc3r5/CwA4fS0E3ef3NDhxYxz5P46MKCg/YvRhHEqMQ4lxyDEOJcahlN/jyK/Jb2biKEjyXAI8ePBgtVNomzZtih07diAyMhL79+/H119/jRkzZgAAypUrhylTpuhsz9PTE927d8fQoUMRFBSE8+fPY/Xq1fD09MSFC/JTYocOHZrlWx3p89NPP0m3bvr9999Rq1Yt/PnnnwgJCcHFixcRFBSERYsWoWPHjihdujT++uuvdG18+eWX0vORI0fi5MmTuHXrFm7fvo3bt29LM79du3aVDgr06dMH48ePx7FjxxAREYG1a9fiiy++wKZNm1C/fv0cidXKygrffvstAOW12k2aNEGZMmWy1O70Ed1gYW6qcVulsiXQv6t8Fn/ZlsNq267efig9/2HlaACAq7Mrto/dgs2jN6J88fIAgEkbp+rtQ0pqCsatGw8A+L7lYOybtAdLBv0JADjx70n8c/+y3jYuRl3CiX9PAgCWDPoTeybsxPA28gMk49aNR0qq9tO4GUfBiIM/YhgH41BiHEqMQ45xKDEOJU1xMPktmPJcAmxsbIx9+/ZJydnx48fRuXNneHh4oG3btti5cycAoHLlyjh27Bisra11trd161aULl0aixcvRpMmTeDp6Ym+ffvixo0bAICvv/4a8+bNy9mgIL+37ZEjR9CpUycAwKVLl+Dn54cGDRqgZs2aaNKkCYYNG4Y9e/YgKSlJ471vy5cvj65duwIADh8+jMaNG8Pd3R0VKlRAhQoV8PChPNErWbIklixZAiMjIyQkJODXX39Fs2bNULt2bfTu3Rvnz5/HN998g+nTp+dYvIrToBWysviVgp2Nlc7tXnXk14KHXryp9vo/N+4BADo0q4P70fJbQi0dvBi2lrZwtHbEH/0XAACu/ndV7+npihlBz3Ie6PhFB5iZmKFcsbJYMmgRAGDG1v/TG8eCvb8DkCdb5YqVRSGzQmjr2Qae5TwAAJF3dV+rLIRgHPk8Dv6IYRwA41DFOJQYhxzjUGIcSmnjYPJbMOW5BBiQL9508uRJrFu3Di1btkTRokVhamqKwoULw8vLC4sWLcLFixcNmlF0c3PD+fPnMXHiRFSuXBmWlpaws7NDo0aNsGHDBmzfvh0mJiYfISrAxsYGO3bswKlTp9C/f39UrFgRNjY2MDExgaOjI2rXro2hQ4fiwIEDOHLkiMY2NmzYgN9++w116tSBnZ0djIw0f8R9+vTBqVOn0LFjRzg5OcHU1BTFixdHy5YtsWXLFmzevDnLt3fSpU6dOnB3dwcgPwVckfjnpPgEzddFJyR+AAA42ikPlqhei2xspHwfUoX2U9MB+TWaAFDX/Qu1110cXQAAb+Lf6u3n41dPAACliqj/EfMsL0+4Xr3TfD9qTX1kHPkzDv6IYRwKjEOJcSgxDjnGocQ4lFTjYPJbMGVbAuzl5SXdP3batGmZruvl5WVQHSMjI/Ts2ROBgYF4+vQpkpKS8OLFCwQFBWHo0KEZWrHZwcEBM2fOxNWrVxEXF4fXr1/jxIkT6NGjh8569+7dgxBCWnBLl4zE2KBBAyxfvhzXr1/H27dv8eHDB7x8+RJhYWFYtGgRWrVqpTU5NTU1xdixY3Hu3Dm8fv0aKSkp0n5dXV3Vyn755ZfYtWsXnj9/jqSkJDx+/BiBgYHSLLK+PgcHB0MIgeDgYL3xp/X27Vv8999/AIBu3bqpLeCVU178757Ahe1t1F63t5EvQBb77r30Wsw75S2gXsW9lp6rJi2aVPjfaa2LAherzeodvSRf6KthlQZ6++lRTr5o24HzgdJrQgj8dWgZAKBiCXed9VX7yDjyZxz8ESPHOOQYhxLjUGIccoxDiXEoKeJg8lsw5ckZYMr7Nm3ahPfv5Qlnv379sqXN0Is3dG4/cvoiAKBLqy/VXm/gWQUAsP3QWfRvJu/Lt3N7YPmRlVh9fC2+mdMNANCjUTe9fXAr6iY9b/FTa+wM3YWJGybjjwPy606HtNC/mNqYDqMAAIsP/oUJGyYhIGwvWvzUWtpexkn/mQ2MI3/HwR8xSoxDjnEoMQ4lxiHHOJQYh1KjNronujRh8ps/yERm77mTh02bNk26vrUAhp/rkpOTUbVqVdy8eROenp5678Wsz9u3b2FnZwcAWPrTYLiVKqq2XQiBbQfPYMXWowCAXYvHw6qQ+h+sYT8tx42oxzg09QBm75krzRAqtKjRHKPa/2DQbZpi38fi69+6pnv9t16zUMPtc4Niuhh1SVr0SNWOcVthU8hGQw11QgjG8T/5MQ7/ZfKF3B5FXcf6+ePhXMIVPUb8DHMLS0PCUXNy/0YE7VkL7w6+mfoxkJgQj42/T8TzR/fQc+QslHCrlOE2GIcS45BjHEqMQ4lxyDEOpSzH4Rpq+L7yWPLbubhPhtvPiGrVquVo+xmlyAfevHmjca0kVUyAC174uSImJgYxMTF4+fIl5s6di23btgEAdu7cCR+frH1BVRNgAOjzdRPU+awCbK0t8T4xCQvX7sM/N+SLEI0f2AlN6lVP18bzl2/w3ZgFOOwvP8019n0szt+JRKpIRe3yngYlOWndj76PG49uwsHaAbXK1tR7mmtaKakpuBh1CS9jX6KCSwW4ObtmuA+MQyk/xfGwRlnp//kjRolxyDEOJcahxDjkGIcS44DBCXBeS34BJsC6MAEueOHnCtX3XKFt27bYu3dvlttWDHiPauVw/or2+x9rS34VHj2LQYn3rbVuJ/pUhJRQT975I0aJccgxDiXGocQ45BiHUoGPw4AEOC8mvwATYF14DTB9VCYmJihXrhwmT56MLVu2ZGvbk7/vgpU/D0Vbbw+11/t2bopdi8frTH4BoERRx2ztD9HHwmu6lBiHHONQYhxKjEOOcSgxDt3yavJLuhXIGWDKXxRHfDRd25th9+pmT6eIclDaGWCFAn8kXwXjkGMcSoxDiXHIMQ6lAhuHjhngvJ78cgZYO84AExHlEzySr8Q45BiHEuNQYhxyjEOJcajL68kv6cYEmIgoH+GPGCXGIcc4lBiHEuOQYxxKjEOOyW/+xwSYCpzomLfYdTgUq3ccx6Z9p/Dvrf+4GBrlK/wRo8Q45BiHEuNQYhxyjEOpoMeRX5LfR9cfZrhOQcJrgCnPU5zzv/2PcbC1LqS13POXbzDjz624EfVY4/afRnRDXfteOdVNomyj7RrgtArsNV0aMA45xqHEOJQYhxzjUCowcahcA5yfkt/149ci4lxEhutmBK8BJvoETFnwN1JSUjVue/QsBt+NWSAlv51b1EOfr5ugQ9PaUpmpv2/K0P6EEEhJTcl8hwGkilSkCs19NlRKakqWZrAZh1J+iUOhoB/JV8U45BiHEuNQYhxyjEOpoMWR35JfZ1fnDNctSDgDTHme4ogPAHRr2wB9vm6qtj01VaBlv58AAC7Ojpg/sQ8c7KzVyuw5GoY/NwbisH+g3v3FJcZh0oYpuPrwmvRa94bd4OvdEzKZzKA+33x8E37LR6i99nu/+ahc0rCjm0IIbDuzAyuOrpReK+NUBgv6zYWVuZVBbTAOpbwWh6EzwAoF5ki+ARiHHONQYhxKjEOOcSjl+zhcQ/Nl8tvj517oUe7bDLeREZwBJvpEbNp3GkkfktVei7h8GwBgZmqCZf83JF3yCwAdmtVJd/9gTZKSk+Azq7NakgIAf5/ahHkBCwzq47WH19MlWwAwYuVI3Hx8y6A2Zu+Zq5ZsAcD96PvwmdUZSclJeuszDqX8EocuBe1Ivi6MQ45xKDEOJcYhxziU8nsc+TX5zUwcBQkTYMo3qruXAQCEnFdPIjYEnAAA/DjQB2amJlrrD+7WUu8+9oQFAAAqFK+AwCn7cNg/EFvGyE+dPnTxMGLfx+ptY8TKkQCAKV0m4bC/fNZ5SpdJAAC/5cP11o99H4ujl44BADaP3ojD/oE4NPUAXJ1dAQC7z+1hHPk8Dv6IYRwA41BgHEqMQ4lxyDEOJU1xMPktmJgAU75Rq2pZAMDDpy/VXr9+9xEAoGgRe531dSXHCiuPrgYAzOg+DcZG8tNQHazs0a2h/DST8Nu6FxxQvb60YZUGGp/ruwb1/J1IAEDXLzvD0doRACCTyTDH91cAwIqjqxhHPo+DP2IYhwLjkGMcSoxDiXHIMQ6ltHEw+S2YmABTvvE2Nk7ndnsbw67F1EWRDJkYqSfLySny066NZDn/lVIskGRibKr2+of/9UGRQOnCOLJPbsTBHzGMQxXjkGMcSoxDiXHIMQ4l1TiY/BZMTIAp37h0/R4AoGSxwmqv29vKE99Hz2J01v+QrH/l3b5N+wAAxqz9UVrpN+ZdDLad2Q4A8ChXS2d91UTm1NXTGp/rS9rqVJCvXP33qU14FfcagDwJm7LJHwDQr1lfxpHP4+CPGDnGocQ45BiHEuNQYhxyjENJEQeT34KJq0BTnqe6CjQA7Fs2Se105rBLtzB5wd8AgF1//ggrSwuN7Ww/eAadK43Sua+k5CS0ndlB47ZmnzfFuI5j9Pb35uNbWq8tNXTl4bl75uHQxSMat+2btAdmJmY66zMOpbwYR0gJY67uqYJxKDEOOcahxDiUGIcc41Chch9gQ+Sl5LdzcZ8Mt50RXAWa6BPR1tsz3bW8ntXLw9REfhrq6Flr0q0SnZoqsGr7MSzbojmBUWVmYoZd47dLCxwpDPiqH8Z2GG1QH91dKuD3fvPTvb5owEKDb7szqv1I9GjUTe21qqWqYPf4HXqTLYBxqMqrcfBIvhLjUGIccoxDiXEoMQ45xpE5eSn5Jd04A0x5nuKIT5XypTB3fG8YG6c/rvPoWQz6jP9D+v/GdaqiopsLUoXAiq1HpdcNuQ+wghACqSLVoGs8tVFc+5mVa1VTUlNgJDMy+J63aTEOpbwSh+p9gHkkX4lxKDEOOcahxDiUGIcc44DBM8B5MfnlDLB2nAGmfOOnEd00Jr8AUKKoIzbM+QFFHORfiBNh/2LZliNqye9PI7pprKuNTCbLUrIFyBOtrC7UZGxknOlkC2AcqvJiHDySr8Q4lBiHHONQYhxKjEOOcRgmLya/pBtngCnPUxzx2bV4PKwK6f+D8OLVW5yKuIY3sXEwNzPF55VcUblcSXnScq/uR+gxUdaozgAr8Ei+EuNQYhxyjEOJcSgxDrkCHYeeGeC8nPxyBlg7zgBTgVPEwRY+X32B3p2aoFvbhqhSvlSWZuyIPgU8kq/EOJQYhxzjUGIcSoxDjnFolpeTX9KNCTARUT7BHzFKjEOJccgxDiXGocQ45BiHOia/+RsTYCKifIQ/YpQYhxLjkGMcSoxDiXHIMQ45Jr/5HxNgylf+e/ICUxb8jeZ9pqN5n+n4duRc7Dh0FnHxCbndNaKPhj9ilBiHEuOQYxxKjEOJccgV9DjyS/J7cmNwhusUJFwEi/K8jFz0TkRERERE+QsXwSIiIiIiIiJKgwkwERERERERFQhMgImIiIiIiKhAYAJMREREREREBQITYCIiIiIiIioQmAATERERERFRgcAEmIiIiIiIiAoEJsBERERERERUIDABJiIiIiIiogKBCTAREREREREVCEyAiYiIiIiIqEBgAkxEREREREQFAhNgIiIiIiIiKhCYABMREREREVGBwASYiIiIiIiICgST3O4AUVYJIQAAb9++zeWeEBERERHRx6bIAxR5gS5MgCnPe/nyJQCgVKlSudwTIiIiIiLKLbGxsbCzs9NZhgkw5XmOjo4AgAcPHugd8ES6vH37FqVKlcJ///0HW1vb3O4O5WEcS5RdOJYou3AsUXb5FMeSEAKxsbFwcXHRW5YJMOV5RkbyS9nt7Ow+mS8h5W22trYcS5QtOJYou3AsUXbhWKLs8qmNJUMnwrgIFhERERERERUITICJiIiIiIioQGACTHmeubk5/P39YW5unttdoTyOY4myC8cSZReOJcouHEuUXfL6WJIJQ9aKJiIiIiIiIsrjOANMREREREREBQITYCIiIiIiIioQmAATERERERFRgcAEmIiIiIiIiAoEJsCUZ92/fx+jR49GpUqVYGVlBUdHR9SuXRuzZ89GfHx8bnePclFERAR++uknNG/eHCVLloS5uTmsra3h7u6OPn364PTp0xlqLzAwED4+PlJbJUuWhI+PDwIDA3MoAsoLfvzxR8hkMukRHBystw7HEik8ePAA/v7+8PT0hJOTEywsLFCqVCk0bNgQU6dOxZUrV3TW51iipKQkrFixAi1atEDx4sWlf+sqVqyIPn364MyZMwa1w7GUfz1//hz79u3D1KlT0apVKxQpUkT6N6t3794Zbi87xkpycjL++usvNGzYEE5OTihUqBDKlSuHQYMG4d9//81wnzJFEOVBAQEBwtbWVgDQ+HB3dxe3bt3K7W5SLmjYsKHWcaH66NWrl0hMTNTZVkpKiujXr5/Odvr37y9SUlI+UnT0qbhw4YIwMTFRGwtBQUFay3MskaqFCxcKKysrneNhxIgRGutyLJEQQty7d09UrVpV7791w4YNE6mpqRrb4FjK/3R9tr6+vga3k11jJTo6WtSuXVtrG+bm5mL58uVZjFo/JsCU50RGRopChQoJAMLa2lrMnDlTnDlzRhw7dkwMGDBALQl++/ZtbneXPrJy5coJAMLFxUWMGDFCbN++XYSFhYmzZ8+KefPmiRIlSkhjpFu3bjrbGj9+vFS2Zs2aYtOmTSIsLExs2rRJ1KxZU9o2YcKEjxQdfQpSUlKkf8CdnZ0NSoA5lkhhxowZav9OzZ49WwQHB4sLFy6Io0ePitmzZ4svv/xSjBw5UmN9jiVKSkpSS34/++wzsWbNGnH27Flx+PBhMXXqVLUDLL/88ovGdjiW8j/V5LJ06dKiefPmmUqAs2OsJCcniwYNGkhlO3XqJAIDA8W5c+fEwoULpX9PjYyMxIEDB7Iheu2YAFOeo5jhMzExEWfOnEm3/bfffpO+XP7+/h+/g5Sr2rRpI7Zs2SKSk5M1bo+Ojhbu7u7SGDlx4oTGcjdu3JBm+Dw9PUV8fLza9ri4OOHp6SmNRZ5xUHDMnz9fABCVKlUSEyZM0JsAcyyRwtGjR9XOQklKStJaVtMZKhxLJIQQ27Ztk8ZRvXr1NP57FxERIUxNTQUAYW9vLz58+KC2nWOpYJg6darYu3evePr0qRBCiKioqAwnwNk1VlauXCnt+/vvv0+3/datW9LZneXLl083ZrMTE2DKU86dOyd9eQYNGqSxTEpKiqhcubL0R1/XDwwqmPbu3at2epgmQ4YMkcqcPXtWY5mzZ8/q/GNO+c/9+/eFtbW1ACCCg4OFv7+/3gSYY4mEkP/bVKFCBQFAfP7555n6ccexREIIMXLkSOkzDggI0FrOx8dHKvfPP/+obeNYKpgykwBn11hR/DZ3dHQUcXFxGsv88ssvUjtbt241qH+ZwUWwKE/ZvXu39LxPnz4ayxgZGaFXr14AgNevXyMoKOhjdI3yEG9vb+n5nTt30m0XQmDPnj0AgEqVKqFu3boa26lbty4qVqwIANizZw+EEDnQW/qUDB06FO/evYOvry8aN26stzzHEikcPnwYt27dAiBfQM3ExCRD9TmWSCEpKUl6XrZsWa3lypUrp7EOxxIZKrvGys2bN3Ht2jUAQNeuXWFpaamxHdWFuXbt2pXV7mvFBJjyFMXqvVZWVvDw8NBaTvWHaUhISI73i/KWxMRE6bmxsXG67VFRUXj8+DEA6E1yFNsfPXqEe/fuZV8n6ZOzdetW7Nu3D46OjpgzZ45BdTiWSGHbtm0AAJlMhrZt20qvx8TE4NatW4iJidFZn2OJFBSJBgDcvXtXaznFAV6ZTIYKFSpIr3MskaGya6yo3n1DVzvFihWDu7s7gJz9/c4EmPIUxdGj8uXL6zx6XqlSpXR1iBROnDghPa9cuXK67VevXpWeq44lTTjWCobXr19jxIgRAIBff/0VRYoUMagexxIphIaGAgBcXV1hY2ODv//+G9WrV0fhwoXh7u6OwoULo2LFipgzZ47aQToFjiVS6NatG2xtbQHI/x6lpKSkK3PhwgXs378fANC9e3epPMCxRIbLrrGSmXb+++8/xMXFGdzXjGACTHlGQkICXrx4AQAoWbKkzrIODg6wsrICIP8CESmkpqZi1qxZ0v937do1XZmHDx9Kz/WNtVKlSknPOdbyr3HjxuHp06eoX78++vXrZ3A9jiUC5H93rl+/DgAoUqQIRowYgR49eqS71+/NmzcxduxYNGnSBK9fv1bbxrFECkWKFMH69ethaWmJkJAQ1K5dG+vWrUNoaCiOHj2K6dOno3HjxkhKSkKtWrUwd+5ctfocS2So7BormWlHCKFWLzsxAaY8IzY2VnpubW2tt7wiAX737l2O9Ynynvnz5yMsLAwA0KlTJ42n0mdkrCnGGcCxll+dOnUKK1asgImJCf766y/IZDKD63IsEQC8efMGqampAIDLly9j4cKFKF68ODZs2ICYmBjEx8fjxIkT0vV1Z86cQd++fdXa4FgiVe3bt8f58+fRv39/XLx4Eb6+vqhXrx6++uorTJs2DZaWlliwYAFOnTqFokWLqtXlWCJDZddY+dTGHBNgyjMSEhKk52ZmZnrLm5ubAwDev3+fY32ivOXEiRMYP348AMDZ2RlLlizRWC4jY00xzgCOtfwoKSkJAwcOhBACI0eORLVq1TJUn2OJAKidxpeQkABLS0sEBQWhR48ecHBwQKFChdCoUSMcP34cn3/+OQD5AjDnzp1Tq6fAsURJSUlYt26d1sWpnj17hg0bNuDo0aPptnEskaGya6x8amOOCTDlGRYWFtJz1dUMtVFcQ1WoUKEc6xPlHf/++y98fHyQnJwMCwsLbNu2Dc7OzhrLZmSsqV6rx7GW//z888+4fv06SpcuDX9//wzX51giQH0cAED//v3VFjJSKFSoEGbOnCn9/5YtWzS2wbFUsMXFxaFZs2b45ZdfEBMTg3HjxuHatWtITEzEmzdvcPjwYTRo0AARERHo2LEj5s2bp1afY4kMlV1j5VMbc0yAKc+wsbGRnhtySoTiiLshp0tT/hYVFYXmzZvj1atXMDY2xubNm9GoUSOt5TMy1lRndjjW8pfr16/jl19+AQD88ccfaqdlGYpjiQD1cQAAzZs311q2adOm0iKP4eHhGtvgWCrYpk2bhlOnTgEAVq5ciV9//RWVKlWCmZkZbG1t8dVXXyEoKAje3t4QQmDs2LG4dOmSVJ9jiQyVXWPlUxtzGbsJHVEusrCwQOHChfHy5Uu9F8W/evVK+gKpXpRPBc/jx4/RrFkzPH78GDKZDKtWrUKHDh101lFdoEHfWFNd6IFjLX+ZP38+kpKSULZsWcTHx2Pz5s3pyqguYnT8+HE8ffoUANCuXTtYWVlxLBEA+Sl9Tk5OiI6OBqD787WwsECRIkXw9OlTqTzAv0skJ4TAqlWrAADu7u7w9fXVWM7ExAQzZsxAgwYNkJqaijVr1mD+/PkAOJbIcNk1VtK2o+tOCop2ZDKZ3gWzMosJMOUpVapUwalTp3D79m0kJydrvRWSYrVNQPNtbqhgePHiBb766ivpPol//PEHevXqpbdelSpVpOeqY0kTjrX8S3Ea1t27d9GtWze95WfMmCE9j4qKgpWVFccSSapWrYrg4GAA0HjbGlWK7ar/xnEsESC/tldxz+iaNWvqLKu6yKPqmOBYIkNl11hJ206NGjX0tlOqVKlMnXllCJ4CTXlKgwYNAMhPjzh//rzWcqr3ea1fv36O94s+PW/evEGLFi2ke8/NmjULQ4cONaium5sbXFxcAKiPJU1OnjwJAChRogRcXV0z32HKlziWSEH1sgvFQTlN3r59K93yr0SJEtLrHEsEqB8USU5O1ln2w4cPGutxLJGhsmusKH6/62vn6dOnuHnzJoCc/f3OBJjylI4dO0rPV69erbFMamoq1q1bBwCwt7eHt7f3x+gafULi4+PRpk0bREZGAgAmTZqEH3/80eD6MplMOk36+vXrCA0N1VguNDRUOlLZoUOHDN0ehz59a9asgRBC50N1YaygoCDpdcU//hxLpPD1119Lz3ft2qW13K5du6RVfRs2bCi9zrFEAODo6AhbW1sAwNmzZ3UmwaqJhpubm/ScY4kMlV1jxd3dXZoV3rp1K+Lj4zW2s2bNGum5j49PVruvnSDKYxo2bCgACBMTE3HmzJl023/77TcBQAAQ/v7+H7+DlKsSExNF8+bNpTEwYsSITLVz48YNYWxsLAAIT09PER8fr7Y9Pj5eeHp6SmPx5s2b2dB7ymv8/f2lsRYUFKSxDMcSKbRq1UoAEEZGRuLo0aPptj958kSULFlSABBmZmbi4cOHats5lkgIIbp16yb93Zk2bZrGMjExMaJKlSpSuUOHDqlt51gqmKKioqQx4evra1Cd7BorK1eulPY9dOjQdNtv374tbG1tBQBRvnx58eHDhwzHZygmwJTnREZGikKFCgkAwtraWvz888/i7Nmz4vjx42LgwIHSl8vd3V28ffs2t7tLH1mnTp2kMdCkSRPxzz//iMuXL2t93LhxQ2tb48ePl9qqWbOm2Lx5swgPDxebN28WNWvWlLZNmDDhI0ZInxJDEmAhOJZI7saNG8Le3l4AEBYWFmL8+PHi5MmTIjw8XPz5559S8gtA/Prrrxrb4Fiia9euCUtLS+mzbteundi+fbuIjIwUZ86cEfPmzROlS5eWtjdt2lRjOxxL+d+pU6fE6tWrpcfs2bOlz7V+/fpq21avXq21newYK8nJyaJ+/fpS2a+//locPHhQnDt3Tvzxxx/C2dlZOkB44MCBHHg3lJgAU54UEBAgHSXS9HB3dxe3bt3K7W5SLtA2JrQ9ypQpo7WtlJQU0bdvX531+/XrJ1JSUj5egPRJMTQB5lgihVOnTomiRYtqHQcymUxMnjxZa32OJRJCiCNHjogiRYro/TeuSZMmIiYmRmMbHEv5n6+vb4Z+E2mTXWMlwqWurAAAH/dJREFUOjpa1K5dW2sb5ubmYvny5dn9NqTDBJjyrHv37omRI0cKd3d3YWlpKezt7YWnp6f49ddfRVxcXG53j3JJdibACvv37xcdOnQQLi4uwszMTLi4uIgOHTrk+BFK+vQZmgArcCyREEK8ePFC+Pv7i88//1zY2toKCwsL4ebmJvr06SMiIyMNaoNjiV68eCF+/fVX4eXlJZycnISpqakoVKiQcHNzE127dhW7d+8WqampetvhWMq/sisBVsiOsfLhwwexePFi0aBBA1G4cGFhYWEhypYtKwYMGCCuXLmSlXANJhPifystEBEREREREeVjXAWaiIiIiIiICgQmwERERERERFQgMAEmIiIiIiKiAoEJMBERERERERUITICJiIiIiIioQGACTERERERERAUCE2AiIiIiIiIqEJgAExERERERUYHABJiIiIiIiIgKBCbAREREREREVCAwASYiIiIiIqICgQkwERERqQkJCYGPjw+KFSsGExMTyGQyyGQyvH79Ore7RrlMMRamTZuW2135aHr37g2ZTAZXV9cc20d2vK/BwcFSO8HBwdnWN6L8hgkwEVEmqP7QSPuwtLREmTJl0LFjR/z9999ITk7O7e4SGWzv3r1o3Lgxdu/ejWfPniElJSW3u0RERJRtmAATEWWz9+/f48GDB9izZw969OiBL7/8Ek+fPs3tbuULrq6ukMlk6N27d253Jd8aPXo0UlJS4OLignXr1uH8+fO4fPkyLl++DFtb29zuHhERUZaY5HYHiIjyuiFDhuD777+X/v/du3eIiIjA3Llzce/ePYSHh6NDhw4IDQ2FTCbLxZ4S6fbgwQPcunULADBx4kT07Nkzl3tElPvWrFmDNWvW5HY3iCibMAEmIsoiZ2dnVKtWTe21unXrokePHqhTpw5u376NsLAw7Nu3D+3atculXhLp9+jRI+m5u7t7LvaEiIgoZ/AUaCKiHOLg4IAJEyZI/3/w4MFc7A2RfomJidJzU1PTXOwJERFRzmACTESUg+rUqSM9v3//frrtKSkpWLt2Ldq2bQsXFxeYm5ujcOHCaNCgAebNm4f3799rbdvLywsymQxeXl4AgFu3bsHPzw8VKlSApaUlZDIZ7t27p1YnMTERy5YtQ5s2bVCiRAmYm5vDysoKVatWRf/+/XHo0CEIIbTuc/fu3ejSpQtKly4NCwsL2Nvbw9PTE9OnT8erV6+01ku7iurr168xdepUVK1aFVZWVrC3t0ejRo2wceNGnbEq3sO1a9emW3xM8T4ovHr1CqtXr8Z3332HKlWqwNraGmZmZihWrBhatGiBZcuWISkpSWufVa1btw6NGzeGg4MDrK2tUb16dfz00094+/YtAMNXcA0KCoKvry/Kli0LS0tL2Nraonr16hg7diweP35sUF/0effuHWbNmoV69erB0dER5ubmKFmyJDp37ox9+/ZprKP4fLy9vaXXvL291d7fjJwCeu/evXT1tm3bhmbNmsHZ2RmFChVCpUqVMGHCBJ0rS0+bNk1qBwDevHmDGTNmoGbNmrC3t9far+wap48ePcKoUaPg7u4OS0tLODk5oU2bNnoPZsXFxWHLli3o378/atSoATs7O5iamsLJyQmNGzfGnDlz8O7dO51tpB1Tx48fR5cuXVCqVCmYmppqXJH46dOnmDRpEjw9PaXPvlSpUujatSuOHj2qc38Kf//9N7y8vKSxXq1aNfj7+2d5BfD79+/DyMgIMpkMkyZN0lt+06ZN0ntw4MABtW1PnjzB4sWL0blzZ1SoUAFWVlYwNzdHiRIl0KFDB2zZsgWpqala2067WnJqaipWrVoFb29vFC1aFEZGRmrrDOhbBTo7Pu+0jh49ivbt26N48eKwsLBA2bJl4efnp3aWRlZk9jsCADdv3sSwYcNQrVo12NjYwMzMDC4uLqhRowb69u2LLVu2qB1MI/rkCCIiyrCgoCABQAAQ/v7+Wstdv35dKteyZUu1bffv3xeff/65tF3To3z58uLGjRsa227cuLEAIBo3bix2794trKys0tWPioqSyl+4cEG4ubnp3F/aOgoxMTGiSZMmOus5OzuLs2fPauyrr6+vACDKlCkjrl+/LlxdXbW2M3ToUK2x6no0btxYrU6ZMmX01qlZs6Z48uSJ1s8vKSlJdOjQQWv9ChUqiHv37ukdC+/fvxfffvutzr5YWVmJgIAArX0xRGRkpHBxcdG5n06dOon379+r1VN8Proeq1evNrgfUVFRavX69u2rtV0XFxdx7do1je34+/tL5W7evKlx3Kj2KzvHaXh4uHB2dtbazqhRo7TGb8h4dXNz0xq3EEJtTE2cODFd/TJlyqiV37Bhg8a/AaqPfv36iQ8fPmjc34cPH0SXLl201i1btqy4e/eu3rGuS4MGDaTY9WnTpo0AIJycnNT6nJycLIyMjPS+v1999ZWIjY3V2Lbq3+/AwEDRrFmzdPV9fX2l8qrjQpPs/rynTZumtR07Oztx8uRJvXEFBQVpLJPV78jWrVuFmZmZ3ngvX76sNVai3MYEmIgoEwxNgLdt2yaV69u3r/T6ixcvRKlSpQQAYW5uLvz8/MS2bdtEeHi4CAoKEhMmTBCWlpbSD8/Xr1+na1vxo8vNzU1YW1sLJycnMWvWLBESEiJCQ0PFH3/8IaKjo4UQQly9elVYW1tLffHx8RFbtmwR4eHhIjQ0VKxbt0589913wsrKKl0CnJCQIGrVqiUACGNjY9GzZ0+xadMmERoaKk6dOiVmzpwpChcuLAAIBwcHce/evXR9VfyAdHJyEhUqVBA2NjZi8uTJIjg4WERERIjly5eLkiVLSv07ePCgWv27d++Ky5cvS8ldhw4dxOXLl9Ued+/eVatTsmRJ8cUXX4gZM2aIffv2ifDwcBESEiI2bNggWrZsKe0rbeKsasiQIVK5qlWritWrV4vw8HBx7Ngx4efnJ4yNjcUXX3yhcyykpqZKP+YBiHbt2on169eLkJAQcfbsWfH777+L0qVLCwDCzMxMhIeHa+2PLg8fPhQODg4CgJDJZKJPnz7i0KFDIiIiQqxbt07tYMs333yTru7ly5fFqlWrpDKrVq1Se39fvXplcF9UE+DatWsLAKJOnTpi06ZNIiIiQhw4cEB07dpVKlO6dGnx9u3bdO2oJsCfffaZMDU1FcOGDRNHjhwRERERYtOmTeLMmTNCiOwfp66ursLc3FyMHz9enDx5Upw7d04sXLhQFC9eXOrTggULNMZfv359Ub16dTFp0iSxa9cuce7cOREaGiq2bNkivv32WymBq1ixYrqDEQqKfVSvXl3676pVq0RYWJg4ceKE+P3336WyW7ZsETKZTPp7MW/ePHHw4EFx/vx5sWPHDtG6dWupvZEjR2rc34gRI6QyFStWFCtXrhTh4eHi6NGjYtCgQcLIyEj6LDObAC9ZskSqHxISorXcixcvhKmpqQDSHxD78OGDMDIyEk2aNBGzZ8+W4gwODharVq0S9erVk/bRq1cvje2r/v3+7LPPBADRvn17sXPnTnH+/Hlx4MABsXnzZqm8vgQ4Oz9vT09PnZ8BAGFraysePHigMy5NCXBWvyNPnz6VDrI4OzuLn376SRw+fFhERkaKkJAQsXbtWtG3b1/h6OjIBJg+aUyAiYgywZAE+MOHD6Ju3bpSuXXr1knbunfvLv2gSpu4KURGRko/NiZOnJhuu+qsg4uLi7h//77W/ip+9BgZGYlNmzZpLffixQsRHx+v9ppi9sne3l5ERERorHfv3j0pMejevXu67aozjHZ2duLKlSvpyty6dUtYWFhIP0Y1Uczqqs7OaHPz5k2d21WTvaNHj6bbHhkZKSUV9erVS/e+CKF+gEPbWFi2bJkAIExNTUVgYKDGvsTExIiqVasKAKJ+/fp6Y9Okc+fOUj9WrFiRbntCQoLw9vaWyhw4cCBdGUNmkAyhmgADEK1bt9Y48/jTTz9JZcaOHZtuu2oCbGRkJA4dOqR1n9k9Tk1NTcWJEyfSlXn06JF0sMbKyko8f/48XRl9Y+/IkSNSMqPpsxJCqL1/TZs2FQkJCRrLRUdHCzs7O+kgm7YZXsX7Y2RkJK5fv6627Z9//pH6U6tWLY0zp2vXrtU71vXRldiqUk2UFQc4FFJTU8WtW7d07mfq1KnSgSBNn4XqOAcgJk+erLM9fQlwdn/e2j6DdevWSWW6dOmiMy5N39+sfkdWrlwpta8rwY2Pj9f495LoU8EEmIgoE3QlwO/evRPBwcHCy8tLKlOmTBnpB2xUVJQwNjYWAMTevXt17mfcuHFSgpuWagKsmlyndejQIancDz/8kKE4Y2NjpR/Xf/zxh86yixcvlhKHd+/eqW1TTSwWLlyotQ3FacKOjo4at2ckATZEjRo1BADh5+eXbtvgwYOlPmtK2BV8fHy0joXU1FRRrlw5AUCMHj1aZ18OHDggtaPvB3Vajx49ksZU2lPtVUVFRQkTExMpKU0rJxJgc3Nz8ejRI43lUlJSRLVq1aTPPDExUW27agKsegZFWjkxTjWNCYUtW7ZI5WbPnq1zf9p07NhRABBt27bVuF018dd0WYKC4iBCiRIltCbJQsgPyJUoUULjAbXvv/9e2p+2xEgIIVq1apWlBFgIIdq1ayeA9Kc2q1KcKl22bNlM7SM5OVkUKVJEABBz5sxJt111nLu7u4vk5GSd7elLgA1h6Odt6GdgYmKS7vINXd/f7PiOzJw5UwDy2WGivIyLYBERZdH06dPVFguytraGl5cXgoODAchvk7R7926Ym5sDAPbv34+UlBRYWlqiVatWOttu1KgRAODx48d48OCBxjJmZmbo0qWL1jZUFz764YcfMhAZcOLECbx58wYA0LlzZ4P6+uHDB5w/f15jGZlMhu7du2ttw8PDAwAQExOT5UV3VAkh8PTpU9y8eRNXrlyRHiVKlAAAXLp0KV0dxaJBNWvWRNWqVbW23atXL63brl69ijt37gAw/P0DgLNnz+osm1ZwcDBSUlIAAP369dNaztXVFV999VW6OjmpefPmcHFx0bjNyMgIvr6+AOSfeWRkpNZ2evTooXVbdo9TAOjTp4/WbT4+PrC3twcAgxaXio6Oxq1bt9TGnpOTEwDNY09V/fr1tS6+BAABAQEAgLZt20p/YzQxMTFBvXr1AKQfX4oYqlevLn0HNenbt6/OvhpC8TlGR0fjyJEj6bY/ePAAISEhAKDzb4VCamoqHj9+jBs3bkjv7bVr11CyZEkA+t/fb775BsbGxhkNQ6esfN6GfgbJycnSvzGGyI7vSPHixQHIFxjcs2ePwfsm+tTwPsBERDnEzc0NnTt3xpgxY+Ds7Cy9HhERAQCIj4+HiYnhf4afPn2K0qVLp3u9QoUKsLCw0FrvwoULAIDSpUujTJkyBu9Pta+A8sePIZ4+farx9SJFiqBw4cJa6zk6OkrPY2NjpSQjs/bv348lS5bg5MmTiI2N1VruxYsXav+fkJCA27dvA4DOH6MA4OnpqXWb6vunSD4Moe390+bKlSvS8y+++EJn2S+++AKBgYGIj4/H3bt3UaFChQztK6Nq166tc7vqSumXL19G3bp1NZb77LPPtLaR3ePUzMwMn3/+udZ6pqamqFmzJoKCgnD58mWNZUJCQrBw4UIcPXoUMTExWttKO/bS0hV3SkoKLl68CABYunQpli5dqrMtBdW4ExMTcevWLQAZ+6wyq3379rCxsUFsbCw2btyY7iDgpk2bpJXotR30EEJg48aNWLlyJc6dO6dztfysvL8ZkV2fd0a/L99++61B/cuO70j79u1hb2+P169fw8fHB15eXmjXrh0aNWqEGjVqZPuBBKKcwgSYiCiLhgwZgu+//x6AfIbTwsICRYoUgZ2dncbyz58/z9R+4uPjNb7u4OCgs57iB1dGfvQoZHdfLS0tddYzMlKemJSV2UkhBAYMGICVK1caVD7tD2jV2WfFzI02urZn9/unjeoPbtWDLZoUK1ZMY72coq8/RYsWlZ7r6o+ucZ7d77Ojo6PeH/OKfmvq87Rp0zB9+nSD+qAreQN0xx0TE4Pk5GSD9qNKNe5Xr15JCWdGPqvMKlSoEHx8fLBu3Trs3r0b8fHxan8XFLdCq1WrFipVqpSufkJCAjp16oTAwECD9peV99dQ2fl5Z9f3Ja3s+I4ULlwYAQEB6NatGx49eoSgoCAEBQUBAGxtbdG0aVP07dsXbdu2zdS+iD4WJsBERFnk7OyMatWqGVxekdgVKVJE+vFgCDc3N42v5+RRd9UkNDIyEqampgbVU5x+mFtWrVolJb81atTADz/8gC+++AIlSpSApaWl9J716tUL69ev13nv46xQff/27t2r81RWVfp+BOuiuGfupyK7+qNrnGf3OM1Kn48dOyYlQ2XLlsWYMWPQoEEDlC5dGlZWVtJZH1OnTsWMGTP0tmdo3P3798eIESMM6qOZmZnG1z/W2OnRowfWrVuHuLg47NmzB926dQMA/Pvvv9KMurbZ35kzZ0rJb+PGjTF06FDUqlULxYoVQ6FChaSDaI0aNcKpU6f0frez+vczuz/vnPoMsus70rBhQ9y+fRs7duzAgQMHcPLkSTx8+BBv377Frl27sGvXLrRo0QI7d+7Ue8CTKLcwASYi+sgUpwDHxsaicuXKOX7aWJEiRQAAT548yXBd1dOVnZyccj2xNdTy5csBAOXLl8eZM2dQqFAhjeW0zaConnodHR2tc1+6tqu+f/b29hk6UJIRqqeOP3v2DKVKldJaVvWURtV6OeXZs2cGb89sf7J7nL58+RIpKSk6v5uKfqfts2LsOTg4IDQ0VOsZAtkx+666byFEpsaX6ljPyGeVFU2bNkXRokXx7NkzbNy4UUqAFbO/RkZGGk/tFUJgxYoVAOSJ2PHjx9XOGlH1Mc5uALL/886p70t2fkcsLCzQo0cP6SBFVFQU9u/fjz/++AM3b97EoUOHMGnSJMyfPz/T+yDKSVwEi4joI6tZsyYA+bV3qtdl5ZRatWoBkC8uc//+/QzVVfQVgLQwTW4ydHbk33//BSC/Zk1b8iuE0LrokoWFBcqVKwcAOhdKAqDzM/xY759q4nPu3DmdZcPCwgDIT0cvW7ZsjvVJITw83ODtmT1AkN3vc1JSks7FipKTk6Vrb9P2WTH2vL29dZ4enx3ffTMzM2mBtszGbWFhIV0HnpHPKiuMjY2lBPfw4cN4+fIlhBDYtGkTAPl7p2nhtJiYGOkATpcuXbQmv+/evcONGzeypa/6ZPfnnVPfl5z8W+Tm5gY/Pz+Eh4dLifXWrVuzdR9E2YkJMBHRR9auXTspkVuwYMFH2Z9CRo/IN2vWTDqNbeHChTl2qrChFIt9JSYm6iynuC4yLi5Oa5k9e/bonBVv2rQpAPkiYoofuZqsW7dO67ZatWpJPwiXLVuGhIQEnf3OLC8vL2m2ctWqVVrLPXjwQFp5V7VOTjp8+LDW9zk1NRVr164FIJ9BUxysyaicGKeKfmmya9cuvHr1Stq3KkPG3oULF/QeqDBU+/btAQDXr1/HoUOHMtWGIobLly9Li+ZpomtsZZRi9vDDhw/YunUrzpw5g3v37qltS0v1emdd7++KFSsydW10ZmT3523oZ2BsbAwvLy+D+/kx/pbb2tpKi3jpW+yLKDcxASYi+sgqVqwo3bZo8+bNmDdvns7yUVFR0sxIZjRr1kxayfiPP/7A5s2btZZ9+fKl2iIt9vb28PPzAwCcOXMGI0eORGpqqtb6z549k05RzAmKhbwUtxbSRjGjtXfvXo2nHt65cwdDhw7V2cbAgQOlAxUDBgzQuHjNjh07sGvXLq1tGBkZYeLEiQCAu3fvolevXjqT97dv32LRokU6+6WJi4sLfHx8AACBgYEak7ekpCT07dsXHz58AADpc81piYmJGDRokMZFzWbNmiVd89m3b1+dt/HRJSfG6ZIlS3D69Ol0rz99+hRjxowBIJ9FV9zGSUEx9k6fPi2tJK4qOjoaPXv21B1QBowYMQLW1tYA5Ldu0nWwBpCvjP7PP/+ovTZo0CBprA8cOFBjMrdx40YcOHAgm3otX+1Y8V5t3LgRf//9NwD5Qa6vv/5aYx0nJyfplO1NmzZp/C6Fh4djypQp2dZPfXLi89b2Gfz999/SZ9CxY8cMLWyYHd+RQ4cO6Txo+ObNG+kME21rVhB9EnLj5sNERHldUFCQACAACH9//wzXf/nypShbtqzURqNGjcSKFSvE2bNnRWRkpDhy5IiYM2eOaNasmTAyMhJff/11ujYaN24sAIjGjRvr3d/Vq1eFtbW1tL9OnTqJrVu3ioiICHHu3DmxceNG4evrK6ysrERUVJRa3YSEBPHFF19IdT///HOxaNEicfr0aXHhwgVx/Phx8ccff4gOHToIMzMz4eHhkW7/vr6+AoAoU6aMzn6uXr1a2k/afgghxKRJk6Ttv/zyi7h48aK4deuWuHXrlnj48KFUbvbs2VI5d3d3sXLlSnHu3Dlx4sQJ4e/vL+zs7ISFhYWoVauWzn4NHDhQaqdq1apizZo1IiIiQhw/flz4+fkJY2NjUadOHanMtGnT0rWRmpoqfHx8pDLlypUTv/32mwgODhYXLlwQJ06cEEuXLhXdunUTVlZWonDhwjrfI23+++8/4eDgIAAIIyMj0b9/f3HkyBEREREhNmzYIGrUqCH1oWvXrhrbUB3XQUFBmeqHEEJERUVJ7Xh6egoA4osvvhCbN28W58+fF4GBgeLbb7+VypQsWVK8fv06XTv+/v5SGX2yc5w6OTmJMmXKCAsLCzFhwgRx6tQpERYWJhYtWiRcXFykfcydOzddG9u2bZO2u7i4iIULF4qQkBAREhIiZs+eLYoXLy5kMpmoV6+eztgy8vdlx44dQiaTCQDCwsJCDB48WOzZs0ecP39ehIaGiu3bt4tx48ZJf3P27t2brg0/Pz9pn5UqVRKrV68WERER4tixY2Lw4MHCyMhI+iwz+3cvrWnTpgkAQiaTCTs7OwFAdO7cWWedoUOHqo2tv//+W4SHh4ujR4+KUaNGCQsLC1GkSBHh7u6u9e9jRse5rr9f2f15K97jtJ/BkCFDhJGRkQAgbGxsNP591BdXVr8jvr6+wtTUVLRu3VosWLBAHD16VERGRooTJ06IP//8U1SuXFlqe/78+XrfV6LcwgSYiCgTspoACyHEkydPRMOGDaV2dD369OmTrn5GEmAhhIiIiBClSpXSuy9NP6zevn0rOnXqZFBfvb2909XPrgT44cOHwtHRUeN+Vd+HpKQk0bx5c619LFSokNi6davefiUmJoq2bdtqbcfNzU3cvn1b+v9Zs2ZpbCcpKUkMGTJESlJ0Pdzc3HS+R7pERkaqJWiaHp06dRLv37/XWD8nEuDVq1eL3r17a+1P8eLFxb///quxnYwkwEJk7zgNDw8XRYoU0Vp/+PDhWvvRp08frfWMjY3FggUL9MaW0b8vAQEBWr8bqg8jIyNx/PjxdPWTkpJ0vndubm7izp07Wf67p+rWrVvp9rNr1y6ddV6/fq12MCftw9HRUZw4cULn38fsTICFyP7PW7Vs2oetra0IDg7W2IYhcWXlO6J4H/Q9Bg8eLFJSUvS+r0S5hadAExHlkmLFiuHkyZPYt28fevTogbJly8LS0hKmpqZwcnLCl19+idGjR+PEiRPZcu2dh4cHbty4gYULF6JJkyZwdnaGiYkJrK2tUb16dQwcOBDHjh3TeKseGxsb7NixA6dOnUL//v1RsWJF2NjYwMTEBI6OjqhduzaGDh2KAwcOSNeY5oQSJUogLCwM/fr1Q/ny5aVrgtMyNTXF/v37sXDhQnh6esLS0hKFChVC+fLlMXjwYERGRkqnoetiZmaGgIAArF69Gg0aNICdnR0sLS1RuXJlTJw4EefPn1dbXVXbvZ9NTU2xePFiXLp0CcOGDUP16tVhZ2cHY2Nj2NnZoUaNGujXrx+2b9+Oa9euZe7NgXyhmxs3buCXX37BF198AXt7e5iZmcHFxQWdOnVCQEAAduzYofV9yymrV6/G33//DS8vLxQuXBjm5uZwd3fHuHHj8O+//6JKlSrZsp/sHKeenp6IjIzE8OHDUa5cOVhYWKBw4cJo2bIlDhw4gN9//11r3VWrVmH9+vVo2LAhbGxsYG5ujjJlyqBnz544c+aMwbcryoh27dohKioKc+bMQZMmTVC0aFGYmpqiUKFCcHNzQ9u2bTFv3jzcu3cP3t7e6eqbmppix44dUr81jfXsXjStfPnyqFOnjvT/Dg4OaN26tc46dnZ2CAkJwYwZM1C9enVYWFjA2toalStXxpgxY3Dp0iU0atQoW/upT3Z/3tOmTcPBgwfRpk0bFC1aFGZmZnB1dcX333+Pf//9F40bN850X7PyHZk/fz42bNiAvn37wtPTEyVKlICZmRkKFSoEd3d3+Pr64tSpU1iyZInWBcqIPgUyIXJ5RRMiIqI87PTp02jYsCEA4OjRo9LiWQXZvXv3pGsAV69ejd69e+duhwzUu3dvrF27FmXKlJEWZCIiovyFh2eIiIiyQLFAmampqbTYGBEREX2amAATERFp8eLFC7x+/Vrr9kOHDmHp0qUA5LejUaxQS0RERJ8mk9zuABER0afqypUr6NChA7p06YJmzZqhXLlyMDIywv379xEQEIANGzYgJSUFhQoVws8//5zb3SUiIiI9mAATERHp8PbtW6xcuRIrV67UuN3W1hbbtm2Du7v7R+4ZERERZRQTYCIiIi08PT2xZs0aHDx4EJcuXUJ0dDRev34NW1tblC9fHi1btoSfnx+cnJxyu6tERERkAK4CTURERERERAUCF8EiIiIiIiKiAoEJMBERERERERUITICJiIiIiIioQGACTERERERERAUCE2AiIiIiIiIqEJgAExERERERUYHABJiIiIiIiIgKBCbAREREREREVCD8PxX66hwXz+kkAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import sys\n", + "sys.path.append('../..')\n", + "from src.logos.tag_utils import TagOrigin\n", + "import pickle\n", + "\n", + "with open(f\"tagging_stats_scaled_after_8_datasets.pkl\", \"rb\") as f:\n", + " d_scaled = pickle.load(f)\n", + "\n", + "for k in d_scaled.keys():\n", + " # exclude elements at indices 1 through 3 for each category\n", + " d_scaled[k] = np.delete(d_scaled[k], [1, 2, 3,4,5,6])\n", + "\n", + "\n", + "names = list(datasets.keys())\n", + "\n", + "# exclude elements at indices 1 through 3 \n", + "names = np.delete(names, [1, 2, 3,4,5,6])\n", + "\n", + "width = 0.3\n", + "plt.rcParams['font.size'] = 20\n", + "\n", + "fig, ax = plt.subplots(figsize=(10, 5))\n", + "bottom = np.zeros(len(datasets)-6)\n", + "\n", + "colors = [\"#BA9F7F\", \"#BA7FB7\", \"#7F9ABA\", \"#7FBA82\", \"#D3D3D3\"]\n", + "labels = [\n", + " \"User-tagged (parsed by regex)\",\n", + " \"Using preceding 3 tokens\",\n", + " \"Using GPT-3.5-Turbo\",\n", + " \"Using GPT-4\",\n", + " \"No good tag found\",\n", + "]\n", + "order = [4, 0, 1, 2, 3]\n", + "\n", + "for i, k in enumerate(order):\n", + " v = d_scaled[k]\n", + " p = ax.barh(\n", + " names,\n", + " v,\n", + " width,\n", + " label=labels[i],\n", + " left=bottom,\n", + " color=colors[i],\n", + " )\n", + "\n", + " # Add text labels to the center of each bar\n", + " # Add a white background to make the text more visible\n", + " #for j, bar in enumerate(p):\n", + " if False:\n", + " ax.text(\n", + " bar.get_x() + bar.get_width() / 2,\n", + " bar.get_height() / 2 + bottom[j],\n", + " f\"{(bar.get_height()):.2f} %\",\n", + " ha=\"center\",\n", + " va=\"center\",\n", + " color=\"black\",\n", + " fontweight=\"bold\",\n", + " bbox=dict(\n", + " facecolor=\"white\",\n", + " edgecolor=\"none\",\n", + " pad=0.2,\n", + " alpha=0.85,\n", + " boxstyle=\"round\",\n", + " ),\n", + " )\n", + "\n", + " # Make the first bar dotted and second and third slanted in different directions\n", + " for bar in p:\n", + " if k == TagOrigin.REGEX_VARIABLE:\n", + " bar.set_hatch(\"O\")\n", + " elif k == TagOrigin.PRECEDING:\n", + " bar.set_hatch(\"o\")\n", + " elif k == TagOrigin.GPT_3POINT5_TURBO:\n", + " bar.set_hatch(\"\\\\\\\\\")\n", + " elif k == TagOrigin.GPT_4:\n", + " bar.set_hatch(\"//\")\n", + "\n", + " bottom += v\n", + "\n", + "ax.legend(loc='center', borderpad=0.1, labelspacing=0.25)\n", + "ax.set_xlabel(\"Percentage of prepared variables\")\n", + "ax.invert_yaxis()\n", + "plt.tight_layout()\n", + "plt.savefig(f\"tagging_stats_manual.png\", dpi=300)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{: array([ 7.46268657, 23.14049587]),\n", + " : array([53.73134328, 63.63636364]),\n", + " : array([13.43283582, 7.43801653]),\n", + " : array([19.40298507, 3.30578512]),\n", + " : array([5.97014925, 2.47933884])}" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "d_scaled" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{: 15.301591217466388,\n", + " : 58.683853459972866,\n", + " : 10.435426174910571,\n", + " : 11.354385099296904,\n", + " : 4.2247440483532746}" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import copy\n", + "\n", + "# Compute average of each array in d_scaled\n", + "d_scaled_avg = copy.deepcopy(d_scaled)\n", + "for k in d_scaled.keys():\n", + " d_scaled_avg[k] = np.average(d_scaled[k])\n", + "\n", + "d_scaled_avg" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "88.6456149007031" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "100 - d_scaled_avg[3]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "logs-venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/evaluation/8.4-data-transformation/8.4.2-variable-tagging/tagging.py b/evaluation/8.4-data-transformation/8.4.2-variable-tagging/tagging.py new file mode 100644 index 0000000..c6e426f --- /dev/null +++ b/evaluation/8.4-data-transformation/8.4.2-variable-tagging/tagging.py @@ -0,0 +1,174 @@ +import pandas as pd +import sys + +sys.path.append("../..") +from src.logos.tag_utils import TagUtils, TagOrigin +from tqdm.auto import tqdm +import numpy as np +import pickle +import matplotlib.pyplot as plt + + +datasets = { + "PostgreSQL": { + "vars_filename": "~/causal-log/datasets/tpc-ds/parameter_sweep_1.log_parsed_variables_None_None.pkl", + "templates_filename": "~/causal-log/datasets/tpc-ds/parameter_sweep_1.log_parsed_templates_None_None.pkl", + }, + "XYZ\n10 vars": { + "vars_filename": "~/causal-log/datasets/xyz_extended/log_2023-12-22_13:13:01.log_parsed_variables_None_None.pkl", + "templates_filename": "~/causal-log/datasets/xyz_extended/log_2023-12-22_13:13:01.log_parsed_templates_None_None.pkl", + }, + "XYZ\n100 vars": { + "vars_filename": "~/causal-log/datasets/xyz_extended/log_2023-12-22_13:17:29.log_parsed_variables_None_None.pkl", + "templates_filename": "~/causal-log/datasets/xyz_extended/log_2023-12-22_13:17:29.log_parsed_templates_None_None.pkl", + }, + "XYZ\n1000 vars": { + "vars_filename": "~/causal-log/datasets/xyz_extended/log_2023-12-22_13:27:02.log_parsed_variables_None_None.pkl", + "templates_filename": "~/causal-log/datasets/xyz_extended/log_2023-12-22_13:27:02.log_parsed_templates_None_None.pkl", + }, + "OpenStack\nCinder": { + "vars_filename": "~/causal-log/evaluation/datasets/Openstack/Cinder/Cinder_combined_all.log_parsed_variables_None_None.pkl", + "templates_filename": "~/causal-log/evaluation/datasets/Openstack/Cinder/Cinder_combined_all.log_parsed_templates_None_None.pkl", + }, + "OpenStack\nNeutron": { + "vars_filename": "~/causal-log/evaluation/datasets/Openstack/Neutron/Neutron_combined_all.log_parsed_variables_None_None.pkl", + "templates_filename": "~/causal-log/evaluation/datasets/Openstack/Neutron/Neutron_combined_all.log_parsed_templates_None_None.pkl", + }, + "OpenStack\nNova": { + "vars_filename": "~/causal-log/evaluation/datasets/Openstack/Nova/Nova_combined_all.log_parsed_variables_None_None.pkl", + "templates_filename": "~/causal-log/evaluation/datasets/Openstack/Nova/Nova_combined_all.log_parsed_templates_None_None.pkl", + }, + "Proprietary": { + "vars_filename": "~/causal-log/datasets/proprietary_logs/proprietary_eval/proprietary_1000users_10faulty_20pctfailfaulty_10pctfailnormal.log_parsed_variables_None_None.pkl", + "templates_filename": "~/causal-log/datasets/proprietary_logs/proprietary_eval/proprietary_1000users_10faulty_20pctfailfaulty_10pctfailnormal.log_parsed_templates_None_None.pkl", + }, +} + +d = { + TagOrigin.PRECEDING: np.array([0] * len(datasets)), + TagOrigin.GPT_3POINT5_TURBO: np.array([0] * len(datasets)), + TagOrigin.GPT_4: np.array([0] * len(datasets)), + TagOrigin.NAME: np.array([0] * len(datasets)), + TagOrigin.REGEX_VARIABLE: np.array([0] * len(datasets)), +} + +d_scaled = { + TagOrigin.PRECEDING: np.array([0.0] * len(datasets)), + TagOrigin.GPT_3POINT5_TURBO: np.array([0.0] * len(datasets)), + TagOrigin.GPT_4: np.array([0.0] * len(datasets)), + TagOrigin.NAME: np.array([0.0] * len(datasets)), + TagOrigin.REGEX_VARIABLE: np.array([0.0] * len(datasets)), +} + +for dataset_num, dataset in enumerate(datasets.keys()): + print(f"Starting dataset {dataset}...") + with open("gpt_log.txt", "a+") as f: + f.write('========================================\n') + f.write(f"Starting dataset {dataset}...\n") + # Do the tagging + + filenames = datasets[dataset] + vars_filename = filenames["vars_filename"] + templates_filename = filenames["templates_filename"] + vars_df = pd.read_pickle(vars_filename) + templates_df = pd.read_pickle(templates_filename) + + # Tag the variables + tqdm.pandas(desc="Tagging variables...") + tags = [] + + for _, row in tqdm(vars_df.iterrows(), total=len(vars_df)): + if row["From regex"]: + tags.append(row["Tag"]) + d[TagOrigin.REGEX_VARIABLE][dataset_num] += 1 + else: + tag, origin = TagUtils.waterfall_tag(templates_df, row, tags) + tags.append(tag) + d[origin][dataset_num] += 1 + + # Save to pickle files + with open(f"tagging_stats_after_{dataset_num+1}_datasets.pkl", "wb") as f: + pickle.dump(d, f) + + with open(f"{dataset}_tags.pkl", "wb") as f: + pickle.dump(tags, f) + + # Move on to plotting + for i in range(dataset_num + 1): + dataset_total = float(sum(d.values())[i]) / 100.0 + + d_scaled[TagOrigin.PRECEDING][i] = d[TagOrigin.PRECEDING][i] / dataset_total + d_scaled[TagOrigin.GPT_3POINT5_TURBO][i] = ( + d[TagOrigin.GPT_3POINT5_TURBO][i] / dataset_total + ) + d_scaled[TagOrigin.GPT_4][i] = d[TagOrigin.GPT_4][i] / dataset_total + d_scaled[TagOrigin.NAME][i] = d[TagOrigin.NAME][i] / dataset_total + d_scaled[TagOrigin.REGEX_VARIABLE][i] = ( + d[TagOrigin.REGEX_VARIABLE][i] / dataset_total + ) + + with open(f"tagging_stats_scaled_after_{dataset_num+1}_datasets.pkl", "wb") as f: + pickle.dump(d_scaled, f) + + width = 0.3 + + fig, ax = plt.subplots(figsize=(10, 5)) + bottom = np.zeros(len(datasets)) + + colors = ["#BA9F7F", "#BA7FB7", "#7F9ABA", "#7FBA82", "#D3D3D3"] + labels = [ + "Already tagged (parsed by regex)", + "+ Use preceding 3 tokens", + "+ Use GPT-3.5-Turbo", + "+ Use GPT-4", + "Fall back to variable name", + ] + order = [4, 0, 1, 2, 3] + + for i, k in enumerate(order): + v = d_scaled[k] + p = ax.bar( + datasets.keys(), + v, + width, + label=labels[i], + bottom=bottom, + color=colors[i], + ) + + # Add text labels to the center of each bar + # Add a white background to make the text more visible + for bar in []: + ax.text( + bar.get_x() + bar.get_width() / 2, + bar.get_height() / 2 + bottom, + f"{(bar.get_height()):.2f} %", + ha="center", + va="center", + color="black", + fontsize=8, + fontweight="bold", + bbox=dict( + facecolor="white", + edgecolor="none", + pad=0.2, + alpha=0.85, + boxstyle="round", + ), + ) + + # Make the first bar dotted and second and third slanted in different directions + for bar in p: + if k == TagOrigin.REGEX_VARIABLE: + bar.set_hatch("O") + elif k == TagOrigin.PRECEDING: + bar.set_hatch("o") + elif k == TagOrigin.GPT_3POINT5_TURBO: + bar.set_hatch("\\\\") + elif k == TagOrigin.GPT_4: + bar.set_hatch("//") + + bottom += v + + ax.legend(loc="upper right") + plt.savefig(f"tagging_stats_after_{dataset_num+1}_datasets.png", dpi=300) diff --git a/evaluation/8.4-data-transformation/8.4.3-aggregate-selection/agg_selection.ipynb b/evaluation/8.4-data-transformation/8.4.3-aggregate-selection/agg_selection.ipynb new file mode 100644 index 0000000..806ee05 --- /dev/null +++ b/evaluation/8.4-data-transformation/8.4.3-aggregate-selection/agg_selection.ipynb @@ -0,0 +1,608 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# For each dataset in datasets, get the parsed variables dataframe from ../../datasets/xyz_extended\n", + "\n", + "import pandas as pd\n", + "from dowhy import CausalModel\n", + "\n", + "import os\n", + "import sys\n", + "import re\n", + "\n", + "datasets = []\n", + "directory = \"../../datasets_raw/xyz_extended\"\n", + "\n", + "# Get the filenames of all the log files in the directory\n", + "for filename in os.listdir(directory):\n", + " if filename.endswith(\".log\"):\n", + " datasets.append(filename)\n", + "\n", + "\n", + "results = {}\n", + "\n", + "for dataset in datasets:\n", + " # Get the parameters used to generate the log\n", + " with open(os.path.join(directory, dataset.split(\".\")[0] + \".json\")) as f:\n", + " l = f.readlines()\n", + " num_total_variables = int(l[3].split(\":\")[1].strip().strip(\",\"))\n", + " noise_radius = int(l[4].split(\":\")[1].strip())\n", + "\n", + " # Get the variable names for x, y, and z\n", + " parsed_vars = pd.read_pickle(\n", + " \"../../datasets/xyz_extended/\" + dataset + \"_parsed_variables_None_None.pkl\"\n", + " )\n", + " parsed_vars = parsed_vars.loc[parsed_vars[\"Tag\"].isin([\"x\", \"y\", \"z\"])][\n", + " [\"Name\", \"Tag\"]\n", + " ]\n", + " mapping = {k: v for k, v in zip(parsed_vars[\"Tag\"], parsed_vars[\"Name\"])}\n", + "\n", + " # Read the corresponding columns from the parsed log and reset the column names to x, y, and z\n", + " parsed_log = pd.read_pickle(\n", + " \"../../datasets/xyz_extended/\" + dataset + \"_parsed_log_None_None.pkl\"\n", + " )\n", + " data = parsed_log[[\"machine\"] + list(mapping.values())]\n", + " data.columns = [\"machine\"] + list(mapping.keys())\n", + "\n", + " # Calculate the max, min and mean for each of xyz for each machine\n", + " agg_list = [\"max\", \"min\", \"mean\"]\n", + " data = data.groupby(\"machine\").agg(\n", + " {\n", + " \"x\": agg_list,\n", + " \"y\": agg_list,\n", + " \"z\": agg_list,\n", + " }\n", + " )\n", + " data.columns = [\"_\".join(col) for col in data.columns]\n", + "\n", + " # For each x-based aggregate, for each y-based aggregate, for each z-based aggregate, calculate the ATE of x on y adjusting for z\n", + " effects = {}\n", + " for x_agg in agg_list:\n", + " for y_agg in agg_list:\n", + " for z_agg in agg_list:\n", + " print(\"x_agg: \", x_agg, \"y_agg: \", y_agg, \"z_agg: \", z_agg)\n", + " # Get the data for this combination of aggregates\n", + " data_ = data[\n", + " [\n", + " \"x_\" + x_agg,\n", + " \"y_\" + y_agg,\n", + " \"z_\" + z_agg,\n", + " ]\n", + " ]\n", + " # Calculate the ATE of x on y adjusting for z using the dowhy package\n", + " model = CausalModel(\n", + " data=data_,\n", + " treatment=\"x_\" + x_agg,\n", + " outcome=\"y_\" + y_agg,\n", + " common_causes=[\"z_\" + z_agg],\n", + " )\n", + " identified_estimand = model.identify_effect(\n", + " proceed_when_unidentifiable=True\n", + " )\n", + " estimate = model.estimate_effect(\n", + " identified_estimand,\n", + " method_name=\"backdoor.linear_regression\",\n", + " test_significance=False,\n", + " )\n", + " print(estimate.value)\n", + " effects[(x_agg, y_agg, z_agg)] = estimate.value\n", + " print(\"------------------\")\n", + "\n", + " effects_df = pd.DataFrame.from_dict(effects, orient=\"index\")\n", + " effects_df.columns = [\"ATE\"]\n", + " effects_df.reset_index(inplace=True)\n", + " effects_df.rename(columns={\"index\": \"Aggregates\"}, inplace=True)\n", + " effects_df[\"TrueATE\"] = 2.0\n", + " effects_df[\"Error\"] = abs(\n", + " (effects_df[\"ATE\"] - effects_df[\"TrueATE\"]) / effects_df[\"TrueATE\"]\n", + " )\n", + " effects_df.sort_values(by=\"Error\", ascending=True, inplace=True)\n", + " effects_df.reset_index(inplace=True, drop=True)\n", + "\n", + " print(effects_df)\n", + "\n", + " # Find out which aggregates were used in practice\n", + " prepared_vars = pd.read_pickle(\n", + " \"../../datasets/xyz_extended/\"\n", + " + dataset\n", + " + \"_prepared_variables_machine_None.pkl\"\n", + " )\n", + " x_agg = prepared_vars[prepared_vars[\"Base\"] == mapping[\"x\"]][\"Agg\"].values[0]\n", + " y_agg = prepared_vars[prepared_vars[\"Base\"] == mapping[\"y\"]][\"Agg\"].values[0]\n", + " z_agg = prepared_vars[prepared_vars[\"Base\"] == mapping[\"z\"]][\"Agg\"].values[0]\n", + "\n", + " # Find index of the row in effects_df that corresponds to the aggregates used in practice\n", + " idx = effects_df[effects_df[\"Aggregates\"] == (x_agg, y_agg, z_agg)].index[0]\n", + "\n", + " print(\"Dataset: \", dataset)\n", + " print(\"Aggregates: \", (x_agg, y_agg, z_agg))\n", + " print(\"Index of chosen aggregates: \", idx)\n", + " last_idx = len(effects_df) - 1\n", + " results[dataset] = (\n", + " num_total_variables,\n", + " noise_radius,\n", + " x_agg,\n", + " y_agg,\n", + " z_agg,\n", + " idx,\n", + " effects_df.loc[idx, \"ATE\"],\n", + " effects_df.loc[idx, \"Error\"],\n", + " effects_df.loc[0, \"Aggregates\"][0],\n", + " effects_df.loc[0, \"Aggregates\"][1],\n", + " effects_df.loc[0, \"Aggregates\"][2],\n", + " effects_df.loc[0, \"ATE\"],\n", + " effects_df.loc[0, \"Error\"],\n", + " effects_df.loc[last_idx, \"Aggregates\"][0],\n", + " effects_df.loc[last_idx, \"Aggregates\"][1],\n", + " effects_df.loc[last_idx, \"Aggregates\"][2],\n", + " effects_df.loc[last_idx, \"ATE\"],\n", + " effects_df.loc[last_idx, \"Error\"],\n", + " )\n", + "\n", + "results_df = pd.DataFrame.from_dict(results, orient=\"index\")\n", + "results_df.columns = [\n", + " \"V\",\n", + " \"R\",\n", + " \"x_agg\",\n", + " \"y_agg\",\n", + " \"z_agg\",\n", + " \"idx\",\n", + " \"ATE\",\n", + " \"Error\",\n", + " \"x_agg_best\",\n", + " \"y_agg_best\",\n", + " \"z_agg_best\",\n", + " \"ATE_best\",\n", + " \"Error_best\",\n", + " \"x_agg_worst\",\n", + " \"y_agg_worst\",\n", + " \"z_agg_worst\",\n", + " \"ATE_worst\",\n", + " \"Error_worst\",\n", + "]\n", + "results_df[\"Sub-optimality penalty\"] = results_df[\"Error\"] - results_df[\"Error_best\"]\n", + "results_df[\"Fraction of gap closed\"] = abs(results_df[\"Error\"] - results_df[\"Error_worst\"])/ abs(results_df[\"Error_best\"] - results_df[\"Error_worst\"])\n", + "results_df[\"Fraction of gap closed\"] = results_df[\"Fraction of gap closed\"].fillna(1.0)\n", + "results_df.sort_values(by=['V', 'R'], ascending=[True, True], inplace=True)\n", + "results_df.reset_index(inplace=True, drop=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a horizontal bar chart of the fraction of gap closed, where there is a label of the worst error on the left and a\n", + "# label of the best error on the right\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "# Create a horizontal bar chart of the fraction of gap closed, where there is a label of the worst error on the left and a\n", + "\n", + "# label of the best error on the right\n", + "plt.figure(figsize=(8, 6.5))\n", + "plt.barh(\n", + " np.arange(len(results_df)),\n", + " results_df[\"Fraction of gap closed\"],\n", + " color=\"#7f9aba\",\n", + " height=0.5,\n", + ")\n", + "\n", + "fontsize=18\n", + "\n", + "# Add the labels\n", + "for i in range(len(results_df)):\n", + " plt.text(\n", + " results_df[\"Fraction of gap closed\"][i]-0.01,\n", + " i,\n", + " f'{results_df[\"Error\"][i]*100:.2f}% ({results_df[\"Fraction of gap closed\"][i] * 100:.2f} % of gap)',\n", + " ha=\"right\",\n", + " va=\"center\",\n", + " fontsize=fontsize,\n", + " )\n", + "\n", + " plt.text(\n", + " 1.01,\n", + " i,\n", + " f'{results_df[\"Error_best\"][i]*100:.2f}%',\n", + " ha=\"left\",\n", + " va=\"center\",\n", + " fontsize=fontsize,\n", + " )\n", + "\n", + " plt.text(\n", + " -0.01,\n", + " i,\n", + " f'{results_df[\"Error_worst\"][i]*100:.2f}%',\n", + " ha=\"right\",\n", + " va=\"center\",\n", + " fontsize=fontsize,\n", + " )\n", + "\n", + " plt.text(\n", + " -0.4,\n", + " i,\n", + " f'R={results_df[\"R\"][i]:.0f}',\n", + " ha=\"left\",\n", + " va=\"center\",\n", + " fontsize=fontsize,\n", + " )\n", + "\n", + " if i%3 == 0:\n", + " plt.text(\n", + " -0.44,\n", + " i,\n", + " f'V={results_df[\"V\"][i]:.0f}',\n", + " ha=\"right\",\n", + " va=\"center\",\n", + " fontsize=fontsize,\n", + " )\n", + "\n", + "# Hide y ticks\n", + "plt.yticks([])\n", + "plt.xticks([])\n", + "\n", + "# Set x limits from 0 to 1\n", + "plt.xlim(0, 1)\n", + "\n", + "# Flip y axis\n", + "plt.gca().invert_yaxis()\n", + "\n", + "plt.text(\n", + " -0,\n", + " -1.2,\n", + " f'Worst ATE Error',\n", + " ha=\"center\",\n", + " va=\"center\",\n", + " fontsize=fontsize,\n", + " )\n", + "\n", + "plt.text(\n", + " 1,\n", + " -1.2,\n", + " f'Best ATE Error',\n", + " ha=\"center\",\n", + " va=\"center\",\n", + " fontsize=fontsize,\n", + " )\n", + "\n", + "# Add x axis label\n", + "plt.xlabel(\"ATE Error using LOGos-picked Aggregates\", fontsize=fontsize)\n", + "\n", + " \n", + "plt.show\n", + "plt.savefig(\"xyz_agg_efficiency.png\", bbox_inches=\"tight\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "results_df[\"Fraction of gap closed\"].mean()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# For each dataset in datasets, get the parsed variables dataframe from ../../datasets/xyz_extended\n", + "\n", + "import pandas as pd\n", + "from dowhy import CausalModel\n", + "\n", + "import os\n", + "import sys\n", + "import re\n", + "\n", + "datasets = []\n", + "directory = \"../../datasets_raw/proprietary_logs\"\n", + "\n", + "# Get the filenames of all the log files in the directory\n", + "for filename in os.listdir(directory):\n", + " if filename.endswith(\"normal.log\"):\n", + " datasets.append(filename)\n", + "\n", + "\n", + "results_prop = {}\n", + "\n", + "for dataset in datasets:\n", + " # Get the parameters used to generate the log\n", + " with open(os.path.join(directory, dataset.split(\".\")[0] + \".json\")) as f:\n", + " l = f.readlines()\n", + " faulty_users = int(l[2].split(\":\")[1].strip().strip(\",\"))\n", + " fault_prob = int(l[4].strip().strip(','))\n", + "\n", + " # Get the variable names for version and code\n", + " mapping = {\"code\":\"73b16c0a_196\", \"version\":\"30731d4c_11\"}\n", + "\n", + " # Read the corresponding columns from the parsed log and reset the column names to x, y, and z\n", + " parsed_log = pd.read_pickle(\n", + " \"../../datasets/proprietary_logs/proprietary_eval/\" + dataset + \"_parsed_log_None_None.pkl\"\n", + " )\n", + " data = parsed_log[[\"User\"] + list(mapping.values())]\n", + " data.columns = [\"User\"] + list(mapping.keys())\n", + "\n", + "\n", + " # Calculate the max, min and mean for each of xyz for each machine\n", + " agg_list = [\"max\", \"min\", \"mean\"]\n", + " data = data.groupby(\"User\").agg(\n", + " {\n", + " \"code\": agg_list,\n", + " \"version\": agg_list,\n", + " }\n", + " )\n", + " data.columns = [\"_\".join(col) for col in data.columns]\n", + "\n", + " # For each x-based aggregate, for each y-based aggregate, for each z-based aggregate, calculate the ATE of x on y adjusting for z\n", + " effects = {}\n", + " for code_agg in agg_list:\n", + " for version_agg in agg_list:\n", + " print(\"code_agg: \", code_agg, \"version_agg: \", version_agg)\n", + " # Get the data for this combination of aggregates\n", + " data_ = data[\n", + " [\n", + " \"code_\" + code_agg,\n", + " \"version_\" + version_agg,\n", + " ]\n", + " ]\n", + " # Calculate the ATE of x on y adjusting for z using the dowhy package\n", + " model = CausalModel(\n", + " data=data_,\n", + " treatment=\"version_\" + version_agg,\n", + " outcome=\"code_\" + code_agg,\n", + " )\n", + " identified_estimand = model.identify_effect(\n", + " proceed_when_unidentifiable=True\n", + " )\n", + " estimate = model.estimate_effect(\n", + " identified_estimand,\n", + " method_name=\"backdoor.linear_regression\",\n", + " test_significance=False,\n", + " )\n", + " print(estimate.value)\n", + " effects[(code_agg, version_agg)] = estimate.value\n", + " print(\"------------------\")\n", + "\n", + " effects_df = pd.DataFrame.from_dict(effects, orient=\"index\")\n", + " effects_df.columns = [\"ATE\"]\n", + " effects_df.reset_index(inplace=True)\n", + " effects_df.rename(columns={\"index\": \"Aggregates\"}, inplace=True)\n", + " effects_df[\"TrueATE\"] = (401*(fault_prob/100.0) + 200*(1-(fault_prob/100.0)) - 401*0.1-200*0.9) / (15.0-14.3)\n", + " effects_df[\"Error\"] = abs(\n", + " (effects_df[\"ATE\"] - effects_df[\"TrueATE\"]) / effects_df[\"TrueATE\"]\n", + " )\n", + " effects_df.sort_values(by=\"Error\", ascending=True, inplace=True)\n", + " effects_df.reset_index(inplace=True, drop=True)\n", + "\n", + "\n", + " # Find out which aggregates were used in practice\n", + " code_agg = 'mean'\n", + " version_agg = 'mean'\n", + "\n", + " # Find index of the row in effects_df that corresponds to the aggregates used in practice\n", + " idx = effects_df[effects_df[\"Aggregates\"] == (code_agg, version_agg)].index[0]\n", + "\n", + " print(\"Dataset: \", dataset)\n", + " print(\"Aggregates: \", (code_agg, version_agg))\n", + " print(\"Index of chosen aggregates: \", idx)\n", + " last_idx = len(effects_df) - 1\n", + " results_prop[dataset] = (\n", + " faulty_users/1000,\n", + " fault_prob/100.0,\n", + " code_agg,\n", + " version_agg,\n", + " idx,\n", + " effects_df.loc[idx, \"ATE\"],\n", + " effects_df.loc[idx, \"Error\"],\n", + " effects_df.loc[0, \"Aggregates\"][0],\n", + " effects_df.loc[0, \"Aggregates\"][1],\n", + " effects_df.loc[0, \"ATE\"],\n", + " effects_df.loc[0, \"Error\"],\n", + " effects_df.loc[last_idx, \"Aggregates\"][0],\n", + " effects_df.loc[last_idx, \"Aggregates\"][1],\n", + " effects_df.loc[last_idx, \"ATE\"],\n", + " effects_df.loc[last_idx, \"Error\"],\n", + " )\n", + "\n", + "results_df_prop = pd.DataFrame.from_dict(results_prop, orient=\"index\")\n", + "results_df_prop.columns = [\n", + " \"F\",\n", + " \"p_f\",\n", + " \"code_agg\",\n", + " \"version_agg\",\n", + " \"idx\",\n", + " \"ATE\",\n", + " \"Error\",\n", + " \"code_agg_best\",\n", + " \"version_agg_best\",\n", + " \"ATE_best\",\n", + " \"Error_best\",\n", + " \"code_agg_worst\",\n", + " \"version_agg_worst\",\n", + " \"ATE_worst\",\n", + " \"Error_worst\",\n", + "]\n", + "results_df_prop[\"Sub-optimality penalty\"] = results_df_prop[\"Error\"] - results_df_prop[\"Error_best\"]\n", + "results_df_prop[\"Fraction of gap closed\"] = abs(results_df_prop[\"Error\"] - results_df_prop[\"Error_worst\"])/ abs(results_df_prop[\"Error_best\"] - results_df_prop[\"Error_worst\"])\n", + "results_df_prop[\"Fraction of gap closed\"] = results_df_prop[\"Fraction of gap closed\"].fillna(1.0)\n", + "results_df_prop.sort_values(by=['F', 'p_f'], ascending=[False, False], inplace=True)\n", + "results_df_prop.reset_index(inplace=True, drop=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "results_df_prop" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a horizontal bar chart of the fraction of gap closed, where there is a label of the worst error on the left and a\n", + "# label of the best error on the right\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "# Create a horizontal bar chart of the fraction of gap closed, where there is a label of the worst error on the left and a\n", + "\n", + "# label of the best error on the right\n", + "plt.figure(figsize=(8, 6.5))\n", + "plt.barh(\n", + " np.arange(len(results_df_prop)),\n", + " results_df_prop[\"Fraction of gap closed\"],\n", + " color=\"#7FBA82\",\n", + " height=0.5,\n", + ")\n", + "\n", + "fontsize=18\n", + "\n", + "# Add the labels\n", + "for i in range(len(results_df_prop)):\n", + " plt.text(\n", + " results_df_prop[\"Fraction of gap closed\"][i]-0.01,\n", + " i,\n", + " f'{results_df_prop[\"Error\"][i]*100:.2f}% ({results_df_prop[\"Fraction of gap closed\"][i] * 100:.2f} % of gap)',\n", + " ha=\"right\",\n", + " va=\"center\",\n", + " fontsize=fontsize,\n", + " )\n", + "\n", + " plt.text(\n", + " 1.01,\n", + " i,\n", + " f'{results_df_prop[\"Error_best\"][i]*100:.2f}%',\n", + " ha=\"left\",\n", + " va=\"center\",\n", + " fontsize=fontsize,\n", + " )\n", + "\n", + " plt.text(\n", + " -0.01,\n", + " i,\n", + " f'{results_df_prop[\"Error_worst\"][i]*100:.2f}%',\n", + " ha=\"right\",\n", + " va=\"center\",\n", + " fontsize=fontsize,\n", + " )\n", + "\n", + " plt.text(\n", + " -0.4,\n", + " i,\n", + " f'p_f={results_df_prop[\"p_f\"][i]:.1f}',\n", + " ha=\"left\",\n", + " va=\"center\",\n", + " fontsize=fontsize,\n", + " )\n", + "\n", + " if i%3 == 0:\n", + " plt.text(\n", + " -0.44,\n", + " i,\n", + " f'F={results_df_prop[\"F\"][i]:.2f}',\n", + " ha=\"right\",\n", + " va=\"center\",\n", + " fontsize=fontsize,\n", + " )\n", + "\n", + "# Hide y ticks\n", + "plt.yticks([])\n", + "plt.xticks([])\n", + "\n", + "# Set x limits from 0 to 1\n", + "plt.xlim(0, 1)\n", + "\n", + "# Flip y axis\n", + "plt.gca().invert_yaxis()\n", + "\n", + "plt.text(\n", + " -0,\n", + " -1.2,\n", + " f'Worst ATE Error',\n", + " ha=\"center\",\n", + " va=\"center\",\n", + " fontsize=fontsize,\n", + " )\n", + "\n", + "plt.text(\n", + " 1,\n", + " -1.2,\n", + " f'Best ATE Error',\n", + " ha=\"center\",\n", + " va=\"center\",\n", + " fontsize=fontsize,\n", + " )\n", + "\n", + "# Add x axis label\n", + "plt.xlabel(\"ATE Error using LOGos-picked Aggregates\", fontsize=fontsize)\n", + "\n", + " \n", + "plt.show\n", + "plt.savefig(\"prop_agg_efficiency.png\", bbox_inches=\"tight\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "results_df_prop[\"Fraction of gap closed\"].mean()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "(results_df_prop[\"Fraction of gap closed\"].mean() + results_df[\"Fraction of gap closed\"].mean())/2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "logs-venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/evaluation/__init__.py b/evaluation/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/evaluation/paper_plots/8.2-candidate-cause-ranking-postgresql-average-precision.png b/evaluation/paper_plots/8.2-candidate-cause-ranking-postgresql-average-precision.png new file mode 100644 index 0000000..f7e11d3 Binary files /dev/null and b/evaluation/paper_plots/8.2-candidate-cause-ranking-postgresql-average-precision.png differ diff --git a/evaluation/paper_plots/8.2-candidate-cause-ranking-postgresql-latency.png b/evaluation/paper_plots/8.2-candidate-cause-ranking-postgresql-latency.png new file mode 100644 index 0000000..9c561c3 Binary files /dev/null and b/evaluation/paper_plots/8.2-candidate-cause-ranking-postgresql-latency.png differ diff --git a/evaluation/paper_plots/8.2-candidate-cause-ranking-proprietary-average-precision.png b/evaluation/paper_plots/8.2-candidate-cause-ranking-proprietary-average-precision.png new file mode 100644 index 0000000..e6b3a0a Binary files /dev/null and b/evaluation/paper_plots/8.2-candidate-cause-ranking-proprietary-average-precision.png differ diff --git a/evaluation/paper_plots/8.2-candidate-cause-ranking-proprietary-latency.png b/evaluation/paper_plots/8.2-candidate-cause-ranking-proprietary-latency.png new file mode 100644 index 0000000..429c851 Binary files /dev/null and b/evaluation/paper_plots/8.2-candidate-cause-ranking-proprietary-latency.png differ diff --git a/evaluation/paper_plots/8.2-candidate-cause-ranking-xyz-average-precision.png b/evaluation/paper_plots/8.2-candidate-cause-ranking-xyz-average-precision.png new file mode 100644 index 0000000..66292b5 Binary files /dev/null and b/evaluation/paper_plots/8.2-candidate-cause-ranking-xyz-average-precision.png differ diff --git a/evaluation/paper_plots/8.2-candidate-cause-ranking-xyz-latency.png b/evaluation/paper_plots/8.2-candidate-cause-ranking-xyz-latency.png new file mode 100644 index 0000000..5c2494b Binary files /dev/null and b/evaluation/paper_plots/8.2-candidate-cause-ranking-xyz-latency.png differ diff --git a/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-postgresql-bounded-are-ate-trajectory.png b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-postgresql-bounded-are-ate-trajectory.png new file mode 100644 index 0000000..bf07565 Binary files /dev/null and b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-postgresql-bounded-are-ate-trajectory.png differ diff --git a/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-postgresql-bounded-latency.png b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-postgresql-bounded-latency.png new file mode 100644 index 0000000..70e83bb Binary files /dev/null and b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-postgresql-bounded-latency.png differ diff --git a/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-postgresql-judgments.png b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-postgresql-judgments.png new file mode 100644 index 0000000..fc27378 Binary files /dev/null and b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-postgresql-judgments.png differ diff --git a/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-postgresql-latency.png b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-postgresql-latency.png new file mode 100644 index 0000000..bf6cf04 Binary files /dev/null and b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-postgresql-latency.png differ diff --git a/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-bounded-are-ate-trajectory.png b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-bounded-are-ate-trajectory.png new file mode 100644 index 0000000..d05b152 Binary files /dev/null and b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-bounded-are-ate-trajectory.png differ diff --git a/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-bounded-latency.png b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-bounded-latency.png new file mode 100644 index 0000000..054d16f Binary files /dev/null and b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-bounded-latency.png differ diff --git a/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-judgments.png b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-judgments.png new file mode 100644 index 0000000..e664b4e Binary files /dev/null and b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-judgments.png differ diff --git a/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-latency-breakdown-10.png b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-latency-breakdown-10.png new file mode 100644 index 0000000..0984b1b Binary files /dev/null and b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-latency-breakdown-10.png differ diff --git a/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-latency-breakdown-100.png b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-latency-breakdown-100.png new file mode 100644 index 0000000..085a1c8 Binary files /dev/null and b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-latency-breakdown-100.png differ diff --git a/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-latency-breakdown-1000.png b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-latency-breakdown-1000.png new file mode 100644 index 0000000..fd55e58 Binary files /dev/null and b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-latency-breakdown-1000.png differ diff --git a/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-latency.png b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-latency.png new file mode 100644 index 0000000..23bb75f Binary files /dev/null and b/evaluation/paper_plots/8.3-interactive-causal-graph-refinement-xyz-latency.png differ diff --git a/evaluation/paper_plots/8.4.1-scalability-length-aggregation.jpg b/evaluation/paper_plots/8.4.1-scalability-length-aggregation.jpg new file mode 100644 index 0000000..d973f43 Binary files /dev/null and b/evaluation/paper_plots/8.4.1-scalability-length-aggregation.jpg differ diff --git a/evaluation/paper_plots/8.4.1-scalability-length-parsing.jpg b/evaluation/paper_plots/8.4.1-scalability-length-parsing.jpg new file mode 100644 index 0000000..a675569 Binary files /dev/null and b/evaluation/paper_plots/8.4.1-scalability-length-parsing.jpg differ diff --git a/evaluation/paper_plots/8.4.1-scalability-templates-aggregation.jpg b/evaluation/paper_plots/8.4.1-scalability-templates-aggregation.jpg new file mode 100644 index 0000000..cf0670d Binary files /dev/null and b/evaluation/paper_plots/8.4.1-scalability-templates-aggregation.jpg differ diff --git a/evaluation/paper_plots/8.4.1-scalability-templates-parsing.jpg b/evaluation/paper_plots/8.4.1-scalability-templates-parsing.jpg new file mode 100644 index 0000000..c090edf Binary files /dev/null and b/evaluation/paper_plots/8.4.1-scalability-templates-parsing.jpg differ diff --git a/evaluation/paper_plots/8.4.1-scalability-variables-aggregation.jpg b/evaluation/paper_plots/8.4.1-scalability-variables-aggregation.jpg new file mode 100644 index 0000000..2e97512 Binary files /dev/null and b/evaluation/paper_plots/8.4.1-scalability-variables-aggregation.jpg differ diff --git a/evaluation/paper_plots/8.4.1-scalability-variables-parsing.jpg b/evaluation/paper_plots/8.4.1-scalability-variables-parsing.jpg new file mode 100644 index 0000000..f7be62a Binary files /dev/null and b/evaluation/paper_plots/8.4.1-scalability-variables-parsing.jpg differ diff --git a/evaluation/paper_plots/8.4.2-variable-tagging.png b/evaluation/paper_plots/8.4.2-variable-tagging.png new file mode 100644 index 0000000..6d73509 Binary files /dev/null and b/evaluation/paper_plots/8.4.2-variable-tagging.png differ diff --git a/evaluation/paper_plots/8.4.3-aggregate-selection-proprietary.png b/evaluation/paper_plots/8.4.3-aggregate-selection-proprietary.png new file mode 100644 index 0000000..0f19944 Binary files /dev/null and b/evaluation/paper_plots/8.4.3-aggregate-selection-proprietary.png differ diff --git a/evaluation/paper_plots/8.4.3-aggregate-selection-xyz.png b/evaluation/paper_plots/8.4.3-aggregate-selection-xyz.png new file mode 100644 index 0000000..446d44d Binary files /dev/null and b/evaluation/paper_plots/8.4.3-aggregate-selection-xyz.png differ diff --git a/evaluation/paper_results/8.2-candidate-cause-ranking-postgresql-average-precision.csv b/evaluation/paper_results/8.2-candidate-cause-ranking-postgresql-average-precision.csv new file mode 100644 index 0000000..ace1d4a --- /dev/null +++ b/evaluation/paper_results/8.2-candidate-cause-ranking-postgresql-average-precision.csv @@ -0,0 +1,4 @@ +Method,Average Precision +logos,0.45 +regression,0.41666666666666663 +langmodel,0.29166666666666663 diff --git a/evaluation/paper_results/8.2-candidate-cause-ranking-postgresql-latency.csv b/evaluation/paper_results/8.2-candidate-cause-ranking-postgresql-latency.csv new file mode 100644 index 0000000..c288369 --- /dev/null +++ b/evaluation/paper_results/8.2-candidate-cause-ranking-postgresql-latency.csv @@ -0,0 +1,4 @@ +Method,Latency +logos,0.839741 +regression,0.140504 +langmodel,1.177292 diff --git a/evaluation/paper_results/8.2-candidate-cause-ranking-proprietary-average-precision.csv b/evaluation/paper_results/8.2-candidate-cause-ranking-proprietary-average-precision.csv new file mode 100644 index 0000000..e7af8b0 --- /dev/null +++ b/evaluation/paper_results/8.2-candidate-cause-ranking-proprietary-average-precision.csv @@ -0,0 +1,4 @@ +Method,Average Precision +logos,1.0 +regression,0.7839506172839505 +langmodel,0.05555555555555555 diff --git a/evaluation/paper_results/8.2-candidate-cause-ranking-proprietary-latency.csv b/evaluation/paper_results/8.2-candidate-cause-ranking-proprietary-latency.csv new file mode 100644 index 0000000..81abfcb --- /dev/null +++ b/evaluation/paper_results/8.2-candidate-cause-ranking-proprietary-latency.csv @@ -0,0 +1,4 @@ +Method,Latency +logos,3.971346 +regression,0.15621222222222222 +langmodel,6.238745111111111 diff --git a/evaluation/paper_results/8.2-candidate-cause-ranking-xyz-average-precision.csv b/evaluation/paper_results/8.2-candidate-cause-ranking-xyz-average-precision.csv new file mode 100644 index 0000000..27727e9 --- /dev/null +++ b/evaluation/paper_results/8.2-candidate-cause-ranking-xyz-average-precision.csv @@ -0,0 +1,4 @@ +Method,Average Precision +logos,0.5555555555555556 +regression,0.3339322037699536 +langmodel,0.04125724363819602 diff --git a/evaluation/paper_results/8.2-candidate-cause-ranking-xyz-latency.csv b/evaluation/paper_results/8.2-candidate-cause-ranking-xyz-latency.csv new file mode 100644 index 0000000..9a5b964 --- /dev/null +++ b/evaluation/paper_results/8.2-candidate-cause-ranking-xyz-latency.csv @@ -0,0 +1,4 @@ +Method,Latency +logos,3.2095687777777773 +regression,2.6011784444444443 +langmodel,19.115700888888895 diff --git a/evaluation/paper_results/8.3-interactive-causal-graph-refinement-postgresql-bounded-are-ate-trajectory.csv b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-postgresql-bounded-are-ate-trajectory.csv new file mode 100644 index 0000000..8fd0404 --- /dev/null +++ b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-postgresql-bounded-are-ate-trajectory.csv @@ -0,0 +1,19 @@ +Method,Judgment,Latency +logos,0,33.77169060100313 +logos,1,33.77169060100313 +logos,2,2.674395139365432e-09 +logos,3,2.674395139365432e-09 +logos,4,2.674395139365432e-09 +logos,5,2.674395139365432e-09 +regression,0,33.77169060100313 +regression,1,33.77169060100313 +regression,2,3.3932979889403336 +regression,3,3.3932979889403336 +regression,4,3.3932979891693904 +regression,5,2.671965414075153e-09 +langmodel,0,33.77169060100313 +langmodel,1,33.77169060100313 +langmodel,2,33.77169060100313 +langmodel,3,33.77169060100313 +langmodel,4,33.77169060094182 +langmodel,5,33.77169060094182 diff --git a/evaluation/paper_results/8.3-interactive-causal-graph-refinement-postgresql-bounded-latency.csv b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-postgresql-bounded-latency.csv new file mode 100644 index 0000000..19b89f5 --- /dev/null +++ b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-postgresql-bounded-latency.csv @@ -0,0 +1,16 @@ +Method,Latency +logos,1,1.841013 +logos,2,0.001019 +logos,3,1.696954 +logos,4,0.027979 +logos,5,0.027841 +regression,1,0.485602 +regression,2,0.000918 +regression,3,0.000924 +regression,4,0.000942 +regression,5,0.000913 +langmodel,1,5.266044 +langmodel,2,0.000725 +langmodel,3,0.000575 +langmodel,4,0.000551 +langmodel,5,0.000539 diff --git a/evaluation/paper_results/8.3-interactive-causal-graph-refinement-postgresql-judgments.csv b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-postgresql-judgments.csv new file mode 100644 index 0000000..2140c8d --- /dev/null +++ b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-postgresql-judgments.csv @@ -0,0 +1,4 @@ +Method,Judgments +logos,2.0 +regression,5.0 +langmodel,11.0 diff --git a/evaluation/paper_results/8.3-interactive-causal-graph-refinement-postgresql-latency.csv b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-postgresql-latency.csv new file mode 100644 index 0000000..4d38232 --- /dev/null +++ b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-postgresql-latency.csv @@ -0,0 +1,4 @@ +Method,Latency +logos,1.897046 +regression,0.503481 +langmodel,5.764313 diff --git a/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-bounded-are-ate-trajectory.csv b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-bounded-are-ate-trajectory.csv new file mode 100644 index 0000000..1036f63 --- /dev/null +++ b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-bounded-are-ate-trajectory.csv @@ -0,0 +1,19 @@ +Method,Judgment,Latency +logos,0,1.163583487020774 +logos,1,1.163583487020774 +logos,2,0.0 +logos,3,0.0 +logos,4,0.0 +logos,5,0.0 +regression,0,1.163583487020774 +regression,1,0.16056159576720935 +regression,2,0.14628216715499032 +regression,3,0.012900194112289612 +regression,4,0.012900194112289612 +regression,5,0.012900194112289612 +langmodel,0,1.163583487020774 +langmodel,1,1.163583487020774 +langmodel,2,1.0726641115169013 +langmodel,3,1.0726641115169013 +langmodel,4,1.0726641115169013 +langmodel,5,1.0726641115169013 diff --git a/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-bounded-latency.csv b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-bounded-latency.csv new file mode 100644 index 0000000..b3a3d53 --- /dev/null +++ b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-bounded-latency.csv @@ -0,0 +1,16 @@ +Method,Latency +logos,1,13.755081 +logos,2,0.0012025555555555555 +logos,3,13.985908222222221 +logos,4,6.356857444444445 +logos,5,6.344979888888889 +regression,1,5.547755888888889 +regression,2,0.0011376666666666666 +regression,3,0.001177888888888889 +regression,4,0.0011435555555555554 +regression,5,0.0012048888888888888 +langmodel,1,19.10669766666667 +langmodel,2,0.0006581111111111112 +langmodel,3,0.0006395555555555555 +langmodel,4,0.0006751111111111111 +langmodel,5,0.0006526666666666666 diff --git a/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-judgments.csv b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-judgments.csv new file mode 100644 index 0000000..ad72348 --- /dev/null +++ b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-judgments.csv @@ -0,0 +1,4 @@ +Method,Judgments +logos,2.0 +regression,3.2222222222222223 +langmodel,33.666666666666664 diff --git a/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-latency-breakdown-10.csv b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-latency-breakdown-10.csv new file mode 100644 index 0000000..833b9da --- /dev/null +++ b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-latency-breakdown-10.csv @@ -0,0 +1,4 @@ +Method,Latency +logos,0.208824 +regression,0.120908 +langmodel,10.059329 diff --git a/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-latency-breakdown-100.csv b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-latency-breakdown-100.csv new file mode 100644 index 0000000..0ab14be --- /dev/null +++ b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-latency-breakdown-100.csv @@ -0,0 +1,4 @@ +Method,Latency +logos,2.0126346666666666 +regression,1.1036903333333334 +langmodel,29.732930666666665 diff --git a/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-latency-breakdown-1000.csv b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-latency-breakdown-1000.csv new file mode 100644 index 0000000..844d87a --- /dev/null +++ b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-latency-breakdown-1000.csv @@ -0,0 +1,4 @@ +Method,Latency +logos,39.39007866666666 +regression,6.509092666666667 +langmodel,15.538233666666668 diff --git a/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-latency.csv b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-latency.csv new file mode 100644 index 0000000..31c11ef --- /dev/null +++ b/evaluation/paper_results/8.3-interactive-causal-graph-refinement-xyz-latency.csv @@ -0,0 +1,4 @@ +Method,Latency +logos,13.870512444444444 +regression,2.577897 +langmodel,18.44349777777778 diff --git a/evaluation/paper_results/8.4.1-scalability-length.csv b/evaluation/paper_results/8.4.1-scalability-length.csv new file mode 100644 index 0000000..961a8e4 --- /dev/null +++ b/evaluation/paper_results/8.4.1-scalability-length.csv @@ -0,0 +1,7 @@ +Length, Parse Time, Prep Time +10,0.073786,0.028782 +100,0.052841,0.257197 +1000,0.165637,2.075973 +10000,1.528339,19.934519 +100000,12.803159,198.660864 +1000000,127.965621,1993.915313 diff --git a/evaluation/paper_results/8.4.1-scalability-templates.csv b/evaluation/paper_results/8.4.1-scalability-templates.csv new file mode 100644 index 0000000..74fd31d --- /dev/null +++ b/evaluation/paper_results/8.4.1-scalability-templates.csv @@ -0,0 +1,5 @@ +Templates, Parse Time, Prep Time +10,1.527421,19.000356 +100,2.504695,173.596132 +1000,14.623135,1717.454760 +10000,62.520005,4549.655866 diff --git a/evaluation/paper_results/8.4.1-scalability-variables.csv b/evaluation/paper_results/8.4.1-scalability-variables.csv new file mode 100644 index 0000000..6319145 --- /dev/null +++ b/evaluation/paper_results/8.4.1-scalability-variables.csv @@ -0,0 +1,11 @@ +variables, Parse Time, Prep Time +10,2.531545,184.099773 +20,2.599183,365.219374 +30,3.078163,547.166823 +40,3.735306,728.730740 +50,4.228224,909.883947 +60,4.676527,1095.806113 +70,5.212300,1280.085128 +80,5.472014,1455.640509 +90,6.142651,1638.210211 +100,6.606853,1824.231829 diff --git a/mkdocs.yml b/mkdocs.yml new file mode 100644 index 0000000..44b54a0 --- /dev/null +++ b/mkdocs.yml @@ -0,0 +1,98 @@ +site_name: Sawmill + +theme: + name: material + language: en + + features: + - navigation.tracking + - navigation.tabs + - navigation.tabs.sticky + - navigation.sections + - navigation.path + - navigation.top + - navigation.footer + - navigation.indexes + - content.code.copy + + palette: + + # Palette toggle for light mode + - scheme: default + primary: green + accent: amber + toggle: + icon: material/weather-night + name: Switch to dark mode + + # Palette toggle for dark mode + - scheme: slate + primary: green + accent: amber + toggle: + icon: material/weather-sunny + name: Switch to light mode + + +plugins: +- search +- gen-files: + scripts: + - docs/gen_ref_pages.py +- literate-nav: + nav_file: docs/SUMMARY.md +- section-index +- mkdocstrings: + handlers: + python: + setup_commands: + - import sys + - sys.path.append("src") + paths: [src] + options: + docstring_style: google + docstring_options: + show_if_no_docstring: true + show_source: true + members_order: "source" + filters: [".*"] + show_type_annotations: true + +nav: + - Home: reference/src/sawmill/index.md + - Docs: + - "Sawmill": reference/src/sawmill/sawmill.md + - "Drain": reference/src/sawmill/drain.md + - "TagUtils": reference/src/sawmill/tag_utils.md + - "CausalUnitSuggester": reference/src/sawmill/causal_unit_suggester.md + - "AggregateSelector": reference/src/sawmill/aggregate_selector.md + - "CausalDiscoverer": reference/src/sawmill/causal_discoverer.md + - "EdgeStateMatrix": reference/src/sawmill/edge_state_matrix.md + - "Regression": reference/src/sawmill/regression.md + - "GraphRenderer": reference/src/sawmill/graph_renderer.md + - "ATE": reference/src/sawmill/ate.md + - "ClusteringParams": reference/src/sawmill/clustering_params.md + - "EdgeOccurrenceTree": reference/src/sawmill/edge_occurrence_tree.md + - "Pickler": reference/src/sawmill/pickler.md + - "Printer": reference/src/sawmill/printer.md + - "Types": reference/src/sawmill/types.md + - Variable Names: + - "ParsedVariableName": reference/src/sawmill/variable_name/parsed_variable_name.md + - "PreparedVariableName": reference/src/sawmill/variable_name/prepared_variable_name.md + - Aggregation/Imputation Functions: + - "Aggregation Functions": reference/src/sawmill/aggimp/agg_funcs.md + - "Imputation Functions": reference/src/sawmill/aggimp/imp_funcs.md + + +markdown_extensions: + - markdown_include.include: + base_path: . + - pymdownx.highlight: + anchor_linenums: true + line_spans: __span + pygments_lang_class: true + - pymdownx.inlinehilite + - pymdownx.snippets + - pymdownx.superfences + - tables + diff --git a/mypy.ini b/mypy.ini new file mode 100644 index 0000000..281dd2e --- /dev/null +++ b/mypy.ini @@ -0,0 +1,3 @@ +[mypy] +ignore_missing_imports = True +check_untyped_defs = True diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000..24c5b95 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,240 @@ +altair==5.2.0 +annotated-types==0.6.0 +anyio==3.7.1 +argon2-cffi==23.1.0 +argon2-cffi-bindings==21.2.0 +arrow==1.3.0 +asttokens==2.4.1 +async-lru==2.0.4 +attrs==23.1.0 +Babel==2.13.1 +beautifulsoup4==4.12.2 +bleach==6.1.0 +blinker==1.7.0 +cachetools==5.3.2 +causal-learn==0.1.3.7 +certifi==2023.7.22 +cffi==1.16.0 +chardet==5.2.0 +charset-normalizer==3.3.2 +clarabel==0.6.0 +click==8.1.7 +colorama==0.4.6 +comm==0.1.4 +contourpy==1.1.1 +cvxpy==1.4.1 +cycler==0.12.1 +Cython==0.29.36 +debugpy==1.8.0 +decorator==5.1.1 +defusedxml==0.7.1 +distlib==0.3.8 +distro==1.8.0 +dowhy==0.10.1 +ecos==2.0.12 +entrypoints==0.4 +executing==2.0.1 +Faker==22.5.0 +fastjsonschema==2.18.1 +favicon==0.7.0 +filelock==3.13.1 +fonttools==4.43.1 +fqdn==1.5.1 +fsspec==2023.12.0 +ghp-import==2.1.0 +gitdb==4.0.11 +GitPython==3.1.40 +graphviz==0.20.1 +griffe==0.38.0 +h11==0.14.0 +htbuilder==0.6.2 +httpcore==1.0.2 +httpx==0.25.2 +idna==3.4 +importlib-metadata==7.0.1 +ipykernel==6.26.0 +ipython==8.17.2 +ipython-genutils==0.2.0 +ipywidgets==8.1.1 +isoduration==20.11.0 +jedi==0.19.1 +Jinja2==3.1.2 +joblib==1.3.2 +json5==0.9.14 +jsonpointer==2.4 +jsonschema==4.19.2 +jsonschema-specifications==2023.7.1 +jupyter==1.0.0 +jupyter-console==6.6.3 +jupyter-contrib-core==0.4.2 +jupyter-contrib-nbextensions==0.7.0 +jupyter-events==0.8.0 +jupyter-highlight-selected-word==0.2.0 +jupyter-lsp==2.2.0 +jupyter-nbextensions-configurator==0.6.3 +jupyter_client==8.5.0 +jupyter_core==5.5.0 +jupyter_server==2.9.1 +jupyter_server_terminals==0.4.4 +jupyterlab==4.0.7 +jupyterlab-pygments==0.2.2 +jupyterlab-widgets==3.0.9 +jupyterlab_server==2.25.0 +jupytext==1.15.2 +kiwisolver==1.4.5 +lingam==1.8.2 +lxml==4.9.3 +Mako==1.3.0 +Markdown==3.5.1 +markdown-include==0.8.1 +markdown-it-py==3.0.0 +markdownlit==0.0.7 +MarkupSafe==2.1.3 +matplotlib==3.8.1 +matplotlib-inline==0.1.6 +mdit-py-plugins==0.4.0 +mdurl==0.1.2 +mergedeep==1.3.4 +mistune==3.0.2 +mkdocs==1.5.3 +mkdocs-autorefs==0.5.0 +mkdocs-gen-files==0.5.0 +mkdocs-jupyter==0.24.6 +mkdocs-literate-nav==0.6.1 +mkdocs-material==9.4.12 +mkdocs-material-extensions==1.3.1 +mkdocs-section-index==0.3.8 +mkdocstrings==0.24.0 +mkdocstrings-python==1.7.5 +more-itertools==10.2.0 +mpmath==1.3.0 +mypy==1.7.0 +mypy-extensions==1.0.0 +nbclient==0.8.0 +nbconvert==7.10.0 +nbformat==5.9.2 +nest-asyncio==1.5.8 +networkx==3.2.1 +nodejs==0.1.1 +notebook==6.4.12 +notebook_shim==0.2.3 +numpy==1.26.1 +nvidia-cublas-cu12==12.1.3.1 +nvidia-cuda-cupti-cu12==12.1.105 +nvidia-cuda-nvrtc-cu12==12.1.105 +nvidia-cuda-runtime-cu12==12.1.105 +nvidia-cudnn-cu12==8.9.2.26 +nvidia-cufft-cu12==11.0.2.54 +nvidia-curand-cu12==10.3.2.106 +nvidia-cusolver-cu12==11.4.5.107 +nvidia-cusparse-cu12==12.1.0.106 +nvidia-nccl-cu12==2.18.1 +nvidia-nvjitlink-cu12==12.3.101 +nvidia-nvtx-cu12==12.1.105 +openai==1.3.5 +opt-einsum==3.3.0 +optional-django==0.1.0 +osqp==0.6.3 +overrides==7.4.0 +packaging==23.2 +paginate==0.5.6 +pandas==2.1.2 +pandocfilters==1.5.0 +parso==0.8.3 +pathspec==0.11.2 +patsy==0.5.3 +pdoc3==0.10.0 +pexpect==4.8.0 +pgmpy==0.1.24 +Pillow==10.1.0 +pipenv==2023.11.17 +platformdirs==3.11.0 +progressbar2==4.2.0 +prometheus-client==0.18.0 +prompt-toolkit==3.0.39 +protobuf==4.25.2 +psutil==5.9.6 +psy==0.0.1 +ptyprocess==0.7.0 +pure-eval==0.2.2 +pyarrow==15.0.0 +pybind11==2.11.1 +pycparser==2.21 +pydantic==2.5.2 +pydantic_core==2.14.5 +pydeck==0.8.1b0 +pydot==1.4.2 +pygam==0.9.0 +Pygments==2.16.1 +pygount==1.6.1 +pygraphviz==1.11 +pymdown-extensions==10.4 +pyparsing==3.1.1 +python-dateutil==2.8.2 +python-dotenv==1.0.0 +python-json-logger==2.0.7 +python-utils==3.8.1 +pytz==2023.3.post1 +PyYAML==6.0.1 +pyyaml_env_tag==0.1 +pyzmq==25.1.1 +qdldl==0.1.7.post0 +qtconsole==5.4.4 +QtPy==2.4.1 +quinn==0.10.0 +referencing==0.30.2 +regex==2023.10.3 +requests==2.31.0 +rfc3339-validator==0.1.4 +rfc3986-validator==0.1.1 +rich==13.7.0 +rpds-py==0.10.6 +scikit-learn==1.3.2 +scipy==1.11.3 +scs==3.2.3 +Send2Trash==1.8.2 +six==1.16.0 +smmap==5.0.1 +sniffio==1.3.0 +soupsieve==2.5 +st-annotated-text==4.0.1 +stack-data==0.6.3 +statsmodels==0.14.0 +streamlit==1.30.0 +streamlit-camera-input-live==0.2.0 +streamlit-card==1.0.0 +streamlit-embedcode==0.1.2 +streamlit-extras==0.3.6 +streamlit-faker==0.0.3 +streamlit-image-coordinates==0.1.6 +streamlit-keyup==0.2.2 +streamlit-toggle-switch==1.0.2 +streamlit-vertical-slider==2.5.5 +sympy==1.12 +tenacity==8.2.3 +terminado==0.17.1 +threadpoolctl==3.2.0 +tinycss2==1.2.1 +toml==0.10.2 +toolz==0.12.0 +torch==2.1.1 +tornado==6.3.3 +tqdm==4.66.1 +traitlets==5.13.0 +triton==2.1.0 +types-python-dateutil==2.8.19.14 +typing_extensions==4.8.0 +tzdata==2023.3 +tzlocal==5.2 +uri-template==1.3.0 +urllib3==2.0.7 +validators==0.22.0 +varname==0.12.0 +virtualenv==20.25.0 +watchdog==3.0.0 +wcwidth==0.2.9 +webcolors==1.13 +webencodings==0.5.1 +websocket-client==1.6.4 +widgetsnbextension==4.0.9 +zipp==3.17.0 diff --git a/site/404.html b/site/404.html new file mode 100644 index 0000000..8b41143 --- /dev/null +++ b/site/404.html @@ -0,0 +1,952 @@ + + + + + + + + + + + + + + + + + + + Sawmill + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+
+ +
+ + + + + + +
+ + + + + + + +
+ +
+ + + + +
+
+ + + +
+
+
+ + + + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ +

404 - Not found

+ +
+
+ + +
+ + + +
+ + + +
+
+
+
+ + + + + + + + + + \ No newline at end of file diff --git a/site/assets/_mkdocstrings.css b/site/assets/_mkdocstrings.css new file mode 100644 index 0000000..049a254 --- /dev/null +++ b/site/assets/_mkdocstrings.css @@ -0,0 +1,64 @@ + +/* Avoid breaking parameter names, etc. in table cells. */ +.doc-contents td code { + word-break: normal !important; +} + +/* No line break before first paragraph of descriptions. */ +.doc-md-description, +.doc-md-description>p:first-child { + display: inline; +} + +/* Max width for docstring sections tables. */ +.doc .md-typeset__table, +.doc .md-typeset__table table { + display: table !important; + width: 100%; +} + +.doc .md-typeset__table tr { + display: table-row; +} + +/* Defaults in Spacy table style. */ +.doc-param-default { + float: right; +} + +/* Keep headings consistent. */ +h1.doc-heading, +h2.doc-heading, +h3.doc-heading, +h4.doc-heading, +h5.doc-heading, +h6.doc-heading { + font-weight: 400; + line-height: 1.5; + color: inherit; + text-transform: none; +} + +h1.doc-heading { + font-size: 1.6rem; +} + +h2.doc-heading { + font-size: 1.2rem; +} + +h3.doc-heading { + font-size: 1.15rem; +} + +h4.doc-heading { + font-size: 1.10rem; +} + +h5.doc-heading { + font-size: 1.05rem; +} + +h6.doc-heading { + font-size: 1rem; +} \ No newline at end of file diff --git a/site/assets/images/favicon.png b/site/assets/images/favicon.png new file mode 100644 index 0000000..1cf13b9 Binary files /dev/null and b/site/assets/images/favicon.png differ diff --git a/site/assets/javascripts/bundle.6c14ae12.min.js b/site/assets/javascripts/bundle.6c14ae12.min.js new file mode 100644 index 0000000..bbff776 --- /dev/null +++ b/site/assets/javascripts/bundle.6c14ae12.min.js @@ -0,0 +1,29 @@ +"use strict";(()=>{var wi=Object.create;var ur=Object.defineProperty;var Si=Object.getOwnPropertyDescriptor;var Ti=Object.getOwnPropertyNames,kt=Object.getOwnPropertySymbols,Oi=Object.getPrototypeOf,dr=Object.prototype.hasOwnProperty,Zr=Object.prototype.propertyIsEnumerable;var Xr=(e,t,r)=>t in e?ur(e,t,{enumerable:!0,configurable:!0,writable:!0,value:r}):e[t]=r,R=(e,t)=>{for(var r in t||(t={}))dr.call(t,r)&&Xr(e,r,t[r]);if(kt)for(var r of kt(t))Zr.call(t,r)&&Xr(e,r,t[r]);return e};var eo=(e,t)=>{var r={};for(var o in e)dr.call(e,o)&&t.indexOf(o)<0&&(r[o]=e[o]);if(e!=null&&kt)for(var o of kt(e))t.indexOf(o)<0&&Zr.call(e,o)&&(r[o]=e[o]);return r};var hr=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports);var Mi=(e,t,r,o)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of Ti(t))!dr.call(e,n)&&n!==r&&ur(e,n,{get:()=>t[n],enumerable:!(o=Si(t,n))||o.enumerable});return e};var Ht=(e,t,r)=>(r=e!=null?wi(Oi(e)):{},Mi(t||!e||!e.__esModule?ur(r,"default",{value:e,enumerable:!0}):r,e));var ro=hr((br,to)=>{(function(e,t){typeof br=="object"&&typeof to!="undefined"?t():typeof define=="function"&&define.amd?define(t):t()})(br,function(){"use strict";function e(r){var o=!0,n=!1,i=null,s={text:!0,search:!0,url:!0,tel:!0,email:!0,password:!0,number:!0,date:!0,month:!0,week:!0,time:!0,datetime:!0,"datetime-local":!0};function a(C){return!!(C&&C!==document&&C.nodeName!=="HTML"&&C.nodeName!=="BODY"&&"classList"in C&&"contains"in C.classList)}function c(C){var it=C.type,Ue=C.tagName;return!!(Ue==="INPUT"&&s[it]&&!C.readOnly||Ue==="TEXTAREA"&&!C.readOnly||C.isContentEditable)}function p(C){C.classList.contains("focus-visible")||(C.classList.add("focus-visible"),C.setAttribute("data-focus-visible-added",""))}function l(C){C.hasAttribute("data-focus-visible-added")&&(C.classList.remove("focus-visible"),C.removeAttribute("data-focus-visible-added"))}function f(C){C.metaKey||C.altKey||C.ctrlKey||(a(r.activeElement)&&p(r.activeElement),o=!0)}function u(C){o=!1}function d(C){a(C.target)&&(o||c(C.target))&&p(C.target)}function v(C){a(C.target)&&(C.target.classList.contains("focus-visible")||C.target.hasAttribute("data-focus-visible-added"))&&(n=!0,window.clearTimeout(i),i=window.setTimeout(function(){n=!1},100),l(C.target))}function b(C){document.visibilityState==="hidden"&&(n&&(o=!0),z())}function z(){document.addEventListener("mousemove",G),document.addEventListener("mousedown",G),document.addEventListener("mouseup",G),document.addEventListener("pointermove",G),document.addEventListener("pointerdown",G),document.addEventListener("pointerup",G),document.addEventListener("touchmove",G),document.addEventListener("touchstart",G),document.addEventListener("touchend",G)}function K(){document.removeEventListener("mousemove",G),document.removeEventListener("mousedown",G),document.removeEventListener("mouseup",G),document.removeEventListener("pointermove",G),document.removeEventListener("pointerdown",G),document.removeEventListener("pointerup",G),document.removeEventListener("touchmove",G),document.removeEventListener("touchstart",G),document.removeEventListener("touchend",G)}function G(C){C.target.nodeName&&C.target.nodeName.toLowerCase()==="html"||(o=!1,K())}document.addEventListener("keydown",f,!0),document.addEventListener("mousedown",u,!0),document.addEventListener("pointerdown",u,!0),document.addEventListener("touchstart",u,!0),document.addEventListener("visibilitychange",b,!0),z(),r.addEventListener("focus",d,!0),r.addEventListener("blur",v,!0),r.nodeType===Node.DOCUMENT_FRAGMENT_NODE&&r.host?r.host.setAttribute("data-js-focus-visible",""):r.nodeType===Node.DOCUMENT_NODE&&(document.documentElement.classList.add("js-focus-visible"),document.documentElement.setAttribute("data-js-focus-visible",""))}if(typeof window!="undefined"&&typeof document!="undefined"){window.applyFocusVisiblePolyfill=e;var t;try{t=new CustomEvent("focus-visible-polyfill-ready")}catch(r){t=document.createEvent("CustomEvent"),t.initCustomEvent("focus-visible-polyfill-ready",!1,!1,{})}window.dispatchEvent(t)}typeof document!="undefined"&&e(document)})});var Vr=hr((Ot,Dr)=>{/*! + * clipboard.js v2.0.11 + * https://clipboardjs.com/ + * + * Licensed MIT © Zeno Rocha + */(function(t,r){typeof Ot=="object"&&typeof Dr=="object"?Dr.exports=r():typeof define=="function"&&define.amd?define([],r):typeof Ot=="object"?Ot.ClipboardJS=r():t.ClipboardJS=r()})(Ot,function(){return function(){var e={686:function(o,n,i){"use strict";i.d(n,{default:function(){return Ei}});var s=i(279),a=i.n(s),c=i(370),p=i.n(c),l=i(817),f=i.n(l);function u(W){try{return document.execCommand(W)}catch(O){return!1}}var d=function(O){var S=f()(O);return u("cut"),S},v=d;function b(W){var O=document.documentElement.getAttribute("dir")==="rtl",S=document.createElement("textarea");S.style.fontSize="12pt",S.style.border="0",S.style.padding="0",S.style.margin="0",S.style.position="absolute",S.style[O?"right":"left"]="-9999px";var $=window.pageYOffset||document.documentElement.scrollTop;return S.style.top="".concat($,"px"),S.setAttribute("readonly",""),S.value=W,S}var z=function(O,S){var $=b(O);S.container.appendChild($);var F=f()($);return u("copy"),$.remove(),F},K=function(O){var S=arguments.length>1&&arguments[1]!==void 0?arguments[1]:{container:document.body},$="";return typeof O=="string"?$=z(O,S):O instanceof HTMLInputElement&&!["text","search","url","tel","password"].includes(O==null?void 0:O.type)?$=z(O.value,S):($=f()(O),u("copy")),$},G=K;function C(W){"@babel/helpers - typeof";return typeof Symbol=="function"&&typeof Symbol.iterator=="symbol"?C=function(S){return typeof S}:C=function(S){return S&&typeof Symbol=="function"&&S.constructor===Symbol&&S!==Symbol.prototype?"symbol":typeof S},C(W)}var it=function(){var O=arguments.length>0&&arguments[0]!==void 0?arguments[0]:{},S=O.action,$=S===void 0?"copy":S,F=O.container,Q=O.target,_e=O.text;if($!=="copy"&&$!=="cut")throw new Error('Invalid "action" value, use either "copy" or "cut"');if(Q!==void 0)if(Q&&C(Q)==="object"&&Q.nodeType===1){if($==="copy"&&Q.hasAttribute("disabled"))throw new Error('Invalid "target" attribute. Please use "readonly" instead of "disabled" attribute');if($==="cut"&&(Q.hasAttribute("readonly")||Q.hasAttribute("disabled")))throw new Error(`Invalid "target" attribute. You can't cut text from elements with "readonly" or "disabled" attributes`)}else throw new Error('Invalid "target" value, use a valid Element');if(_e)return G(_e,{container:F});if(Q)return $==="cut"?v(Q):G(Q,{container:F})},Ue=it;function Pe(W){"@babel/helpers - typeof";return typeof Symbol=="function"&&typeof Symbol.iterator=="symbol"?Pe=function(S){return typeof S}:Pe=function(S){return S&&typeof Symbol=="function"&&S.constructor===Symbol&&S!==Symbol.prototype?"symbol":typeof S},Pe(W)}function ui(W,O){if(!(W instanceof O))throw new TypeError("Cannot call a class as a function")}function Jr(W,O){for(var S=0;S0&&arguments[0]!==void 0?arguments[0]:{};this.action=typeof F.action=="function"?F.action:this.defaultAction,this.target=typeof F.target=="function"?F.target:this.defaultTarget,this.text=typeof F.text=="function"?F.text:this.defaultText,this.container=Pe(F.container)==="object"?F.container:document.body}},{key:"listenClick",value:function(F){var Q=this;this.listener=p()(F,"click",function(_e){return Q.onClick(_e)})}},{key:"onClick",value:function(F){var Q=F.delegateTarget||F.currentTarget,_e=this.action(Q)||"copy",Ct=Ue({action:_e,container:this.container,target:this.target(Q),text:this.text(Q)});this.emit(Ct?"success":"error",{action:_e,text:Ct,trigger:Q,clearSelection:function(){Q&&Q.focus(),window.getSelection().removeAllRanges()}})}},{key:"defaultAction",value:function(F){return fr("action",F)}},{key:"defaultTarget",value:function(F){var Q=fr("target",F);if(Q)return document.querySelector(Q)}},{key:"defaultText",value:function(F){return fr("text",F)}},{key:"destroy",value:function(){this.listener.destroy()}}],[{key:"copy",value:function(F){var Q=arguments.length>1&&arguments[1]!==void 0?arguments[1]:{container:document.body};return G(F,Q)}},{key:"cut",value:function(F){return v(F)}},{key:"isSupported",value:function(){var F=arguments.length>0&&arguments[0]!==void 0?arguments[0]:["copy","cut"],Q=typeof F=="string"?[F]:F,_e=!!document.queryCommandSupported;return Q.forEach(function(Ct){_e=_e&&!!document.queryCommandSupported(Ct)}),_e}}]),S}(a()),Ei=yi},828:function(o){var n=9;if(typeof Element!="undefined"&&!Element.prototype.matches){var i=Element.prototype;i.matches=i.matchesSelector||i.mozMatchesSelector||i.msMatchesSelector||i.oMatchesSelector||i.webkitMatchesSelector}function s(a,c){for(;a&&a.nodeType!==n;){if(typeof a.matches=="function"&&a.matches(c))return a;a=a.parentNode}}o.exports=s},438:function(o,n,i){var s=i(828);function a(l,f,u,d,v){var b=p.apply(this,arguments);return l.addEventListener(u,b,v),{destroy:function(){l.removeEventListener(u,b,v)}}}function c(l,f,u,d,v){return typeof l.addEventListener=="function"?a.apply(null,arguments):typeof u=="function"?a.bind(null,document).apply(null,arguments):(typeof l=="string"&&(l=document.querySelectorAll(l)),Array.prototype.map.call(l,function(b){return a(b,f,u,d,v)}))}function p(l,f,u,d){return function(v){v.delegateTarget=s(v.target,f),v.delegateTarget&&d.call(l,v)}}o.exports=c},879:function(o,n){n.node=function(i){return i!==void 0&&i instanceof HTMLElement&&i.nodeType===1},n.nodeList=function(i){var s=Object.prototype.toString.call(i);return i!==void 0&&(s==="[object NodeList]"||s==="[object HTMLCollection]")&&"length"in i&&(i.length===0||n.node(i[0]))},n.string=function(i){return typeof i=="string"||i instanceof String},n.fn=function(i){var s=Object.prototype.toString.call(i);return s==="[object Function]"}},370:function(o,n,i){var s=i(879),a=i(438);function c(u,d,v){if(!u&&!d&&!v)throw new Error("Missing required arguments");if(!s.string(d))throw new TypeError("Second argument must be a String");if(!s.fn(v))throw new TypeError("Third argument must be a Function");if(s.node(u))return p(u,d,v);if(s.nodeList(u))return l(u,d,v);if(s.string(u))return f(u,d,v);throw new TypeError("First argument must be a String, HTMLElement, HTMLCollection, or NodeList")}function p(u,d,v){return u.addEventListener(d,v),{destroy:function(){u.removeEventListener(d,v)}}}function l(u,d,v){return Array.prototype.forEach.call(u,function(b){b.addEventListener(d,v)}),{destroy:function(){Array.prototype.forEach.call(u,function(b){b.removeEventListener(d,v)})}}}function f(u,d,v){return a(document.body,u,d,v)}o.exports=c},817:function(o){function n(i){var s;if(i.nodeName==="SELECT")i.focus(),s=i.value;else if(i.nodeName==="INPUT"||i.nodeName==="TEXTAREA"){var a=i.hasAttribute("readonly");a||i.setAttribute("readonly",""),i.select(),i.setSelectionRange(0,i.value.length),a||i.removeAttribute("readonly"),s=i.value}else{i.hasAttribute("contenteditable")&&i.focus();var c=window.getSelection(),p=document.createRange();p.selectNodeContents(i),c.removeAllRanges(),c.addRange(p),s=c.toString()}return s}o.exports=n},279:function(o){function n(){}n.prototype={on:function(i,s,a){var c=this.e||(this.e={});return(c[i]||(c[i]=[])).push({fn:s,ctx:a}),this},once:function(i,s,a){var c=this;function p(){c.off(i,p),s.apply(a,arguments)}return p._=s,this.on(i,p,a)},emit:function(i){var s=[].slice.call(arguments,1),a=((this.e||(this.e={}))[i]||[]).slice(),c=0,p=a.length;for(c;c{"use strict";/*! + * escape-html + * Copyright(c) 2012-2013 TJ Holowaychuk + * Copyright(c) 2015 Andreas Lubbe + * Copyright(c) 2015 Tiancheng "Timothy" Gu + * MIT Licensed + */var Ha=/["'&<>]/;Nn.exports=$a;function $a(e){var t=""+e,r=Ha.exec(t);if(!r)return t;var o,n="",i=0,s=0;for(i=r.index;i0&&i[i.length-1])&&(p[0]===6||p[0]===2)){r=0;continue}if(p[0]===3&&(!i||p[1]>i[0]&&p[1]=e.length&&(e=void 0),{value:e&&e[o++],done:!e}}};throw new TypeError(t?"Object is not iterable.":"Symbol.iterator is not defined.")}function N(e,t){var r=typeof Symbol=="function"&&e[Symbol.iterator];if(!r)return e;var o=r.call(e),n,i=[],s;try{for(;(t===void 0||t-- >0)&&!(n=o.next()).done;)i.push(n.value)}catch(a){s={error:a}}finally{try{n&&!n.done&&(r=o.return)&&r.call(o)}finally{if(s)throw s.error}}return i}function D(e,t,r){if(r||arguments.length===2)for(var o=0,n=t.length,i;o1||a(u,d)})})}function a(u,d){try{c(o[u](d))}catch(v){f(i[0][3],v)}}function c(u){u.value instanceof Ze?Promise.resolve(u.value.v).then(p,l):f(i[0][2],u)}function p(u){a("next",u)}function l(u){a("throw",u)}function f(u,d){u(d),i.shift(),i.length&&a(i[0][0],i[0][1])}}function io(e){if(!Symbol.asyncIterator)throw new TypeError("Symbol.asyncIterator is not defined.");var t=e[Symbol.asyncIterator],r;return t?t.call(e):(e=typeof we=="function"?we(e):e[Symbol.iterator](),r={},o("next"),o("throw"),o("return"),r[Symbol.asyncIterator]=function(){return this},r);function o(i){r[i]=e[i]&&function(s){return new Promise(function(a,c){s=e[i](s),n(a,c,s.done,s.value)})}}function n(i,s,a,c){Promise.resolve(c).then(function(p){i({value:p,done:a})},s)}}function k(e){return typeof e=="function"}function at(e){var t=function(o){Error.call(o),o.stack=new Error().stack},r=e(t);return r.prototype=Object.create(Error.prototype),r.prototype.constructor=r,r}var Rt=at(function(e){return function(r){e(this),this.message=r?r.length+` errors occurred during unsubscription: +`+r.map(function(o,n){return n+1+") "+o.toString()}).join(` + `):"",this.name="UnsubscriptionError",this.errors=r}});function De(e,t){if(e){var r=e.indexOf(t);0<=r&&e.splice(r,1)}}var Ie=function(){function e(t){this.initialTeardown=t,this.closed=!1,this._parentage=null,this._finalizers=null}return e.prototype.unsubscribe=function(){var t,r,o,n,i;if(!this.closed){this.closed=!0;var s=this._parentage;if(s)if(this._parentage=null,Array.isArray(s))try{for(var a=we(s),c=a.next();!c.done;c=a.next()){var p=c.value;p.remove(this)}}catch(b){t={error:b}}finally{try{c&&!c.done&&(r=a.return)&&r.call(a)}finally{if(t)throw t.error}}else s.remove(this);var l=this.initialTeardown;if(k(l))try{l()}catch(b){i=b instanceof Rt?b.errors:[b]}var f=this._finalizers;if(f){this._finalizers=null;try{for(var u=we(f),d=u.next();!d.done;d=u.next()){var v=d.value;try{ao(v)}catch(b){i=i!=null?i:[],b instanceof Rt?i=D(D([],N(i)),N(b.errors)):i.push(b)}}}catch(b){o={error:b}}finally{try{d&&!d.done&&(n=u.return)&&n.call(u)}finally{if(o)throw o.error}}}if(i)throw new Rt(i)}},e.prototype.add=function(t){var r;if(t&&t!==this)if(this.closed)ao(t);else{if(t instanceof e){if(t.closed||t._hasParent(this))return;t._addParent(this)}(this._finalizers=(r=this._finalizers)!==null&&r!==void 0?r:[]).push(t)}},e.prototype._hasParent=function(t){var r=this._parentage;return r===t||Array.isArray(r)&&r.includes(t)},e.prototype._addParent=function(t){var r=this._parentage;this._parentage=Array.isArray(r)?(r.push(t),r):r?[r,t]:t},e.prototype._removeParent=function(t){var r=this._parentage;r===t?this._parentage=null:Array.isArray(r)&&De(r,t)},e.prototype.remove=function(t){var r=this._finalizers;r&&De(r,t),t instanceof e&&t._removeParent(this)},e.EMPTY=function(){var t=new e;return t.closed=!0,t}(),e}();var gr=Ie.EMPTY;function Pt(e){return e instanceof Ie||e&&"closed"in e&&k(e.remove)&&k(e.add)&&k(e.unsubscribe)}function ao(e){k(e)?e():e.unsubscribe()}var Ae={onUnhandledError:null,onStoppedNotification:null,Promise:void 0,useDeprecatedSynchronousErrorHandling:!1,useDeprecatedNextContext:!1};var st={setTimeout:function(e,t){for(var r=[],o=2;o0},enumerable:!1,configurable:!0}),t.prototype._trySubscribe=function(r){return this._throwIfClosed(),e.prototype._trySubscribe.call(this,r)},t.prototype._subscribe=function(r){return this._throwIfClosed(),this._checkFinalizedStatuses(r),this._innerSubscribe(r)},t.prototype._innerSubscribe=function(r){var o=this,n=this,i=n.hasError,s=n.isStopped,a=n.observers;return i||s?gr:(this.currentObservers=null,a.push(r),new Ie(function(){o.currentObservers=null,De(a,r)}))},t.prototype._checkFinalizedStatuses=function(r){var o=this,n=o.hasError,i=o.thrownError,s=o.isStopped;n?r.error(i):s&&r.complete()},t.prototype.asObservable=function(){var r=new P;return r.source=this,r},t.create=function(r,o){return new ho(r,o)},t}(P);var ho=function(e){ie(t,e);function t(r,o){var n=e.call(this)||this;return n.destination=r,n.source=o,n}return t.prototype.next=function(r){var o,n;(n=(o=this.destination)===null||o===void 0?void 0:o.next)===null||n===void 0||n.call(o,r)},t.prototype.error=function(r){var o,n;(n=(o=this.destination)===null||o===void 0?void 0:o.error)===null||n===void 0||n.call(o,r)},t.prototype.complete=function(){var r,o;(o=(r=this.destination)===null||r===void 0?void 0:r.complete)===null||o===void 0||o.call(r)},t.prototype._subscribe=function(r){var o,n;return(n=(o=this.source)===null||o===void 0?void 0:o.subscribe(r))!==null&&n!==void 0?n:gr},t}(x);var yt={now:function(){return(yt.delegate||Date).now()},delegate:void 0};var Et=function(e){ie(t,e);function t(r,o,n){r===void 0&&(r=1/0),o===void 0&&(o=1/0),n===void 0&&(n=yt);var i=e.call(this)||this;return i._bufferSize=r,i._windowTime=o,i._timestampProvider=n,i._buffer=[],i._infiniteTimeWindow=!0,i._infiniteTimeWindow=o===1/0,i._bufferSize=Math.max(1,r),i._windowTime=Math.max(1,o),i}return t.prototype.next=function(r){var o=this,n=o.isStopped,i=o._buffer,s=o._infiniteTimeWindow,a=o._timestampProvider,c=o._windowTime;n||(i.push(r),!s&&i.push(a.now()+c)),this._trimBuffer(),e.prototype.next.call(this,r)},t.prototype._subscribe=function(r){this._throwIfClosed(),this._trimBuffer();for(var o=this._innerSubscribe(r),n=this,i=n._infiniteTimeWindow,s=n._buffer,a=s.slice(),c=0;c0?e.prototype.requestAsyncId.call(this,r,o,n):(r.actions.push(this),r._scheduled||(r._scheduled=lt.requestAnimationFrame(function(){return r.flush(void 0)})))},t.prototype.recycleAsyncId=function(r,o,n){var i;if(n===void 0&&(n=0),n!=null?n>0:this.delay>0)return e.prototype.recycleAsyncId.call(this,r,o,n);var s=r.actions;o!=null&&((i=s[s.length-1])===null||i===void 0?void 0:i.id)!==o&&(lt.cancelAnimationFrame(o),r._scheduled=void 0)},t}(jt);var go=function(e){ie(t,e);function t(){return e!==null&&e.apply(this,arguments)||this}return t.prototype.flush=function(r){this._active=!0;var o=this._scheduled;this._scheduled=void 0;var n=this.actions,i;r=r||n.shift();do if(i=r.execute(r.state,r.delay))break;while((r=n[0])&&r.id===o&&n.shift());if(this._active=!1,i){for(;(r=n[0])&&r.id===o&&n.shift();)r.unsubscribe();throw i}},t}(Wt);var Oe=new go(vo);var L=new P(function(e){return e.complete()});function Nt(e){return e&&k(e.schedule)}function Or(e){return e[e.length-1]}function Qe(e){return k(Or(e))?e.pop():void 0}function Me(e){return Nt(Or(e))?e.pop():void 0}function Ut(e,t){return typeof Or(e)=="number"?e.pop():t}var mt=function(e){return e&&typeof e.length=="number"&&typeof e!="function"};function Dt(e){return k(e==null?void 0:e.then)}function Vt(e){return k(e[pt])}function zt(e){return Symbol.asyncIterator&&k(e==null?void 0:e[Symbol.asyncIterator])}function qt(e){return new TypeError("You provided "+(e!==null&&typeof e=="object"?"an invalid object":"'"+e+"'")+" where a stream was expected. You can provide an Observable, Promise, ReadableStream, Array, AsyncIterable, or Iterable.")}function Pi(){return typeof Symbol!="function"||!Symbol.iterator?"@@iterator":Symbol.iterator}var Kt=Pi();function Qt(e){return k(e==null?void 0:e[Kt])}function Yt(e){return no(this,arguments,function(){var r,o,n,i;return $t(this,function(s){switch(s.label){case 0:r=e.getReader(),s.label=1;case 1:s.trys.push([1,,9,10]),s.label=2;case 2:return[4,Ze(r.read())];case 3:return o=s.sent(),n=o.value,i=o.done,i?[4,Ze(void 0)]:[3,5];case 4:return[2,s.sent()];case 5:return[4,Ze(n)];case 6:return[4,s.sent()];case 7:return s.sent(),[3,2];case 8:return[3,10];case 9:return r.releaseLock(),[7];case 10:return[2]}})})}function Bt(e){return k(e==null?void 0:e.getReader)}function I(e){if(e instanceof P)return e;if(e!=null){if(Vt(e))return Ii(e);if(mt(e))return Fi(e);if(Dt(e))return ji(e);if(zt(e))return xo(e);if(Qt(e))return Wi(e);if(Bt(e))return Ni(e)}throw qt(e)}function Ii(e){return new P(function(t){var r=e[pt]();if(k(r.subscribe))return r.subscribe(t);throw new TypeError("Provided object does not correctly implement Symbol.observable")})}function Fi(e){return new P(function(t){for(var r=0;r=2;return function(o){return o.pipe(e?M(function(n,i){return e(n,i,o)}):ue,xe(1),r?He(t):Io(function(){return new Jt}))}}function Fo(){for(var e=[],t=0;t=2,!0))}function le(e){e===void 0&&(e={});var t=e.connector,r=t===void 0?function(){return new x}:t,o=e.resetOnError,n=o===void 0?!0:o,i=e.resetOnComplete,s=i===void 0?!0:i,a=e.resetOnRefCountZero,c=a===void 0?!0:a;return function(p){var l,f,u,d=0,v=!1,b=!1,z=function(){f==null||f.unsubscribe(),f=void 0},K=function(){z(),l=u=void 0,v=b=!1},G=function(){var C=l;K(),C==null||C.unsubscribe()};return g(function(C,it){d++,!b&&!v&&z();var Ue=u=u!=null?u:r();it.add(function(){d--,d===0&&!b&&!v&&(f=Hr(G,c))}),Ue.subscribe(it),!l&&d>0&&(l=new tt({next:function(Pe){return Ue.next(Pe)},error:function(Pe){b=!0,z(),f=Hr(K,n,Pe),Ue.error(Pe)},complete:function(){v=!0,z(),f=Hr(K,s),Ue.complete()}}),I(C).subscribe(l))})(p)}}function Hr(e,t){for(var r=[],o=2;oe.next(document)),e}function q(e,t=document){return Array.from(t.querySelectorAll(e))}function U(e,t=document){let r=se(e,t);if(typeof r=="undefined")throw new ReferenceError(`Missing element: expected "${e}" to be present`);return r}function se(e,t=document){return t.querySelector(e)||void 0}function Re(){return document.activeElement instanceof HTMLElement&&document.activeElement||void 0}var na=_(h(document.body,"focusin"),h(document.body,"focusout")).pipe(ke(1),V(void 0),m(()=>Re()||document.body),J(1));function Zt(e){return na.pipe(m(t=>e.contains(t)),X())}function Je(e){return{x:e.offsetLeft,y:e.offsetTop}}function Uo(e){return _(h(window,"load"),h(window,"resize")).pipe(Ce(0,Oe),m(()=>Je(e)),V(Je(e)))}function er(e){return{x:e.scrollLeft,y:e.scrollTop}}function dt(e){return _(h(e,"scroll"),h(window,"resize")).pipe(Ce(0,Oe),m(()=>er(e)),V(er(e)))}function Do(e,t){if(typeof t=="string"||typeof t=="number")e.innerHTML+=t.toString();else if(t instanceof Node)e.appendChild(t);else if(Array.isArray(t))for(let r of t)Do(e,r)}function T(e,t,...r){let o=document.createElement(e);if(t)for(let n of Object.keys(t))typeof t[n]!="undefined"&&(typeof t[n]!="boolean"?o.setAttribute(n,t[n]):o.setAttribute(n,""));for(let n of r)Do(o,n);return o}function tr(e){if(e>999){let t=+((e-950)%1e3>99);return`${((e+1e-6)/1e3).toFixed(t)}k`}else return e.toString()}function ht(e){let t=T("script",{src:e});return H(()=>(document.head.appendChild(t),_(h(t,"load"),h(t,"error").pipe(E(()=>Mr(()=>new ReferenceError(`Invalid script: ${e}`))))).pipe(m(()=>{}),A(()=>document.head.removeChild(t)),xe(1))))}var Vo=new x,ia=H(()=>typeof ResizeObserver=="undefined"?ht("https://unpkg.com/resize-observer-polyfill"):j(void 0)).pipe(m(()=>new ResizeObserver(e=>{for(let t of e)Vo.next(t)})),E(e=>_(Ve,j(e)).pipe(A(()=>e.disconnect()))),J(1));function he(e){return{width:e.offsetWidth,height:e.offsetHeight}}function ye(e){return ia.pipe(w(t=>t.observe(e)),E(t=>Vo.pipe(M(({target:r})=>r===e),A(()=>t.unobserve(e)),m(()=>he(e)))),V(he(e)))}function bt(e){return{width:e.scrollWidth,height:e.scrollHeight}}function zo(e){let t=e.parentElement;for(;t&&(e.scrollWidth<=t.scrollWidth&&e.scrollHeight<=t.scrollHeight);)t=(e=t).parentElement;return t?e:void 0}var qo=new x,aa=H(()=>j(new IntersectionObserver(e=>{for(let t of e)qo.next(t)},{threshold:0}))).pipe(E(e=>_(Ve,j(e)).pipe(A(()=>e.disconnect()))),J(1));function rr(e){return aa.pipe(w(t=>t.observe(e)),E(t=>qo.pipe(M(({target:r})=>r===e),A(()=>t.unobserve(e)),m(({isIntersecting:r})=>r))))}function Ko(e,t=16){return dt(e).pipe(m(({y:r})=>{let o=he(e),n=bt(e);return r>=n.height-o.height-t}),X())}var or={drawer:U("[data-md-toggle=drawer]"),search:U("[data-md-toggle=search]")};function Qo(e){return or[e].checked}function Ke(e,t){or[e].checked!==t&&or[e].click()}function We(e){let t=or[e];return h(t,"change").pipe(m(()=>t.checked),V(t.checked))}function sa(e,t){switch(e.constructor){case HTMLInputElement:return e.type==="radio"?/^Arrow/.test(t):!0;case HTMLSelectElement:case HTMLTextAreaElement:return!0;default:return e.isContentEditable}}function ca(){return _(h(window,"compositionstart").pipe(m(()=>!0)),h(window,"compositionend").pipe(m(()=>!1))).pipe(V(!1))}function Yo(){let e=h(window,"keydown").pipe(M(t=>!(t.metaKey||t.ctrlKey)),m(t=>({mode:Qo("search")?"search":"global",type:t.key,claim(){t.preventDefault(),t.stopPropagation()}})),M(({mode:t,type:r})=>{if(t==="global"){let o=Re();if(typeof o!="undefined")return!sa(o,r)}return!0}),le());return ca().pipe(E(t=>t?L:e))}function pe(){return new URL(location.href)}function ot(e,t=!1){if(te("navigation.instant")&&!t){let r=T("a",{href:e.href});document.body.appendChild(r),r.click(),r.remove()}else location.href=e.href}function Bo(){return new x}function Go(){return location.hash.slice(1)}function nr(e){let t=T("a",{href:e});t.addEventListener("click",r=>r.stopPropagation()),t.click()}function pa(e){return _(h(window,"hashchange"),e).pipe(m(Go),V(Go()),M(t=>t.length>0),J(1))}function Jo(e){return pa(e).pipe(m(t=>se(`[id="${t}"]`)),M(t=>typeof t!="undefined"))}function Fr(e){let t=matchMedia(e);return Xt(r=>t.addListener(()=>r(t.matches))).pipe(V(t.matches))}function Xo(){let e=matchMedia("print");return _(h(window,"beforeprint").pipe(m(()=>!0)),h(window,"afterprint").pipe(m(()=>!1))).pipe(V(e.matches))}function jr(e,t){return e.pipe(E(r=>r?t():L))}function ir(e,t){return new P(r=>{let o=new XMLHttpRequest;o.open("GET",`${e}`),o.responseType="blob",o.addEventListener("load",()=>{o.status>=200&&o.status<300?(r.next(o.response),r.complete()):r.error(new Error(o.statusText))}),o.addEventListener("error",()=>{r.error(new Error("Network Error"))}),o.addEventListener("abort",()=>{r.error(new Error("Request aborted"))}),typeof(t==null?void 0:t.progress$)!="undefined"&&(o.addEventListener("progress",n=>{if(n.lengthComputable)t.progress$.next(n.loaded/n.total*100);else{let i=Number(o.getResponseHeader("Content-Length"))||0;t.progress$.next(n.loaded/i*100)}}),t.progress$.next(5)),o.send()})}function Ne(e,t){return ir(e,t).pipe(E(r=>r.text()),m(r=>JSON.parse(r)),J(1))}function Zo(e,t){let r=new DOMParser;return ir(e,t).pipe(E(o=>o.text()),m(o=>r.parseFromString(o,"text/xml")),J(1))}function en(){return{x:Math.max(0,scrollX),y:Math.max(0,scrollY)}}function tn(){return _(h(window,"scroll",{passive:!0}),h(window,"resize",{passive:!0})).pipe(m(en),V(en()))}function rn(){return{width:innerWidth,height:innerHeight}}function on(){return h(window,"resize",{passive:!0}).pipe(m(rn),V(rn()))}function nn(){return B([tn(),on()]).pipe(m(([e,t])=>({offset:e,size:t})),J(1))}function ar(e,{viewport$:t,header$:r}){let o=t.pipe(ee("size")),n=B([o,r]).pipe(m(()=>Je(e)));return B([r,t,n]).pipe(m(([{height:i},{offset:s,size:a},{x:c,y:p}])=>({offset:{x:s.x-c,y:s.y-p+i},size:a})))}function la(e){return h(e,"message",t=>t.data)}function ma(e){let t=new x;return t.subscribe(r=>e.postMessage(r)),t}function an(e,t=new Worker(e)){let r=la(t),o=ma(t),n=new x;n.subscribe(o);let i=o.pipe(Z(),re(!0));return n.pipe(Z(),qe(r.pipe(Y(i))),le())}var fa=U("#__config"),vt=JSON.parse(fa.textContent);vt.base=`${new URL(vt.base,pe())}`;function me(){return vt}function te(e){return vt.features.includes(e)}function be(e,t){return typeof t!="undefined"?vt.translations[e].replace("#",t.toString()):vt.translations[e]}function Ee(e,t=document){return U(`[data-md-component=${e}]`,t)}function oe(e,t=document){return q(`[data-md-component=${e}]`,t)}function ua(e){let t=U(".md-typeset > :first-child",e);return h(t,"click",{once:!0}).pipe(m(()=>U(".md-typeset",e)),m(r=>({hash:__md_hash(r.innerHTML)})))}function sn(e){if(!te("announce.dismiss")||!e.childElementCount)return L;if(!e.hidden){let t=U(".md-typeset",e);__md_hash(t.innerHTML)===__md_get("__announce")&&(e.hidden=!0)}return H(()=>{let t=new x;return t.subscribe(({hash:r})=>{e.hidden=!0,__md_set("__announce",r)}),ua(e).pipe(w(r=>t.next(r)),A(()=>t.complete()),m(r=>R({ref:e},r)))})}function da(e,{target$:t}){return t.pipe(m(r=>({hidden:r!==e})))}function cn(e,t){let r=new x;return r.subscribe(({hidden:o})=>{e.hidden=o}),da(e,t).pipe(w(o=>r.next(o)),A(()=>r.complete()),m(o=>R({ref:e},o)))}function ha(e,t){let r=H(()=>B([Uo(e),dt(t)])).pipe(m(([{x:o,y:n},i])=>{let{width:s,height:a}=he(e);return{x:o-i.x+s/2,y:n-i.y+a/2}}));return Zt(e).pipe(E(o=>r.pipe(m(n=>({active:o,offset:n})),xe(+!o||1/0))))}function pn(e,t,{target$:r}){let[o,n]=Array.from(e.children);return H(()=>{let i=new x,s=i.pipe(Z(),re(!0));return i.subscribe({next({offset:a}){e.style.setProperty("--md-tooltip-x",`${a.x}px`),e.style.setProperty("--md-tooltip-y",`${a.y}px`)},complete(){e.style.removeProperty("--md-tooltip-x"),e.style.removeProperty("--md-tooltip-y")}}),rr(e).pipe(Y(s)).subscribe(a=>{e.toggleAttribute("data-md-visible",a)}),_(i.pipe(M(({active:a})=>a)),i.pipe(ke(250),M(({active:a})=>!a))).subscribe({next({active:a}){a?e.prepend(o):o.remove()},complete(){e.prepend(o)}}),i.pipe(Ce(16,Oe)).subscribe(({active:a})=>{o.classList.toggle("md-tooltip--active",a)}),i.pipe(Pr(125,Oe),M(()=>!!e.offsetParent),m(()=>e.offsetParent.getBoundingClientRect()),m(({x:a})=>a)).subscribe({next(a){a?e.style.setProperty("--md-tooltip-0",`${-a}px`):e.style.removeProperty("--md-tooltip-0")},complete(){e.style.removeProperty("--md-tooltip-0")}}),h(n,"click").pipe(Y(s),M(a=>!(a.metaKey||a.ctrlKey))).subscribe(a=>{a.stopPropagation(),a.preventDefault()}),h(n,"mousedown").pipe(Y(s),ne(i)).subscribe(([a,{active:c}])=>{var p;if(a.button!==0||a.metaKey||a.ctrlKey)a.preventDefault();else if(c){a.preventDefault();let l=e.parentElement.closest(".md-annotation");l instanceof HTMLElement?l.focus():(p=Re())==null||p.blur()}}),r.pipe(Y(s),M(a=>a===o),ze(125)).subscribe(()=>e.focus()),ha(e,t).pipe(w(a=>i.next(a)),A(()=>i.complete()),m(a=>R({ref:e},a)))})}function Wr(e){return T("div",{class:"md-tooltip",id:e},T("div",{class:"md-tooltip__inner md-typeset"}))}function ln(e,t){if(t=t?`${t}_annotation_${e}`:void 0,t){let r=t?`#${t}`:void 0;return T("aside",{class:"md-annotation",tabIndex:0},Wr(t),T("a",{href:r,class:"md-annotation__index",tabIndex:-1},T("span",{"data-md-annotation-id":e})))}else return T("aside",{class:"md-annotation",tabIndex:0},Wr(t),T("span",{class:"md-annotation__index",tabIndex:-1},T("span",{"data-md-annotation-id":e})))}function mn(e){return T("button",{class:"md-clipboard md-icon",title:be("clipboard.copy"),"data-clipboard-target":`#${e} > code`})}function Nr(e,t){let r=t&2,o=t&1,n=Object.keys(e.terms).filter(c=>!e.terms[c]).reduce((c,p)=>[...c,T("del",null,p)," "],[]).slice(0,-1),i=me(),s=new URL(e.location,i.base);te("search.highlight")&&s.searchParams.set("h",Object.entries(e.terms).filter(([,c])=>c).reduce((c,[p])=>`${c} ${p}`.trim(),""));let{tags:a}=me();return T("a",{href:`${s}`,class:"md-search-result__link",tabIndex:-1},T("article",{class:"md-search-result__article md-typeset","data-md-score":e.score.toFixed(2)},r>0&&T("div",{class:"md-search-result__icon md-icon"}),r>0&&T("h1",null,e.title),r<=0&&T("h2",null,e.title),o>0&&e.text.length>0&&e.text,e.tags&&e.tags.map(c=>{let p=a?c in a?`md-tag-icon md-tag--${a[c]}`:"md-tag-icon":"";return T("span",{class:`md-tag ${p}`},c)}),o>0&&n.length>0&&T("p",{class:"md-search-result__terms"},be("search.result.term.missing"),": ",...n)))}function fn(e){let t=e[0].score,r=[...e],o=me(),n=r.findIndex(l=>!`${new URL(l.location,o.base)}`.includes("#")),[i]=r.splice(n,1),s=r.findIndex(l=>l.scoreNr(l,1)),...c.length?[T("details",{class:"md-search-result__more"},T("summary",{tabIndex:-1},T("div",null,c.length>0&&c.length===1?be("search.result.more.one"):be("search.result.more.other",c.length))),...c.map(l=>Nr(l,1)))]:[]];return T("li",{class:"md-search-result__item"},p)}function un(e){return T("ul",{class:"md-source__facts"},Object.entries(e).map(([t,r])=>T("li",{class:`md-source__fact md-source__fact--${t}`},typeof r=="number"?tr(r):r)))}function Ur(e){let t=`tabbed-control tabbed-control--${e}`;return T("div",{class:t,hidden:!0},T("button",{class:"tabbed-button",tabIndex:-1,"aria-hidden":"true"}))}function dn(e){return T("div",{class:"md-typeset__scrollwrap"},T("div",{class:"md-typeset__table"},e))}function ba(e){let t=me(),r=new URL(`../${e.version}/`,t.base);return T("li",{class:"md-version__item"},T("a",{href:`${r}`,class:"md-version__link"},e.title))}function hn(e,t){return T("div",{class:"md-version"},T("button",{class:"md-version__current","aria-label":be("select.version")},t.title),T("ul",{class:"md-version__list"},e.map(ba)))}function va(e){return e.tagName==="CODE"?q(".c, .c1, .cm",e):[e]}function ga(e){let t=[];for(let r of va(e)){let o=[],n=document.createNodeIterator(r,NodeFilter.SHOW_TEXT);for(let i=n.nextNode();i;i=n.nextNode())o.push(i);for(let i of o){let s;for(;s=/(\(\d+\))(!)?/.exec(i.textContent);){let[,a,c]=s;if(typeof c=="undefined"){let p=i.splitText(s.index);i=p.splitText(a.length),t.push(p)}else{i.textContent=a,t.push(i);break}}}}return t}function bn(e,t){t.append(...Array.from(e.childNodes))}function sr(e,t,{target$:r,print$:o}){let n=t.closest("[id]"),i=n==null?void 0:n.id,s=new Map;for(let a of ga(t)){let[,c]=a.textContent.match(/\((\d+)\)/);se(`:scope > li:nth-child(${c})`,e)&&(s.set(c,ln(c,i)),a.replaceWith(s.get(c)))}return s.size===0?L:H(()=>{let a=new x,c=a.pipe(Z(),re(!0)),p=[];for(let[l,f]of s)p.push([U(".md-typeset",f),U(`:scope > li:nth-child(${l})`,e)]);return o.pipe(Y(c)).subscribe(l=>{e.hidden=!l,e.classList.toggle("md-annotation-list",l);for(let[f,u]of p)l?bn(f,u):bn(u,f)}),_(...[...s].map(([,l])=>pn(l,t,{target$:r}))).pipe(A(()=>a.complete()),le())})}function vn(e){if(e.nextElementSibling){let t=e.nextElementSibling;if(t.tagName==="OL")return t;if(t.tagName==="P"&&!t.children.length)return vn(t)}}function gn(e,t){return H(()=>{let r=vn(e);return typeof r!="undefined"?sr(r,e,t):L})}var yn=Ht(Vr());var xa=0;function En(e){if(e.nextElementSibling){let t=e.nextElementSibling;if(t.tagName==="OL")return t;if(t.tagName==="P"&&!t.children.length)return En(t)}}function xn(e){return ye(e).pipe(m(({width:t})=>({scrollable:bt(e).width>t})),ee("scrollable"))}function wn(e,t){let{matches:r}=matchMedia("(hover)"),o=H(()=>{let n=new x;if(n.subscribe(({scrollable:s})=>{s&&r?e.setAttribute("tabindex","0"):e.removeAttribute("tabindex")}),yn.default.isSupported()&&(e.closest(".copy")||te("content.code.copy")&&!e.closest(".no-copy"))){let s=e.closest("pre");s.id=`__code_${xa++}`,s.insertBefore(mn(s.id),e)}let i=e.closest(".highlight");if(i instanceof HTMLElement){let s=En(i);if(typeof s!="undefined"&&(i.classList.contains("annotate")||te("content.code.annotate"))){let a=sr(s,e,t);return xn(e).pipe(w(c=>n.next(c)),A(()=>n.complete()),m(c=>R({ref:e},c)),qe(ye(i).pipe(m(({width:c,height:p})=>c&&p),X(),E(c=>c?a:L))))}}return xn(e).pipe(w(s=>n.next(s)),A(()=>n.complete()),m(s=>R({ref:e},s)))});return te("content.lazy")?rr(e).pipe(M(n=>n),xe(1),E(()=>o)):o}function ya(e,{target$:t,print$:r}){let o=!0;return _(t.pipe(m(n=>n.closest("details:not([open])")),M(n=>e===n),m(()=>({action:"open",reveal:!0}))),r.pipe(M(n=>n||!o),w(()=>o=e.open),m(n=>({action:n?"open":"close"}))))}function Sn(e,t){return H(()=>{let r=new x;return r.subscribe(({action:o,reveal:n})=>{e.toggleAttribute("open",o==="open"),n&&e.scrollIntoView()}),ya(e,t).pipe(w(o=>r.next(o)),A(()=>r.complete()),m(o=>R({ref:e},o)))})}var Tn=".node circle,.node ellipse,.node path,.node polygon,.node rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}marker{fill:var(--md-mermaid-edge-color)!important}.edgeLabel .label rect{fill:#0000}.label{color:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.label foreignObject{line-height:normal;overflow:visible}.label div .edgeLabel{color:var(--md-mermaid-label-fg-color)}.edgeLabel,.edgeLabel rect,.label div .edgeLabel{background-color:var(--md-mermaid-label-bg-color)}.edgeLabel,.edgeLabel rect{fill:var(--md-mermaid-label-bg-color);color:var(--md-mermaid-edge-color)}.edgePath .path,.flowchart-link{stroke:var(--md-mermaid-edge-color);stroke-width:.05rem}.edgePath .arrowheadPath{fill:var(--md-mermaid-edge-color);stroke:none}.cluster rect{fill:var(--md-default-fg-color--lightest);stroke:var(--md-default-fg-color--lighter)}.cluster span{color:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}g #flowchart-circleEnd,g #flowchart-circleStart,g #flowchart-crossEnd,g #flowchart-crossStart,g #flowchart-pointEnd,g #flowchart-pointStart{stroke:none}g.classGroup line,g.classGroup rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}g.classGroup text{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.classLabel .box{fill:var(--md-mermaid-label-bg-color);background-color:var(--md-mermaid-label-bg-color);opacity:1}.classLabel .label{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.node .divider{stroke:var(--md-mermaid-node-fg-color)}.relation{stroke:var(--md-mermaid-edge-color)}.cardinality{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.cardinality text{fill:inherit!important}defs #classDiagram-compositionEnd,defs #classDiagram-compositionStart,defs #classDiagram-dependencyEnd,defs #classDiagram-dependencyStart,defs #classDiagram-extensionEnd,defs #classDiagram-extensionStart{fill:var(--md-mermaid-edge-color)!important;stroke:var(--md-mermaid-edge-color)!important}defs #classDiagram-aggregationEnd,defs #classDiagram-aggregationStart{fill:var(--md-mermaid-label-bg-color)!important;stroke:var(--md-mermaid-edge-color)!important}g.stateGroup rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}g.stateGroup .state-title{fill:var(--md-mermaid-label-fg-color)!important;font-family:var(--md-mermaid-font-family)}g.stateGroup .composit{fill:var(--md-mermaid-label-bg-color)}.nodeLabel{color:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.node circle.state-end,.node circle.state-start,.start-state{fill:var(--md-mermaid-edge-color);stroke:none}.end-state-inner,.end-state-outer{fill:var(--md-mermaid-edge-color)}.end-state-inner,.node circle.state-end{stroke:var(--md-mermaid-label-bg-color)}.transition{stroke:var(--md-mermaid-edge-color)}[id^=state-fork] rect,[id^=state-join] rect{fill:var(--md-mermaid-edge-color)!important;stroke:none!important}.statediagram-cluster.statediagram-cluster .inner{fill:var(--md-default-bg-color)}.statediagram-cluster rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}.statediagram-state rect.divider{fill:var(--md-default-fg-color--lightest);stroke:var(--md-default-fg-color--lighter)}defs #statediagram-barbEnd{stroke:var(--md-mermaid-edge-color)}.attributeBoxEven,.attributeBoxOdd{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}.entityBox{fill:var(--md-mermaid-label-bg-color);stroke:var(--md-mermaid-node-fg-color)}.entityLabel{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.relationshipLabelBox{fill:var(--md-mermaid-label-bg-color);fill-opacity:1;background-color:var(--md-mermaid-label-bg-color);opacity:1}.relationshipLabel{fill:var(--md-mermaid-label-fg-color)}.relationshipLine{stroke:var(--md-mermaid-edge-color)}defs #ONE_OR_MORE_END *,defs #ONE_OR_MORE_START *,defs #ONLY_ONE_END *,defs #ONLY_ONE_START *,defs #ZERO_OR_MORE_END *,defs #ZERO_OR_MORE_START *,defs #ZERO_OR_ONE_END *,defs #ZERO_OR_ONE_START *{stroke:var(--md-mermaid-edge-color)!important}defs #ZERO_OR_MORE_END circle,defs #ZERO_OR_MORE_START circle{fill:var(--md-mermaid-label-bg-color)}.actor{fill:var(--md-mermaid-sequence-actor-bg-color);stroke:var(--md-mermaid-sequence-actor-border-color)}text.actor>tspan{fill:var(--md-mermaid-sequence-actor-fg-color);font-family:var(--md-mermaid-font-family)}line{stroke:var(--md-mermaid-sequence-actor-line-color)}.actor-man circle,.actor-man line{fill:var(--md-mermaid-sequence-actorman-bg-color);stroke:var(--md-mermaid-sequence-actorman-line-color)}.messageLine0,.messageLine1{stroke:var(--md-mermaid-sequence-message-line-color)}.note{fill:var(--md-mermaid-sequence-note-bg-color);stroke:var(--md-mermaid-sequence-note-border-color)}.loopText,.loopText>tspan,.messageText,.noteText>tspan{stroke:none;font-family:var(--md-mermaid-font-family)!important}.messageText{fill:var(--md-mermaid-sequence-message-fg-color)}.loopText,.loopText>tspan{fill:var(--md-mermaid-sequence-loop-fg-color)}.noteText>tspan{fill:var(--md-mermaid-sequence-note-fg-color)}#arrowhead path{fill:var(--md-mermaid-sequence-message-line-color);stroke:none}.loopLine{fill:var(--md-mermaid-sequence-loop-bg-color);stroke:var(--md-mermaid-sequence-loop-border-color)}.labelBox{fill:var(--md-mermaid-sequence-label-bg-color);stroke:none}.labelText,.labelText>span{fill:var(--md-mermaid-sequence-label-fg-color);font-family:var(--md-mermaid-font-family)}.sequenceNumber{fill:var(--md-mermaid-sequence-number-fg-color)}rect.rect{fill:var(--md-mermaid-sequence-box-bg-color);stroke:none}rect.rect+text.text{fill:var(--md-mermaid-sequence-box-fg-color)}defs #sequencenumber{fill:var(--md-mermaid-sequence-number-bg-color)!important}";var zr,wa=0;function Sa(){return typeof mermaid=="undefined"||mermaid instanceof Element?ht("https://unpkg.com/mermaid@9.4.3/dist/mermaid.min.js"):j(void 0)}function On(e){return e.classList.remove("mermaid"),zr||(zr=Sa().pipe(w(()=>mermaid.initialize({startOnLoad:!1,themeCSS:Tn,sequence:{actorFontSize:"16px",messageFontSize:"16px",noteFontSize:"16px"}})),m(()=>{}),J(1))),zr.subscribe(()=>{e.classList.add("mermaid");let t=`__mermaid_${wa++}`,r=T("div",{class:"mermaid"}),o=e.textContent;mermaid.mermaidAPI.render(t,o,(n,i)=>{let s=r.attachShadow({mode:"closed"});s.innerHTML=n,e.replaceWith(r),i==null||i(s)})}),zr.pipe(m(()=>({ref:e})))}var Mn=T("table");function Ln(e){return e.replaceWith(Mn),Mn.replaceWith(dn(e)),j({ref:e})}function Ta(e){let t=q(":scope > input",e),r=t.find(o=>o.checked)||t[0];return _(...t.map(o=>h(o,"change").pipe(m(()=>U(`label[for="${o.id}"]`))))).pipe(V(U(`label[for="${r.id}"]`)),m(o=>({active:o})))}function _n(e,{viewport$:t}){let r=Ur("prev");e.append(r);let o=Ur("next");e.append(o);let n=U(".tabbed-labels",e);return H(()=>{let i=new x,s=i.pipe(Z(),re(!0));return B([i,ye(e)]).pipe(Ce(1,Oe),Y(s)).subscribe({next([{active:a},c]){let p=Je(a),{width:l}=he(a);e.style.setProperty("--md-indicator-x",`${p.x}px`),e.style.setProperty("--md-indicator-width",`${l}px`);let f=er(n);(p.xf.x+c.width)&&n.scrollTo({left:Math.max(0,p.x-16),behavior:"smooth"})},complete(){e.style.removeProperty("--md-indicator-x"),e.style.removeProperty("--md-indicator-width")}}),B([dt(n),ye(n)]).pipe(Y(s)).subscribe(([a,c])=>{let p=bt(n);r.hidden=a.x<16,o.hidden=a.x>p.width-c.width-16}),_(h(r,"click").pipe(m(()=>-1)),h(o,"click").pipe(m(()=>1))).pipe(Y(s)).subscribe(a=>{let{width:c}=he(n);n.scrollBy({left:c*a,behavior:"smooth"})}),te("content.tabs.link")&&i.pipe(je(1),ne(t)).subscribe(([{active:a},{offset:c}])=>{let p=a.innerText.trim();if(a.hasAttribute("data-md-switching"))a.removeAttribute("data-md-switching");else{let l=e.offsetTop-c.y;for(let u of q("[data-tabs]"))for(let d of q(":scope > input",u)){let v=U(`label[for="${d.id}"]`);if(v!==a&&v.innerText.trim()===p){v.setAttribute("data-md-switching",""),d.click();break}}window.scrollTo({top:e.offsetTop-l});let f=__md_get("__tabs")||[];__md_set("__tabs",[...new Set([p,...f])])}}),i.pipe(Y(s)).subscribe(()=>{for(let a of q("audio, video",e))a.pause()}),Ta(e).pipe(w(a=>i.next(a)),A(()=>i.complete()),m(a=>R({ref:e},a)))}).pipe(rt(ae))}function An(e,{viewport$:t,target$:r,print$:o}){return _(...q(".annotate:not(.highlight)",e).map(n=>gn(n,{target$:r,print$:o})),...q("pre:not(.mermaid) > code",e).map(n=>wn(n,{target$:r,print$:o})),...q("pre.mermaid",e).map(n=>On(n)),...q("table:not([class])",e).map(n=>Ln(n)),...q("details",e).map(n=>Sn(n,{target$:r,print$:o})),...q("[data-tabs]",e).map(n=>_n(n,{viewport$:t})))}function Oa(e,{alert$:t}){return t.pipe(E(r=>_(j(!0),j(!1).pipe(ze(2e3))).pipe(m(o=>({message:r,active:o})))))}function Cn(e,t){let r=U(".md-typeset",e);return H(()=>{let o=new x;return o.subscribe(({message:n,active:i})=>{e.classList.toggle("md-dialog--active",i),r.textContent=n}),Oa(e,t).pipe(w(n=>o.next(n)),A(()=>o.complete()),m(n=>R({ref:e},n)))})}function Ma({viewport$:e}){if(!te("header.autohide"))return j(!1);let t=e.pipe(m(({offset:{y:n}})=>n),Le(2,1),m(([n,i])=>[nMath.abs(i-n.y)>100),m(([,[n]])=>n),X()),o=We("search");return B([e,o]).pipe(m(([{offset:n},i])=>n.y>400&&!i),X(),E(n=>n?r:j(!1)),V(!1))}function kn(e,t){return H(()=>B([ye(e),Ma(t)])).pipe(m(([{height:r},o])=>({height:r,hidden:o})),X((r,o)=>r.height===o.height&&r.hidden===o.hidden),J(1))}function Hn(e,{header$:t,main$:r}){return H(()=>{let o=new x,n=o.pipe(Z(),re(!0));return o.pipe(ee("active"),Ge(t)).subscribe(([{active:i},{hidden:s}])=>{e.classList.toggle("md-header--shadow",i&&!s),e.hidden=s}),r.subscribe(o),t.pipe(Y(n),m(i=>R({ref:e},i)))})}function La(e,{viewport$:t,header$:r}){return ar(e,{viewport$:t,header$:r}).pipe(m(({offset:{y:o}})=>{let{height:n}=he(e);return{active:o>=n}}),ee("active"))}function $n(e,t){return H(()=>{let r=new x;r.subscribe({next({active:n}){e.classList.toggle("md-header__title--active",n)},complete(){e.classList.remove("md-header__title--active")}});let o=se(".md-content h1");return typeof o=="undefined"?L:La(o,t).pipe(w(n=>r.next(n)),A(()=>r.complete()),m(n=>R({ref:e},n)))})}function Rn(e,{viewport$:t,header$:r}){let o=r.pipe(m(({height:i})=>i),X()),n=o.pipe(E(()=>ye(e).pipe(m(({height:i})=>({top:e.offsetTop,bottom:e.offsetTop+i})),ee("bottom"))));return B([o,n,t]).pipe(m(([i,{top:s,bottom:a},{offset:{y:c},size:{height:p}}])=>(p=Math.max(0,p-Math.max(0,s-c,i)-Math.max(0,p+c-a)),{offset:s-i,height:p,active:s-i<=c})),X((i,s)=>i.offset===s.offset&&i.height===s.height&&i.active===s.active))}function _a(e){let t=__md_get("__palette")||{index:e.findIndex(r=>matchMedia(r.getAttribute("data-md-color-media")).matches)};return j(...e).pipe(ce(r=>h(r,"change").pipe(m(()=>r))),V(e[Math.max(0,t.index)]),m(r=>({index:e.indexOf(r),color:{scheme:r.getAttribute("data-md-color-scheme"),primary:r.getAttribute("data-md-color-primary"),accent:r.getAttribute("data-md-color-accent")}})),J(1))}function Pn(e){let t=T("meta",{name:"theme-color"});document.head.appendChild(t);let r=T("meta",{name:"color-scheme"});return document.head.appendChild(r),H(()=>{let o=new x;o.subscribe(i=>{document.body.setAttribute("data-md-color-switching","");for(let[s,a]of Object.entries(i.color))document.body.setAttribute(`data-md-color-${s}`,a);for(let s=0;s{let i=Ee("header"),s=window.getComputedStyle(i);return r.content=s.colorScheme,s.backgroundColor.match(/\d+/g).map(a=>(+a).toString(16).padStart(2,"0")).join("")})).subscribe(i=>t.content=`#${i}`),o.pipe(Se(ae)).subscribe(()=>{document.body.removeAttribute("data-md-color-switching")});let n=q("input",e);return _a(n).pipe(w(i=>o.next(i)),A(()=>o.complete()),m(i=>R({ref:e},i)))})}function In(e,{progress$:t}){return H(()=>{let r=new x;return r.subscribe(({value:o})=>{e.style.setProperty("--md-progress-value",`${o}`)}),t.pipe(w(o=>r.next({value:o})),A(()=>r.complete()),m(o=>({ref:e,value:o})))})}var qr=Ht(Vr());function Aa(e){e.setAttribute("data-md-copying","");let t=e.closest("[data-copy]"),r=t?t.getAttribute("data-copy"):e.innerText;return e.removeAttribute("data-md-copying"),r.trimEnd()}function Fn({alert$:e}){qr.default.isSupported()&&new P(t=>{new qr.default("[data-clipboard-target], [data-clipboard-text]",{text:r=>r.getAttribute("data-clipboard-text")||Aa(U(r.getAttribute("data-clipboard-target")))}).on("success",r=>t.next(r))}).pipe(w(t=>{t.trigger.focus()}),m(()=>be("clipboard.copied"))).subscribe(e)}function Ca(e){if(e.length<2)return[""];let[t,r]=[...e].sort((n,i)=>n.length-i.length).map(n=>n.replace(/[^/]+$/,"")),o=0;if(t===r)o=t.length;else for(;t.charCodeAt(o)===r.charCodeAt(o);)o++;return e.map(n=>n.replace(t.slice(0,o),""))}function cr(e){let t=__md_get("__sitemap",sessionStorage,e);if(t)return j(t);{let r=me();return Zo(new URL("sitemap.xml",e||r.base)).pipe(m(o=>Ca(q("loc",o).map(n=>n.textContent))),de(()=>L),He([]),w(o=>__md_set("__sitemap",o,sessionStorage,e)))}}function jn(e){let t=se("[rel=canonical]",e);typeof t!="undefined"&&(t.href=t.href.replace("//localhost:","//127.0.0.1:"));let r=new Map;for(let o of q(":scope > *",e)){let n=o.outerHTML;for(let i of["href","src"]){let s=o.getAttribute(i);if(s===null)continue;let a=new URL(s,t==null?void 0:t.href),c=o.cloneNode();c.setAttribute(i,`${a}`),n=c.outerHTML;break}r.set(n,o)}return r}function Wn({location$:e,viewport$:t,progress$:r}){let o=me();if(location.protocol==="file:")return L;let n=cr().pipe(m(l=>l.map(f=>`${new URL(f,o.base)}`))),i=h(document.body,"click").pipe(ne(n),E(([l,f])=>{if(!(l.target instanceof Element))return L;let u=l.target.closest("a");if(u===null)return L;if(u.target||l.metaKey||l.ctrlKey)return L;let d=new URL(u.href);return d.search=d.hash="",f.includes(`${d}`)?(l.preventDefault(),j(new URL(u.href))):L}),le());i.pipe(xe(1)).subscribe(()=>{let l=se("link[rel=icon]");typeof l!="undefined"&&(l.href=l.href)}),h(window,"beforeunload").subscribe(()=>{history.scrollRestoration="auto"}),i.pipe(ne(t)).subscribe(([l,{offset:f}])=>{history.scrollRestoration="manual",history.replaceState(f,""),history.pushState(null,"",l)}),i.subscribe(e);let s=e.pipe(V(pe()),ee("pathname"),je(1),E(l=>ir(l,{progress$:r}).pipe(de(()=>(ot(l,!0),L))))),a=new DOMParser,c=s.pipe(E(l=>l.text()),E(l=>{let f=a.parseFromString(l,"text/html");for(let b of["[data-md-component=announce]","[data-md-component=container]","[data-md-component=header-topic]","[data-md-component=outdated]","[data-md-component=logo]","[data-md-component=skip]",...te("navigation.tabs.sticky")?["[data-md-component=tabs]"]:[]]){let z=se(b),K=se(b,f);typeof z!="undefined"&&typeof K!="undefined"&&z.replaceWith(K)}let u=jn(document.head),d=jn(f.head);for(let[b,z]of d)z.getAttribute("rel")==="stylesheet"||z.hasAttribute("src")||(u.has(b)?u.delete(b):document.head.appendChild(z));for(let b of u.values())b.getAttribute("rel")==="stylesheet"||b.hasAttribute("src")||b.remove();let v=Ee("container");return Fe(q("script",v)).pipe(E(b=>{let z=f.createElement("script");if(b.src){for(let K of b.getAttributeNames())z.setAttribute(K,b.getAttribute(K));return b.replaceWith(z),new P(K=>{z.onload=()=>K.complete()})}else return z.textContent=b.textContent,b.replaceWith(z),L}),Z(),re(f))}),le());return h(window,"popstate").pipe(m(pe)).subscribe(e),e.pipe(V(pe()),Le(2,1),M(([l,f])=>l.pathname===f.pathname&&l.hash!==f.hash),m(([,l])=>l)).subscribe(l=>{var f,u;history.state!==null||!l.hash?window.scrollTo(0,(u=(f=history.state)==null?void 0:f.y)!=null?u:0):(history.scrollRestoration="auto",nr(l.hash),history.scrollRestoration="manual")}),e.pipe(Cr(i),V(pe()),Le(2,1),M(([l,f])=>l.pathname===f.pathname&&l.hash===f.hash),m(([,l])=>l)).subscribe(l=>{history.scrollRestoration="auto",nr(l.hash),history.scrollRestoration="manual",history.back()}),c.pipe(ne(e)).subscribe(([,l])=>{var f,u;history.state!==null||!l.hash?window.scrollTo(0,(u=(f=history.state)==null?void 0:f.y)!=null?u:0):nr(l.hash)}),t.pipe(ee("offset"),ke(100)).subscribe(({offset:l})=>{history.replaceState(l,"")}),c}var Dn=Ht(Un());function Vn(e){let t=e.separator.split("|").map(n=>n.replace(/(\(\?[!=<][^)]+\))/g,"").length===0?"\uFFFD":n).join("|"),r=new RegExp(t,"img"),o=(n,i,s)=>`${i}${s}`;return n=>{n=n.replace(/[\s*+\-:~^]+/g," ").trim();let i=new RegExp(`(^|${e.separator}|)(${n.replace(/[|\\{}()[\]^$+*?.-]/g,"\\$&").replace(r,"|")})`,"img");return s=>(0,Dn.default)(s).replace(i,o).replace(/<\/mark>(\s+)]*>/img,"$1")}}function Mt(e){return e.type===1}function pr(e){return e.type===3}function zn(e,t){let r=an(e);return _(j(location.protocol!=="file:"),We("search")).pipe($e(o=>o),E(()=>t)).subscribe(({config:o,docs:n})=>r.next({type:0,data:{config:o,docs:n,options:{suggest:te("search.suggest")}}})),r}function qn({document$:e}){let t=me(),r=Ne(new URL("../versions.json",t.base)).pipe(de(()=>L)),o=r.pipe(m(n=>{let[,i]=t.base.match(/([^/]+)\/?$/);return n.find(({version:s,aliases:a})=>s===i||a.includes(i))||n[0]}));r.pipe(m(n=>new Map(n.map(i=>[`${new URL(`../${i.version}/`,t.base)}`,i]))),E(n=>h(document.body,"click").pipe(M(i=>!i.metaKey&&!i.ctrlKey),ne(o),E(([i,s])=>{if(i.target instanceof Element){let a=i.target.closest("a");if(a&&!a.target&&n.has(a.href)){let c=a.href;return!i.target.closest(".md-version")&&n.get(c)===s?L:(i.preventDefault(),j(c))}}return L}),E(i=>{let{version:s}=n.get(i);return cr(new URL(i)).pipe(m(a=>{let p=pe().href.replace(t.base,"");return a.includes(p.split("#")[0])?new URL(`../${s}/${p}`,t.base):new URL(i)}))})))).subscribe(n=>ot(n,!0)),B([r,o]).subscribe(([n,i])=>{U(".md-header__topic").appendChild(hn(n,i))}),e.pipe(E(()=>o)).subscribe(n=>{var s;let i=__md_get("__outdated",sessionStorage);if(i===null){i=!0;let a=((s=t.version)==null?void 0:s.default)||"latest";Array.isArray(a)||(a=[a]);e:for(let c of a)for(let p of n.aliases.concat(n.version))if(new RegExp(c,"i").test(p)){i=!1;break e}__md_set("__outdated",i,sessionStorage)}if(i)for(let a of oe("outdated"))a.hidden=!1})}function Pa(e,{worker$:t}){let{searchParams:r}=pe();r.has("q")&&(Ke("search",!0),e.value=r.get("q"),e.focus(),We("search").pipe($e(i=>!i)).subscribe(()=>{let i=pe();i.searchParams.delete("q"),history.replaceState({},"",`${i}`)}));let o=Zt(e),n=_(t.pipe($e(Mt)),h(e,"keyup"),o).pipe(m(()=>e.value),X());return B([n,o]).pipe(m(([i,s])=>({value:i,focus:s})),J(1))}function Kn(e,{worker$:t}){let r=new x,o=r.pipe(Z(),re(!0));B([t.pipe($e(Mt)),r],(i,s)=>s).pipe(ee("value")).subscribe(({value:i})=>t.next({type:2,data:i})),r.pipe(ee("focus")).subscribe(({focus:i})=>{i&&Ke("search",i)}),h(e.form,"reset").pipe(Y(o)).subscribe(()=>e.focus());let n=U("header [for=__search]");return h(n,"click").subscribe(()=>e.focus()),Pa(e,{worker$:t}).pipe(w(i=>r.next(i)),A(()=>r.complete()),m(i=>R({ref:e},i)),J(1))}function Qn(e,{worker$:t,query$:r}){let o=new x,n=Ko(e.parentElement).pipe(M(Boolean)),i=e.parentElement,s=U(":scope > :first-child",e),a=U(":scope > :last-child",e);We("search").subscribe(l=>a.setAttribute("role",l?"list":"presentation")),o.pipe(ne(r),$r(t.pipe($e(Mt)))).subscribe(([{items:l},{value:f}])=>{switch(l.length){case 0:s.textContent=f.length?be("search.result.none"):be("search.result.placeholder");break;case 1:s.textContent=be("search.result.one");break;default:let u=tr(l.length);s.textContent=be("search.result.other",u)}});let c=o.pipe(w(()=>a.innerHTML=""),E(({items:l})=>_(j(...l.slice(0,10)),j(...l.slice(10)).pipe(Le(4),Ir(n),E(([f])=>f)))),m(fn),le());return c.subscribe(l=>a.appendChild(l)),c.pipe(ce(l=>{let f=se("details",l);return typeof f=="undefined"?L:h(f,"toggle").pipe(Y(o),m(()=>f))})).subscribe(l=>{l.open===!1&&l.offsetTop<=i.scrollTop&&i.scrollTo({top:l.offsetTop})}),t.pipe(M(pr),m(({data:l})=>l)).pipe(w(l=>o.next(l)),A(()=>o.complete()),m(l=>R({ref:e},l)))}function Ia(e,{query$:t}){return t.pipe(m(({value:r})=>{let o=pe();return o.hash="",r=r.replace(/\s+/g,"+").replace(/&/g,"%26").replace(/=/g,"%3D"),o.search=`q=${r}`,{url:o}}))}function Yn(e,t){let r=new x,o=r.pipe(Z(),re(!0));return r.subscribe(({url:n})=>{e.setAttribute("data-clipboard-text",e.href),e.href=`${n}`}),h(e,"click").pipe(Y(o)).subscribe(n=>n.preventDefault()),Ia(e,t).pipe(w(n=>r.next(n)),A(()=>r.complete()),m(n=>R({ref:e},n)))}function Bn(e,{worker$:t,keyboard$:r}){let o=new x,n=Ee("search-query"),i=_(h(n,"keydown"),h(n,"focus")).pipe(Se(ae),m(()=>n.value),X());return o.pipe(Ge(i),m(([{suggest:a},c])=>{let p=c.split(/([\s-]+)/);if(a!=null&&a.length&&p[p.length-1]){let l=a[a.length-1];l.startsWith(p[p.length-1])&&(p[p.length-1]=l)}else p.length=0;return p})).subscribe(a=>e.innerHTML=a.join("").replace(/\s/g," ")),r.pipe(M(({mode:a})=>a==="search")).subscribe(a=>{switch(a.type){case"ArrowRight":e.innerText.length&&n.selectionStart===n.value.length&&(n.value=e.innerText);break}}),t.pipe(M(pr),m(({data:a})=>a)).pipe(w(a=>o.next(a)),A(()=>o.complete()),m(()=>({ref:e})))}function Gn(e,{index$:t,keyboard$:r}){let o=me();try{let n=zn(o.search,t),i=Ee("search-query",e),s=Ee("search-result",e);h(e,"click").pipe(M(({target:c})=>c instanceof Element&&!!c.closest("a"))).subscribe(()=>Ke("search",!1)),r.pipe(M(({mode:c})=>c==="search")).subscribe(c=>{let p=Re();switch(c.type){case"Enter":if(p===i){let l=new Map;for(let f of q(":first-child [href]",s)){let u=f.firstElementChild;l.set(f,parseFloat(u.getAttribute("data-md-score")))}if(l.size){let[[f]]=[...l].sort(([,u],[,d])=>d-u);f.click()}c.claim()}break;case"Escape":case"Tab":Ke("search",!1),i.blur();break;case"ArrowUp":case"ArrowDown":if(typeof p=="undefined")i.focus();else{let l=[i,...q(":not(details) > [href], summary, details[open] [href]",s)],f=Math.max(0,(Math.max(0,l.indexOf(p))+l.length+(c.type==="ArrowUp"?-1:1))%l.length);l[f].focus()}c.claim();break;default:i!==Re()&&i.focus()}}),r.pipe(M(({mode:c})=>c==="global")).subscribe(c=>{switch(c.type){case"f":case"s":case"/":i.focus(),i.select(),c.claim();break}});let a=Kn(i,{worker$:n});return _(a,Qn(s,{worker$:n,query$:a})).pipe(qe(...oe("search-share",e).map(c=>Yn(c,{query$:a})),...oe("search-suggest",e).map(c=>Bn(c,{worker$:n,keyboard$:r}))))}catch(n){return e.hidden=!0,Ve}}function Jn(e,{index$:t,location$:r}){return B([t,r.pipe(V(pe()),M(o=>!!o.searchParams.get("h")))]).pipe(m(([o,n])=>Vn(o.config)(n.searchParams.get("h"))),m(o=>{var s;let n=new Map,i=document.createNodeIterator(e,NodeFilter.SHOW_TEXT);for(let a=i.nextNode();a;a=i.nextNode())if((s=a.parentElement)!=null&&s.offsetHeight){let c=a.textContent,p=o(c);p.length>c.length&&n.set(a,p)}for(let[a,c]of n){let{childNodes:p}=T("span",null,c);a.replaceWith(...Array.from(p))}return{ref:e,nodes:n}}))}function Fa(e,{viewport$:t,main$:r}){let o=e.closest(".md-grid"),n=o.offsetTop-o.parentElement.offsetTop;return B([r,t]).pipe(m(([{offset:i,height:s},{offset:{y:a}}])=>(s=s+Math.min(n,Math.max(0,a-i))-n,{height:s,locked:a>=i+n})),X((i,s)=>i.height===s.height&&i.locked===s.locked))}function Kr(e,o){var n=o,{header$:t}=n,r=eo(n,["header$"]);let i=U(".md-sidebar__scrollwrap",e),{y:s}=Je(i);return H(()=>{let a=new x,c=a.pipe(Z(),re(!0)),p=a.pipe(Ce(0,Oe));return p.pipe(ne(t)).subscribe({next([{height:l},{height:f}]){i.style.height=`${l-2*s}px`,e.style.top=`${f}px`},complete(){i.style.height="",e.style.top=""}}),p.pipe($e()).subscribe(()=>{for(let l of q(".md-nav__link--active[href]",e)){if(!l.clientHeight)continue;let f=l.closest(".md-sidebar__scrollwrap");if(typeof f!="undefined"){let u=l.offsetTop-f.offsetTop,{height:d}=he(f);f.scrollTo({top:u-d/2})}}}),ge(q("label[tabindex]",e)).pipe(ce(l=>h(l,"click").pipe(Se(ae),m(()=>l),Y(c)))).subscribe(l=>{let f=U(`[id="${l.htmlFor}"]`);U(`[aria-labelledby="${l.id}"]`).setAttribute("aria-expanded",`${f.checked}`)}),Fa(e,r).pipe(w(l=>a.next(l)),A(()=>a.complete()),m(l=>R({ref:e},l)))})}function Xn(e,t){if(typeof t!="undefined"){let r=`https://api.github.com/repos/${e}/${t}`;return St(Ne(`${r}/releases/latest`).pipe(de(()=>L),m(o=>({version:o.tag_name})),He({})),Ne(r).pipe(de(()=>L),m(o=>({stars:o.stargazers_count,forks:o.forks_count})),He({}))).pipe(m(([o,n])=>R(R({},o),n)))}else{let r=`https://api.github.com/users/${e}`;return Ne(r).pipe(m(o=>({repositories:o.public_repos})),He({}))}}function Zn(e,t){let r=`https://${e}/api/v4/projects/${encodeURIComponent(t)}`;return Ne(r).pipe(de(()=>L),m(({star_count:o,forks_count:n})=>({stars:o,forks:n})),He({}))}function ei(e){let t=e.match(/^.+github\.com\/([^/]+)\/?([^/]+)?/i);if(t){let[,r,o]=t;return Xn(r,o)}if(t=e.match(/^.+?([^/]*gitlab[^/]+)\/(.+?)\/?$/i),t){let[,r,o]=t;return Zn(r,o)}return L}var ja;function Wa(e){return ja||(ja=H(()=>{let t=__md_get("__source",sessionStorage);if(t)return j(t);if(oe("consent").length){let o=__md_get("__consent");if(!(o&&o.github))return L}return ei(e.href).pipe(w(o=>__md_set("__source",o,sessionStorage)))}).pipe(de(()=>L),M(t=>Object.keys(t).length>0),m(t=>({facts:t})),J(1)))}function ti(e){let t=U(":scope > :last-child",e);return H(()=>{let r=new x;return r.subscribe(({facts:o})=>{t.appendChild(un(o)),t.classList.add("md-source__repository--active")}),Wa(e).pipe(w(o=>r.next(o)),A(()=>r.complete()),m(o=>R({ref:e},o)))})}function Na(e,{viewport$:t,header$:r}){return ye(document.body).pipe(E(()=>ar(e,{header$:r,viewport$:t})),m(({offset:{y:o}})=>({hidden:o>=10})),ee("hidden"))}function ri(e,t){return H(()=>{let r=new x;return r.subscribe({next({hidden:o}){e.hidden=o},complete(){e.hidden=!1}}),(te("navigation.tabs.sticky")?j({hidden:!1}):Na(e,t)).pipe(w(o=>r.next(o)),A(()=>r.complete()),m(o=>R({ref:e},o)))})}function Ua(e,{viewport$:t,header$:r}){let o=new Map,n=q("[href^=\\#]",e);for(let a of n){let c=decodeURIComponent(a.hash.substring(1)),p=se(`[id="${c}"]`);typeof p!="undefined"&&o.set(a,p)}let i=r.pipe(ee("height"),m(({height:a})=>{let c=Ee("main"),p=U(":scope > :first-child",c);return a+.8*(p.offsetTop-c.offsetTop)}),le());return ye(document.body).pipe(ee("height"),E(a=>H(()=>{let c=[];return j([...o].reduce((p,[l,f])=>{for(;c.length&&o.get(c[c.length-1]).tagName>=f.tagName;)c.pop();let u=f.offsetTop;for(;!u&&f.parentElement;)f=f.parentElement,u=f.offsetTop;let d=f.offsetParent;for(;d;d=d.offsetParent)u+=d.offsetTop;return p.set([...c=[...c,l]].reverse(),u)},new Map))}).pipe(m(c=>new Map([...c].sort(([,p],[,l])=>p-l))),Ge(i),E(([c,p])=>t.pipe(kr(([l,f],{offset:{y:u},size:d})=>{let v=u+d.height>=Math.floor(a.height);for(;f.length;){let[,b]=f[0];if(b-p=u&&!v)f=[l.pop(),...f];else break}return[l,f]},[[],[...c]]),X((l,f)=>l[0]===f[0]&&l[1]===f[1])))))).pipe(m(([a,c])=>({prev:a.map(([p])=>p),next:c.map(([p])=>p)})),V({prev:[],next:[]}),Le(2,1),m(([a,c])=>a.prev.length{let i=new x,s=i.pipe(Z(),re(!0));if(i.subscribe(({prev:a,next:c})=>{for(let[p]of c)p.classList.remove("md-nav__link--passed"),p.classList.remove("md-nav__link--active");for(let[p,[l]]of a.entries())l.classList.add("md-nav__link--passed"),l.classList.toggle("md-nav__link--active",p===a.length-1)}),te("toc.follow")){let a=_(t.pipe(ke(1),m(()=>{})),t.pipe(ke(250),m(()=>"smooth")));i.pipe(M(({prev:c})=>c.length>0),Ge(o.pipe(Se(ae))),ne(a)).subscribe(([[{prev:c}],p])=>{let[l]=c[c.length-1];if(l.offsetHeight){let f=zo(l);if(typeof f!="undefined"){let u=l.offsetTop-f.offsetTop,{height:d}=he(f);f.scrollTo({top:u-d/2,behavior:p})}}})}return te("navigation.tracking")&&t.pipe(Y(s),ee("offset"),ke(250),je(1),Y(n.pipe(je(1))),Tt({delay:250}),ne(i)).subscribe(([,{prev:a}])=>{let c=pe(),p=a[a.length-1];if(p&&p.length){let[l]=p,{hash:f}=new URL(l.href);c.hash!==f&&(c.hash=f,history.replaceState({},"",`${c}`))}else c.hash="",history.replaceState({},"",`${c}`)}),Ua(e,{viewport$:t,header$:r}).pipe(w(a=>i.next(a)),A(()=>i.complete()),m(a=>R({ref:e},a)))})}function Da(e,{viewport$:t,main$:r,target$:o}){let n=t.pipe(m(({offset:{y:s}})=>s),Le(2,1),m(([s,a])=>s>a&&a>0),X()),i=r.pipe(m(({active:s})=>s));return B([i,n]).pipe(m(([s,a])=>!(s&&a)),X(),Y(o.pipe(je(1))),re(!0),Tt({delay:250}),m(s=>({hidden:s})))}function ni(e,{viewport$:t,header$:r,main$:o,target$:n}){let i=new x,s=i.pipe(Z(),re(!0));return i.subscribe({next({hidden:a}){e.hidden=a,a?(e.setAttribute("tabindex","-1"),e.blur()):e.removeAttribute("tabindex")},complete(){e.style.top="",e.hidden=!0,e.removeAttribute("tabindex")}}),r.pipe(Y(s),ee("height")).subscribe(({height:a})=>{e.style.top=`${a+16}px`}),h(e,"click").subscribe(a=>{a.preventDefault(),window.scrollTo({top:0})}),Da(e,{viewport$:t,main$:o,target$:n}).pipe(w(a=>i.next(a)),A(()=>i.complete()),m(a=>R({ref:e},a)))}function ii({document$:e,tablet$:t}){e.pipe(E(()=>q(".md-toggle--indeterminate")),w(r=>{r.indeterminate=!0,r.checked=!1}),ce(r=>h(r,"change").pipe(Rr(()=>r.classList.contains("md-toggle--indeterminate")),m(()=>r))),ne(t)).subscribe(([r,o])=>{r.classList.remove("md-toggle--indeterminate"),o&&(r.checked=!1)})}function Va(){return/(iPad|iPhone|iPod)/.test(navigator.userAgent)}function ai({document$:e}){e.pipe(E(()=>q("[data-md-scrollfix]")),w(t=>t.removeAttribute("data-md-scrollfix")),M(Va),ce(t=>h(t,"touchstart").pipe(m(()=>t)))).subscribe(t=>{let r=t.scrollTop;r===0?t.scrollTop=1:r+t.offsetHeight===t.scrollHeight&&(t.scrollTop=r-1)})}function si({viewport$:e,tablet$:t}){B([We("search"),t]).pipe(m(([r,o])=>r&&!o),E(r=>j(r).pipe(ze(r?400:100))),ne(e)).subscribe(([r,{offset:{y:o}}])=>{if(r)document.body.setAttribute("data-md-scrolllock",""),document.body.style.top=`-${o}px`;else{let n=-1*parseInt(document.body.style.top,10);document.body.removeAttribute("data-md-scrolllock"),document.body.style.top="",n&&window.scrollTo(0,n)}})}Object.entries||(Object.entries=function(e){let t=[];for(let r of Object.keys(e))t.push([r,e[r]]);return t});Object.values||(Object.values=function(e){let t=[];for(let r of Object.keys(e))t.push(e[r]);return t});typeof Element!="undefined"&&(Element.prototype.scrollTo||(Element.prototype.scrollTo=function(e,t){typeof e=="object"?(this.scrollLeft=e.left,this.scrollTop=e.top):(this.scrollLeft=e,this.scrollTop=t)}),Element.prototype.replaceWith||(Element.prototype.replaceWith=function(...e){let t=this.parentNode;if(t){e.length===0&&t.removeChild(this);for(let r=e.length-1;r>=0;r--){let o=e[r];typeof o=="string"?o=document.createTextNode(o):o.parentNode&&o.parentNode.removeChild(o),r?t.insertBefore(this.previousSibling,o):t.replaceChild(o,this)}}}));function za(){return location.protocol==="file:"?ht(`${new URL("search/search_index.js",Qr.base)}`).pipe(m(()=>__index),J(1)):Ne(new URL("search/search_index.json",Qr.base))}document.documentElement.classList.remove("no-js");document.documentElement.classList.add("js");var nt=No(),_t=Bo(),gt=Jo(_t),Yr=Yo(),Te=nn(),lr=Fr("(min-width: 960px)"),pi=Fr("(min-width: 1220px)"),li=Xo(),Qr=me(),mi=document.forms.namedItem("search")?za():Ve,Br=new x;Fn({alert$:Br});var Gr=new x;te("navigation.instant")&&Wn({location$:_t,viewport$:Te,progress$:Gr}).subscribe(nt);var ci;((ci=Qr.version)==null?void 0:ci.provider)==="mike"&&qn({document$:nt});_(_t,gt).pipe(ze(125)).subscribe(()=>{Ke("drawer",!1),Ke("search",!1)});Yr.pipe(M(({mode:e})=>e==="global")).subscribe(e=>{switch(e.type){case"p":case",":let t=se("link[rel=prev]");typeof t!="undefined"&&ot(t);break;case"n":case".":let r=se("link[rel=next]");typeof r!="undefined"&&ot(r);break;case"Enter":let o=Re();o instanceof HTMLLabelElement&&o.click()}});ii({document$:nt,tablet$:lr});ai({document$:nt});si({viewport$:Te,tablet$:lr});var Xe=kn(Ee("header"),{viewport$:Te}),Lt=nt.pipe(m(()=>Ee("main")),E(e=>Rn(e,{viewport$:Te,header$:Xe})),J(1)),qa=_(...oe("consent").map(e=>cn(e,{target$:gt})),...oe("dialog").map(e=>Cn(e,{alert$:Br})),...oe("header").map(e=>Hn(e,{viewport$:Te,header$:Xe,main$:Lt})),...oe("palette").map(e=>Pn(e)),...oe("progress").map(e=>In(e,{progress$:Gr})),...oe("search").map(e=>Gn(e,{index$:mi,keyboard$:Yr})),...oe("source").map(e=>ti(e))),Ka=H(()=>_(...oe("announce").map(e=>sn(e)),...oe("content").map(e=>An(e,{viewport$:Te,target$:gt,print$:li})),...oe("content").map(e=>te("search.highlight")?Jn(e,{index$:mi,location$:_t}):L),...oe("header-title").map(e=>$n(e,{viewport$:Te,header$:Xe})),...oe("sidebar").map(e=>e.getAttribute("data-md-type")==="navigation"?jr(pi,()=>Kr(e,{viewport$:Te,header$:Xe,main$:Lt})):jr(lr,()=>Kr(e,{viewport$:Te,header$:Xe,main$:Lt}))),...oe("tabs").map(e=>ri(e,{viewport$:Te,header$:Xe})),...oe("toc").map(e=>oi(e,{viewport$:Te,header$:Xe,main$:Lt,target$:gt})),...oe("top").map(e=>ni(e,{viewport$:Te,header$:Xe,main$:Lt,target$:gt})))),fi=nt.pipe(E(()=>Ka),qe(qa),J(1));fi.subscribe();window.document$=nt;window.location$=_t;window.target$=gt;window.keyboard$=Yr;window.viewport$=Te;window.tablet$=lr;window.screen$=pi;window.print$=li;window.alert$=Br;window.progress$=Gr;window.component$=fi;})(); +//# sourceMappingURL=bundle.6c14ae12.min.js.map + diff --git a/site/assets/javascripts/bundle.6c14ae12.min.js.map b/site/assets/javascripts/bundle.6c14ae12.min.js.map new file mode 100644 index 0000000..49396ad --- /dev/null +++ b/site/assets/javascripts/bundle.6c14ae12.min.js.map @@ -0,0 +1,7 @@ +{ + "version": 3, + "sources": ["node_modules/focus-visible/dist/focus-visible.js", "node_modules/clipboard/dist/clipboard.js", "node_modules/escape-html/index.js", "src/templates/assets/javascripts/bundle.ts", "node_modules/rxjs/node_modules/tslib/tslib.es6.js", "node_modules/rxjs/src/internal/util/isFunction.ts", "node_modules/rxjs/src/internal/util/createErrorClass.ts", "node_modules/rxjs/src/internal/util/UnsubscriptionError.ts", "node_modules/rxjs/src/internal/util/arrRemove.ts", "node_modules/rxjs/src/internal/Subscription.ts", "node_modules/rxjs/src/internal/config.ts", "node_modules/rxjs/src/internal/scheduler/timeoutProvider.ts", "node_modules/rxjs/src/internal/util/reportUnhandledError.ts", "node_modules/rxjs/src/internal/util/noop.ts", "node_modules/rxjs/src/internal/NotificationFactories.ts", "node_modules/rxjs/src/internal/util/errorContext.ts", "node_modules/rxjs/src/internal/Subscriber.ts", "node_modules/rxjs/src/internal/symbol/observable.ts", "node_modules/rxjs/src/internal/util/identity.ts", "node_modules/rxjs/src/internal/util/pipe.ts", "node_modules/rxjs/src/internal/Observable.ts", "node_modules/rxjs/src/internal/util/lift.ts", "node_modules/rxjs/src/internal/operators/OperatorSubscriber.ts", "node_modules/rxjs/src/internal/scheduler/animationFrameProvider.ts", "node_modules/rxjs/src/internal/util/ObjectUnsubscribedError.ts", "node_modules/rxjs/src/internal/Subject.ts", "node_modules/rxjs/src/internal/scheduler/dateTimestampProvider.ts", "node_modules/rxjs/src/internal/ReplaySubject.ts", "node_modules/rxjs/src/internal/scheduler/Action.ts", "node_modules/rxjs/src/internal/scheduler/intervalProvider.ts", "node_modules/rxjs/src/internal/scheduler/AsyncAction.ts", "node_modules/rxjs/src/internal/Scheduler.ts", "node_modules/rxjs/src/internal/scheduler/AsyncScheduler.ts", "node_modules/rxjs/src/internal/scheduler/async.ts", "node_modules/rxjs/src/internal/scheduler/AnimationFrameAction.ts", "node_modules/rxjs/src/internal/scheduler/AnimationFrameScheduler.ts", "node_modules/rxjs/src/internal/scheduler/animationFrame.ts", "node_modules/rxjs/src/internal/observable/empty.ts", "node_modules/rxjs/src/internal/util/isScheduler.ts", "node_modules/rxjs/src/internal/util/args.ts", "node_modules/rxjs/src/internal/util/isArrayLike.ts", "node_modules/rxjs/src/internal/util/isPromise.ts", "node_modules/rxjs/src/internal/util/isInteropObservable.ts", "node_modules/rxjs/src/internal/util/isAsyncIterable.ts", "node_modules/rxjs/src/internal/util/throwUnobservableError.ts", "node_modules/rxjs/src/internal/symbol/iterator.ts", "node_modules/rxjs/src/internal/util/isIterable.ts", "node_modules/rxjs/src/internal/util/isReadableStreamLike.ts", "node_modules/rxjs/src/internal/observable/innerFrom.ts", "node_modules/rxjs/src/internal/util/executeSchedule.ts", "node_modules/rxjs/src/internal/operators/observeOn.ts", "node_modules/rxjs/src/internal/operators/subscribeOn.ts", "node_modules/rxjs/src/internal/scheduled/scheduleObservable.ts", "node_modules/rxjs/src/internal/scheduled/schedulePromise.ts", "node_modules/rxjs/src/internal/scheduled/scheduleArray.ts", "node_modules/rxjs/src/internal/scheduled/scheduleIterable.ts", "node_modules/rxjs/src/internal/scheduled/scheduleAsyncIterable.ts", "node_modules/rxjs/src/internal/scheduled/scheduleReadableStreamLike.ts", "node_modules/rxjs/src/internal/scheduled/scheduled.ts", "node_modules/rxjs/src/internal/observable/from.ts", "node_modules/rxjs/src/internal/observable/of.ts", "node_modules/rxjs/src/internal/observable/throwError.ts", "node_modules/rxjs/src/internal/util/EmptyError.ts", "node_modules/rxjs/src/internal/util/isDate.ts", "node_modules/rxjs/src/internal/operators/map.ts", "node_modules/rxjs/src/internal/util/mapOneOrManyArgs.ts", "node_modules/rxjs/src/internal/util/argsArgArrayOrObject.ts", "node_modules/rxjs/src/internal/util/createObject.ts", "node_modules/rxjs/src/internal/observable/combineLatest.ts", "node_modules/rxjs/src/internal/operators/mergeInternals.ts", "node_modules/rxjs/src/internal/operators/mergeMap.ts", "node_modules/rxjs/src/internal/operators/mergeAll.ts", "node_modules/rxjs/src/internal/operators/concatAll.ts", "node_modules/rxjs/src/internal/observable/concat.ts", "node_modules/rxjs/src/internal/observable/defer.ts", "node_modules/rxjs/src/internal/observable/fromEvent.ts", "node_modules/rxjs/src/internal/observable/fromEventPattern.ts", "node_modules/rxjs/src/internal/observable/timer.ts", "node_modules/rxjs/src/internal/observable/merge.ts", "node_modules/rxjs/src/internal/observable/never.ts", "node_modules/rxjs/src/internal/util/argsOrArgArray.ts", "node_modules/rxjs/src/internal/operators/filter.ts", "node_modules/rxjs/src/internal/observable/zip.ts", "node_modules/rxjs/src/internal/operators/audit.ts", "node_modules/rxjs/src/internal/operators/auditTime.ts", "node_modules/rxjs/src/internal/operators/bufferCount.ts", "node_modules/rxjs/src/internal/operators/catchError.ts", "node_modules/rxjs/src/internal/operators/scanInternals.ts", "node_modules/rxjs/src/internal/operators/combineLatest.ts", "node_modules/rxjs/src/internal/operators/combineLatestWith.ts", "node_modules/rxjs/src/internal/operators/debounceTime.ts", "node_modules/rxjs/src/internal/operators/defaultIfEmpty.ts", "node_modules/rxjs/src/internal/operators/take.ts", "node_modules/rxjs/src/internal/operators/ignoreElements.ts", "node_modules/rxjs/src/internal/operators/mapTo.ts", "node_modules/rxjs/src/internal/operators/delayWhen.ts", "node_modules/rxjs/src/internal/operators/delay.ts", "node_modules/rxjs/src/internal/operators/distinctUntilChanged.ts", "node_modules/rxjs/src/internal/operators/distinctUntilKeyChanged.ts", "node_modules/rxjs/src/internal/operators/throwIfEmpty.ts", "node_modules/rxjs/src/internal/operators/endWith.ts", "node_modules/rxjs/src/internal/operators/finalize.ts", "node_modules/rxjs/src/internal/operators/first.ts", "node_modules/rxjs/src/internal/operators/merge.ts", "node_modules/rxjs/src/internal/operators/mergeWith.ts", "node_modules/rxjs/src/internal/operators/repeat.ts", "node_modules/rxjs/src/internal/operators/sample.ts", "node_modules/rxjs/src/internal/operators/scan.ts", "node_modules/rxjs/src/internal/operators/share.ts", "node_modules/rxjs/src/internal/operators/shareReplay.ts", "node_modules/rxjs/src/internal/operators/skip.ts", "node_modules/rxjs/src/internal/operators/skipUntil.ts", "node_modules/rxjs/src/internal/operators/startWith.ts", "node_modules/rxjs/src/internal/operators/switchMap.ts", "node_modules/rxjs/src/internal/operators/takeUntil.ts", "node_modules/rxjs/src/internal/operators/takeWhile.ts", "node_modules/rxjs/src/internal/operators/tap.ts", "node_modules/rxjs/src/internal/operators/throttle.ts", "node_modules/rxjs/src/internal/operators/throttleTime.ts", "node_modules/rxjs/src/internal/operators/withLatestFrom.ts", "node_modules/rxjs/src/internal/operators/zip.ts", "node_modules/rxjs/src/internal/operators/zipWith.ts", "src/templates/assets/javascripts/browser/document/index.ts", "src/templates/assets/javascripts/browser/element/_/index.ts", "src/templates/assets/javascripts/browser/element/focus/index.ts", "src/templates/assets/javascripts/browser/element/offset/_/index.ts", "src/templates/assets/javascripts/browser/element/offset/content/index.ts", "src/templates/assets/javascripts/utilities/h/index.ts", "src/templates/assets/javascripts/utilities/round/index.ts", "src/templates/assets/javascripts/browser/script/index.ts", "src/templates/assets/javascripts/browser/element/size/_/index.ts", "src/templates/assets/javascripts/browser/element/size/content/index.ts", "src/templates/assets/javascripts/browser/element/visibility/index.ts", "src/templates/assets/javascripts/browser/toggle/index.ts", "src/templates/assets/javascripts/browser/keyboard/index.ts", "src/templates/assets/javascripts/browser/location/_/index.ts", "src/templates/assets/javascripts/browser/location/hash/index.ts", "src/templates/assets/javascripts/browser/media/index.ts", "src/templates/assets/javascripts/browser/request/index.ts", "src/templates/assets/javascripts/browser/viewport/offset/index.ts", "src/templates/assets/javascripts/browser/viewport/size/index.ts", "src/templates/assets/javascripts/browser/viewport/_/index.ts", "src/templates/assets/javascripts/browser/viewport/at/index.ts", "src/templates/assets/javascripts/browser/worker/index.ts", "src/templates/assets/javascripts/_/index.ts", "src/templates/assets/javascripts/components/_/index.ts", "src/templates/assets/javascripts/components/announce/index.ts", "src/templates/assets/javascripts/components/consent/index.ts", "src/templates/assets/javascripts/components/content/annotation/_/index.ts", "src/templates/assets/javascripts/templates/tooltip/index.tsx", "src/templates/assets/javascripts/templates/annotation/index.tsx", "src/templates/assets/javascripts/templates/clipboard/index.tsx", "src/templates/assets/javascripts/templates/search/index.tsx", "src/templates/assets/javascripts/templates/source/index.tsx", "src/templates/assets/javascripts/templates/tabbed/index.tsx", "src/templates/assets/javascripts/templates/table/index.tsx", "src/templates/assets/javascripts/templates/version/index.tsx", "src/templates/assets/javascripts/components/content/annotation/list/index.ts", "src/templates/assets/javascripts/components/content/annotation/block/index.ts", "src/templates/assets/javascripts/components/content/code/_/index.ts", "src/templates/assets/javascripts/components/content/details/index.ts", "src/templates/assets/javascripts/components/content/mermaid/index.css", "src/templates/assets/javascripts/components/content/mermaid/index.ts", "src/templates/assets/javascripts/components/content/table/index.ts", "src/templates/assets/javascripts/components/content/tabs/index.ts", "src/templates/assets/javascripts/components/content/_/index.ts", "src/templates/assets/javascripts/components/dialog/index.ts", "src/templates/assets/javascripts/components/header/_/index.ts", "src/templates/assets/javascripts/components/header/title/index.ts", "src/templates/assets/javascripts/components/main/index.ts", "src/templates/assets/javascripts/components/palette/index.ts", "src/templates/assets/javascripts/components/progress/index.ts", "src/templates/assets/javascripts/integrations/clipboard/index.ts", "src/templates/assets/javascripts/integrations/sitemap/index.ts", "src/templates/assets/javascripts/integrations/instant/index.ts", "src/templates/assets/javascripts/integrations/search/highlighter/index.ts", "src/templates/assets/javascripts/integrations/search/worker/message/index.ts", "src/templates/assets/javascripts/integrations/search/worker/_/index.ts", "src/templates/assets/javascripts/integrations/version/index.ts", "src/templates/assets/javascripts/components/search/query/index.ts", "src/templates/assets/javascripts/components/search/result/index.ts", "src/templates/assets/javascripts/components/search/share/index.ts", "src/templates/assets/javascripts/components/search/suggest/index.ts", "src/templates/assets/javascripts/components/search/_/index.ts", "src/templates/assets/javascripts/components/search/highlight/index.ts", "src/templates/assets/javascripts/components/sidebar/index.ts", "src/templates/assets/javascripts/components/source/facts/github/index.ts", "src/templates/assets/javascripts/components/source/facts/gitlab/index.ts", "src/templates/assets/javascripts/components/source/facts/_/index.ts", "src/templates/assets/javascripts/components/source/_/index.ts", "src/templates/assets/javascripts/components/tabs/index.ts", "src/templates/assets/javascripts/components/toc/index.ts", "src/templates/assets/javascripts/components/top/index.ts", "src/templates/assets/javascripts/patches/indeterminate/index.ts", "src/templates/assets/javascripts/patches/scrollfix/index.ts", "src/templates/assets/javascripts/patches/scrolllock/index.ts", "src/templates/assets/javascripts/polyfills/index.ts"], + "sourcesContent": ["(function (global, factory) {\n typeof exports === 'object' && typeof module !== 'undefined' ? factory() :\n typeof define === 'function' && define.amd ? define(factory) :\n (factory());\n}(this, (function () { 'use strict';\n\n /**\n * Applies the :focus-visible polyfill at the given scope.\n * A scope in this case is either the top-level Document or a Shadow Root.\n *\n * @param {(Document|ShadowRoot)} scope\n * @see https://github.com/WICG/focus-visible\n */\n function applyFocusVisiblePolyfill(scope) {\n var hadKeyboardEvent = true;\n var hadFocusVisibleRecently = false;\n var hadFocusVisibleRecentlyTimeout = null;\n\n var inputTypesAllowlist = {\n text: true,\n search: true,\n url: true,\n tel: true,\n email: true,\n password: true,\n number: true,\n date: true,\n month: true,\n week: true,\n time: true,\n datetime: true,\n 'datetime-local': true\n };\n\n /**\n * Helper function for legacy browsers and iframes which sometimes focus\n * elements like document, body, and non-interactive SVG.\n * @param {Element} el\n */\n function isValidFocusTarget(el) {\n if (\n el &&\n el !== document &&\n el.nodeName !== 'HTML' &&\n el.nodeName !== 'BODY' &&\n 'classList' in el &&\n 'contains' in el.classList\n ) {\n return true;\n }\n return false;\n }\n\n /**\n * Computes whether the given element should automatically trigger the\n * `focus-visible` class being added, i.e. whether it should always match\n * `:focus-visible` when focused.\n * @param {Element} el\n * @return {boolean}\n */\n function focusTriggersKeyboardModality(el) {\n var type = el.type;\n var tagName = el.tagName;\n\n if (tagName === 'INPUT' && inputTypesAllowlist[type] && !el.readOnly) {\n return true;\n }\n\n if (tagName === 'TEXTAREA' && !el.readOnly) {\n return true;\n }\n\n if (el.isContentEditable) {\n return true;\n }\n\n return false;\n }\n\n /**\n * Add the `focus-visible` class to the given element if it was not added by\n * the author.\n * @param {Element} el\n */\n function addFocusVisibleClass(el) {\n if (el.classList.contains('focus-visible')) {\n return;\n }\n el.classList.add('focus-visible');\n el.setAttribute('data-focus-visible-added', '');\n }\n\n /**\n * Remove the `focus-visible` class from the given element if it was not\n * originally added by the author.\n * @param {Element} el\n */\n function removeFocusVisibleClass(el) {\n if (!el.hasAttribute('data-focus-visible-added')) {\n return;\n }\n el.classList.remove('focus-visible');\n el.removeAttribute('data-focus-visible-added');\n }\n\n /**\n * If the most recent user interaction was via the keyboard;\n * and the key press did not include a meta, alt/option, or control key;\n * then the modality is keyboard. Otherwise, the modality is not keyboard.\n * Apply `focus-visible` to any current active element and keep track\n * of our keyboard modality state with `hadKeyboardEvent`.\n * @param {KeyboardEvent} e\n */\n function onKeyDown(e) {\n if (e.metaKey || e.altKey || e.ctrlKey) {\n return;\n }\n\n if (isValidFocusTarget(scope.activeElement)) {\n addFocusVisibleClass(scope.activeElement);\n }\n\n hadKeyboardEvent = true;\n }\n\n /**\n * If at any point a user clicks with a pointing device, ensure that we change\n * the modality away from keyboard.\n * This avoids the situation where a user presses a key on an already focused\n * element, and then clicks on a different element, focusing it with a\n * pointing device, while we still think we're in keyboard modality.\n * @param {Event} e\n */\n function onPointerDown(e) {\n hadKeyboardEvent = false;\n }\n\n /**\n * On `focus`, add the `focus-visible` class to the target if:\n * - the target received focus as a result of keyboard navigation, or\n * - the event target is an element that will likely require interaction\n * via the keyboard (e.g. a text box)\n * @param {Event} e\n */\n function onFocus(e) {\n // Prevent IE from focusing the document or HTML element.\n if (!isValidFocusTarget(e.target)) {\n return;\n }\n\n if (hadKeyboardEvent || focusTriggersKeyboardModality(e.target)) {\n addFocusVisibleClass(e.target);\n }\n }\n\n /**\n * On `blur`, remove the `focus-visible` class from the target.\n * @param {Event} e\n */\n function onBlur(e) {\n if (!isValidFocusTarget(e.target)) {\n return;\n }\n\n if (\n e.target.classList.contains('focus-visible') ||\n e.target.hasAttribute('data-focus-visible-added')\n ) {\n // To detect a tab/window switch, we look for a blur event followed\n // rapidly by a visibility change.\n // If we don't see a visibility change within 100ms, it's probably a\n // regular focus change.\n hadFocusVisibleRecently = true;\n window.clearTimeout(hadFocusVisibleRecentlyTimeout);\n hadFocusVisibleRecentlyTimeout = window.setTimeout(function() {\n hadFocusVisibleRecently = false;\n }, 100);\n removeFocusVisibleClass(e.target);\n }\n }\n\n /**\n * If the user changes tabs, keep track of whether or not the previously\n * focused element had .focus-visible.\n * @param {Event} e\n */\n function onVisibilityChange(e) {\n if (document.visibilityState === 'hidden') {\n // If the tab becomes active again, the browser will handle calling focus\n // on the element (Safari actually calls it twice).\n // If this tab change caused a blur on an element with focus-visible,\n // re-apply the class when the user switches back to the tab.\n if (hadFocusVisibleRecently) {\n hadKeyboardEvent = true;\n }\n addInitialPointerMoveListeners();\n }\n }\n\n /**\n * Add a group of listeners to detect usage of any pointing devices.\n * These listeners will be added when the polyfill first loads, and anytime\n * the window is blurred, so that they are active when the window regains\n * focus.\n */\n function addInitialPointerMoveListeners() {\n document.addEventListener('mousemove', onInitialPointerMove);\n document.addEventListener('mousedown', onInitialPointerMove);\n document.addEventListener('mouseup', onInitialPointerMove);\n document.addEventListener('pointermove', onInitialPointerMove);\n document.addEventListener('pointerdown', onInitialPointerMove);\n document.addEventListener('pointerup', onInitialPointerMove);\n document.addEventListener('touchmove', onInitialPointerMove);\n document.addEventListener('touchstart', onInitialPointerMove);\n document.addEventListener('touchend', onInitialPointerMove);\n }\n\n function removeInitialPointerMoveListeners() {\n document.removeEventListener('mousemove', onInitialPointerMove);\n document.removeEventListener('mousedown', onInitialPointerMove);\n document.removeEventListener('mouseup', onInitialPointerMove);\n document.removeEventListener('pointermove', onInitialPointerMove);\n document.removeEventListener('pointerdown', onInitialPointerMove);\n document.removeEventListener('pointerup', onInitialPointerMove);\n document.removeEventListener('touchmove', onInitialPointerMove);\n document.removeEventListener('touchstart', onInitialPointerMove);\n document.removeEventListener('touchend', onInitialPointerMove);\n }\n\n /**\n * When the polfyill first loads, assume the user is in keyboard modality.\n * If any event is received from a pointing device (e.g. mouse, pointer,\n * touch), turn off keyboard modality.\n * This accounts for situations where focus enters the page from the URL bar.\n * @param {Event} e\n */\n function onInitialPointerMove(e) {\n // Work around a Safari quirk that fires a mousemove on whenever the\n // window blurs, even if you're tabbing out of the page. \u00AF\\_(\u30C4)_/\u00AF\n if (e.target.nodeName && e.target.nodeName.toLowerCase() === 'html') {\n return;\n }\n\n hadKeyboardEvent = false;\n removeInitialPointerMoveListeners();\n }\n\n // For some kinds of state, we are interested in changes at the global scope\n // only. For example, global pointer input, global key presses and global\n // visibility change should affect the state at every scope:\n document.addEventListener('keydown', onKeyDown, true);\n document.addEventListener('mousedown', onPointerDown, true);\n document.addEventListener('pointerdown', onPointerDown, true);\n document.addEventListener('touchstart', onPointerDown, true);\n document.addEventListener('visibilitychange', onVisibilityChange, true);\n\n addInitialPointerMoveListeners();\n\n // For focus and blur, we specifically care about state changes in the local\n // scope. This is because focus / blur events that originate from within a\n // shadow root are not re-dispatched from the host element if it was already\n // the active element in its own scope:\n scope.addEventListener('focus', onFocus, true);\n scope.addEventListener('blur', onBlur, true);\n\n // We detect that a node is a ShadowRoot by ensuring that it is a\n // DocumentFragment and also has a host property. This check covers native\n // implementation and polyfill implementation transparently. If we only cared\n // about the native implementation, we could just check if the scope was\n // an instance of a ShadowRoot.\n if (scope.nodeType === Node.DOCUMENT_FRAGMENT_NODE && scope.host) {\n // Since a ShadowRoot is a special kind of DocumentFragment, it does not\n // have a root element to add a class to. So, we add this attribute to the\n // host element instead:\n scope.host.setAttribute('data-js-focus-visible', '');\n } else if (scope.nodeType === Node.DOCUMENT_NODE) {\n document.documentElement.classList.add('js-focus-visible');\n document.documentElement.setAttribute('data-js-focus-visible', '');\n }\n }\n\n // It is important to wrap all references to global window and document in\n // these checks to support server-side rendering use cases\n // @see https://github.com/WICG/focus-visible/issues/199\n if (typeof window !== 'undefined' && typeof document !== 'undefined') {\n // Make the polyfill helper globally available. This can be used as a signal\n // to interested libraries that wish to coordinate with the polyfill for e.g.,\n // applying the polyfill to a shadow root:\n window.applyFocusVisiblePolyfill = applyFocusVisiblePolyfill;\n\n // Notify interested libraries of the polyfill's presence, in case the\n // polyfill was loaded lazily:\n var event;\n\n try {\n event = new CustomEvent('focus-visible-polyfill-ready');\n } catch (error) {\n // IE11 does not support using CustomEvent as a constructor directly:\n event = document.createEvent('CustomEvent');\n event.initCustomEvent('focus-visible-polyfill-ready', false, false, {});\n }\n\n window.dispatchEvent(event);\n }\n\n if (typeof document !== 'undefined') {\n // Apply the polyfill to the global document, so that no JavaScript\n // coordination is required to use the polyfill in the top-level document:\n applyFocusVisiblePolyfill(document);\n }\n\n})));\n", "/*!\n * clipboard.js v2.0.11\n * https://clipboardjs.com/\n *\n * Licensed MIT \u00A9 Zeno Rocha\n */\n(function webpackUniversalModuleDefinition(root, factory) {\n\tif(typeof exports === 'object' && typeof module === 'object')\n\t\tmodule.exports = factory();\n\telse if(typeof define === 'function' && define.amd)\n\t\tdefine([], factory);\n\telse if(typeof exports === 'object')\n\t\texports[\"ClipboardJS\"] = factory();\n\telse\n\t\troot[\"ClipboardJS\"] = factory();\n})(this, function() {\nreturn /******/ (function() { // webpackBootstrap\n/******/ \tvar __webpack_modules__ = ({\n\n/***/ 686:\n/***/ (function(__unused_webpack_module, __webpack_exports__, __webpack_require__) {\n\n\"use strict\";\n\n// EXPORTS\n__webpack_require__.d(__webpack_exports__, {\n \"default\": function() { return /* binding */ clipboard; }\n});\n\n// EXTERNAL MODULE: ./node_modules/tiny-emitter/index.js\nvar tiny_emitter = __webpack_require__(279);\nvar tiny_emitter_default = /*#__PURE__*/__webpack_require__.n(tiny_emitter);\n// EXTERNAL MODULE: ./node_modules/good-listener/src/listen.js\nvar listen = __webpack_require__(370);\nvar listen_default = /*#__PURE__*/__webpack_require__.n(listen);\n// EXTERNAL MODULE: ./node_modules/select/src/select.js\nvar src_select = __webpack_require__(817);\nvar select_default = /*#__PURE__*/__webpack_require__.n(src_select);\n;// CONCATENATED MODULE: ./src/common/command.js\n/**\n * Executes a given operation type.\n * @param {String} type\n * @return {Boolean}\n */\nfunction command(type) {\n try {\n return document.execCommand(type);\n } catch (err) {\n return false;\n }\n}\n;// CONCATENATED MODULE: ./src/actions/cut.js\n\n\n/**\n * Cut action wrapper.\n * @param {String|HTMLElement} target\n * @return {String}\n */\n\nvar ClipboardActionCut = function ClipboardActionCut(target) {\n var selectedText = select_default()(target);\n command('cut');\n return selectedText;\n};\n\n/* harmony default export */ var actions_cut = (ClipboardActionCut);\n;// CONCATENATED MODULE: ./src/common/create-fake-element.js\n/**\n * Creates a fake textarea element with a value.\n * @param {String} value\n * @return {HTMLElement}\n */\nfunction createFakeElement(value) {\n var isRTL = document.documentElement.getAttribute('dir') === 'rtl';\n var fakeElement = document.createElement('textarea'); // Prevent zooming on iOS\n\n fakeElement.style.fontSize = '12pt'; // Reset box model\n\n fakeElement.style.border = '0';\n fakeElement.style.padding = '0';\n fakeElement.style.margin = '0'; // Move element out of screen horizontally\n\n fakeElement.style.position = 'absolute';\n fakeElement.style[isRTL ? 'right' : 'left'] = '-9999px'; // Move element to the same position vertically\n\n var yPosition = window.pageYOffset || document.documentElement.scrollTop;\n fakeElement.style.top = \"\".concat(yPosition, \"px\");\n fakeElement.setAttribute('readonly', '');\n fakeElement.value = value;\n return fakeElement;\n}\n;// CONCATENATED MODULE: ./src/actions/copy.js\n\n\n\n/**\n * Create fake copy action wrapper using a fake element.\n * @param {String} target\n * @param {Object} options\n * @return {String}\n */\n\nvar fakeCopyAction = function fakeCopyAction(value, options) {\n var fakeElement = createFakeElement(value);\n options.container.appendChild(fakeElement);\n var selectedText = select_default()(fakeElement);\n command('copy');\n fakeElement.remove();\n return selectedText;\n};\n/**\n * Copy action wrapper.\n * @param {String|HTMLElement} target\n * @param {Object} options\n * @return {String}\n */\n\n\nvar ClipboardActionCopy = function ClipboardActionCopy(target) {\n var options = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {\n container: document.body\n };\n var selectedText = '';\n\n if (typeof target === 'string') {\n selectedText = fakeCopyAction(target, options);\n } else if (target instanceof HTMLInputElement && !['text', 'search', 'url', 'tel', 'password'].includes(target === null || target === void 0 ? void 0 : target.type)) {\n // If input type doesn't support `setSelectionRange`. Simulate it. https://developer.mozilla.org/en-US/docs/Web/API/HTMLInputElement/setSelectionRange\n selectedText = fakeCopyAction(target.value, options);\n } else {\n selectedText = select_default()(target);\n command('copy');\n }\n\n return selectedText;\n};\n\n/* harmony default export */ var actions_copy = (ClipboardActionCopy);\n;// CONCATENATED MODULE: ./src/actions/default.js\nfunction _typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return _typeof(obj); }\n\n\n\n/**\n * Inner function which performs selection from either `text` or `target`\n * properties and then executes copy or cut operations.\n * @param {Object} options\n */\n\nvar ClipboardActionDefault = function ClipboardActionDefault() {\n var options = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : {};\n // Defines base properties passed from constructor.\n var _options$action = options.action,\n action = _options$action === void 0 ? 'copy' : _options$action,\n container = options.container,\n target = options.target,\n text = options.text; // Sets the `action` to be performed which can be either 'copy' or 'cut'.\n\n if (action !== 'copy' && action !== 'cut') {\n throw new Error('Invalid \"action\" value, use either \"copy\" or \"cut\"');\n } // Sets the `target` property using an element that will be have its content copied.\n\n\n if (target !== undefined) {\n if (target && _typeof(target) === 'object' && target.nodeType === 1) {\n if (action === 'copy' && target.hasAttribute('disabled')) {\n throw new Error('Invalid \"target\" attribute. Please use \"readonly\" instead of \"disabled\" attribute');\n }\n\n if (action === 'cut' && (target.hasAttribute('readonly') || target.hasAttribute('disabled'))) {\n throw new Error('Invalid \"target\" attribute. You can\\'t cut text from elements with \"readonly\" or \"disabled\" attributes');\n }\n } else {\n throw new Error('Invalid \"target\" value, use a valid Element');\n }\n } // Define selection strategy based on `text` property.\n\n\n if (text) {\n return actions_copy(text, {\n container: container\n });\n } // Defines which selection strategy based on `target` property.\n\n\n if (target) {\n return action === 'cut' ? actions_cut(target) : actions_copy(target, {\n container: container\n });\n }\n};\n\n/* harmony default export */ var actions_default = (ClipboardActionDefault);\n;// CONCATENATED MODULE: ./src/clipboard.js\nfunction clipboard_typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { clipboard_typeof = function _typeof(obj) { return typeof obj; }; } else { clipboard_typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return clipboard_typeof(obj); }\n\nfunction _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError(\"Cannot call a class as a function\"); } }\n\nfunction _defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if (\"value\" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } }\n\nfunction _createClass(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties(Constructor.prototype, protoProps); if (staticProps) _defineProperties(Constructor, staticProps); return Constructor; }\n\nfunction _inherits(subClass, superClass) { if (typeof superClass !== \"function\" && superClass !== null) { throw new TypeError(\"Super expression must either be null or a function\"); } subClass.prototype = Object.create(superClass && superClass.prototype, { constructor: { value: subClass, writable: true, configurable: true } }); if (superClass) _setPrototypeOf(subClass, superClass); }\n\nfunction _setPrototypeOf(o, p) { _setPrototypeOf = Object.setPrototypeOf || function _setPrototypeOf(o, p) { o.__proto__ = p; return o; }; return _setPrototypeOf(o, p); }\n\nfunction _createSuper(Derived) { var hasNativeReflectConstruct = _isNativeReflectConstruct(); return function _createSuperInternal() { var Super = _getPrototypeOf(Derived), result; if (hasNativeReflectConstruct) { var NewTarget = _getPrototypeOf(this).constructor; result = Reflect.construct(Super, arguments, NewTarget); } else { result = Super.apply(this, arguments); } return _possibleConstructorReturn(this, result); }; }\n\nfunction _possibleConstructorReturn(self, call) { if (call && (clipboard_typeof(call) === \"object\" || typeof call === \"function\")) { return call; } return _assertThisInitialized(self); }\n\nfunction _assertThisInitialized(self) { if (self === void 0) { throw new ReferenceError(\"this hasn't been initialised - super() hasn't been called\"); } return self; }\n\nfunction _isNativeReflectConstruct() { if (typeof Reflect === \"undefined\" || !Reflect.construct) return false; if (Reflect.construct.sham) return false; if (typeof Proxy === \"function\") return true; try { Date.prototype.toString.call(Reflect.construct(Date, [], function () {})); return true; } catch (e) { return false; } }\n\nfunction _getPrototypeOf(o) { _getPrototypeOf = Object.setPrototypeOf ? Object.getPrototypeOf : function _getPrototypeOf(o) { return o.__proto__ || Object.getPrototypeOf(o); }; return _getPrototypeOf(o); }\n\n\n\n\n\n\n/**\n * Helper function to retrieve attribute value.\n * @param {String} suffix\n * @param {Element} element\n */\n\nfunction getAttributeValue(suffix, element) {\n var attribute = \"data-clipboard-\".concat(suffix);\n\n if (!element.hasAttribute(attribute)) {\n return;\n }\n\n return element.getAttribute(attribute);\n}\n/**\n * Base class which takes one or more elements, adds event listeners to them,\n * and instantiates a new `ClipboardAction` on each click.\n */\n\n\nvar Clipboard = /*#__PURE__*/function (_Emitter) {\n _inherits(Clipboard, _Emitter);\n\n var _super = _createSuper(Clipboard);\n\n /**\n * @param {String|HTMLElement|HTMLCollection|NodeList} trigger\n * @param {Object} options\n */\n function Clipboard(trigger, options) {\n var _this;\n\n _classCallCheck(this, Clipboard);\n\n _this = _super.call(this);\n\n _this.resolveOptions(options);\n\n _this.listenClick(trigger);\n\n return _this;\n }\n /**\n * Defines if attributes would be resolved using internal setter functions\n * or custom functions that were passed in the constructor.\n * @param {Object} options\n */\n\n\n _createClass(Clipboard, [{\n key: \"resolveOptions\",\n value: function resolveOptions() {\n var options = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : {};\n this.action = typeof options.action === 'function' ? options.action : this.defaultAction;\n this.target = typeof options.target === 'function' ? options.target : this.defaultTarget;\n this.text = typeof options.text === 'function' ? options.text : this.defaultText;\n this.container = clipboard_typeof(options.container) === 'object' ? options.container : document.body;\n }\n /**\n * Adds a click event listener to the passed trigger.\n * @param {String|HTMLElement|HTMLCollection|NodeList} trigger\n */\n\n }, {\n key: \"listenClick\",\n value: function listenClick(trigger) {\n var _this2 = this;\n\n this.listener = listen_default()(trigger, 'click', function (e) {\n return _this2.onClick(e);\n });\n }\n /**\n * Defines a new `ClipboardAction` on each click event.\n * @param {Event} e\n */\n\n }, {\n key: \"onClick\",\n value: function onClick(e) {\n var trigger = e.delegateTarget || e.currentTarget;\n var action = this.action(trigger) || 'copy';\n var text = actions_default({\n action: action,\n container: this.container,\n target: this.target(trigger),\n text: this.text(trigger)\n }); // Fires an event based on the copy operation result.\n\n this.emit(text ? 'success' : 'error', {\n action: action,\n text: text,\n trigger: trigger,\n clearSelection: function clearSelection() {\n if (trigger) {\n trigger.focus();\n }\n\n window.getSelection().removeAllRanges();\n }\n });\n }\n /**\n * Default `action` lookup function.\n * @param {Element} trigger\n */\n\n }, {\n key: \"defaultAction\",\n value: function defaultAction(trigger) {\n return getAttributeValue('action', trigger);\n }\n /**\n * Default `target` lookup function.\n * @param {Element} trigger\n */\n\n }, {\n key: \"defaultTarget\",\n value: function defaultTarget(trigger) {\n var selector = getAttributeValue('target', trigger);\n\n if (selector) {\n return document.querySelector(selector);\n }\n }\n /**\n * Allow fire programmatically a copy action\n * @param {String|HTMLElement} target\n * @param {Object} options\n * @returns Text copied.\n */\n\n }, {\n key: \"defaultText\",\n\n /**\n * Default `text` lookup function.\n * @param {Element} trigger\n */\n value: function defaultText(trigger) {\n return getAttributeValue('text', trigger);\n }\n /**\n * Destroy lifecycle.\n */\n\n }, {\n key: \"destroy\",\n value: function destroy() {\n this.listener.destroy();\n }\n }], [{\n key: \"copy\",\n value: function copy(target) {\n var options = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {\n container: document.body\n };\n return actions_copy(target, options);\n }\n /**\n * Allow fire programmatically a cut action\n * @param {String|HTMLElement} target\n * @returns Text cutted.\n */\n\n }, {\n key: \"cut\",\n value: function cut(target) {\n return actions_cut(target);\n }\n /**\n * Returns the support of the given action, or all actions if no action is\n * given.\n * @param {String} [action]\n */\n\n }, {\n key: \"isSupported\",\n value: function isSupported() {\n var action = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : ['copy', 'cut'];\n var actions = typeof action === 'string' ? [action] : action;\n var support = !!document.queryCommandSupported;\n actions.forEach(function (action) {\n support = support && !!document.queryCommandSupported(action);\n });\n return support;\n }\n }]);\n\n return Clipboard;\n}((tiny_emitter_default()));\n\n/* harmony default export */ var clipboard = (Clipboard);\n\n/***/ }),\n\n/***/ 828:\n/***/ (function(module) {\n\nvar DOCUMENT_NODE_TYPE = 9;\n\n/**\n * A polyfill for Element.matches()\n */\nif (typeof Element !== 'undefined' && !Element.prototype.matches) {\n var proto = Element.prototype;\n\n proto.matches = proto.matchesSelector ||\n proto.mozMatchesSelector ||\n proto.msMatchesSelector ||\n proto.oMatchesSelector ||\n proto.webkitMatchesSelector;\n}\n\n/**\n * Finds the closest parent that matches a selector.\n *\n * @param {Element} element\n * @param {String} selector\n * @return {Function}\n */\nfunction closest (element, selector) {\n while (element && element.nodeType !== DOCUMENT_NODE_TYPE) {\n if (typeof element.matches === 'function' &&\n element.matches(selector)) {\n return element;\n }\n element = element.parentNode;\n }\n}\n\nmodule.exports = closest;\n\n\n/***/ }),\n\n/***/ 438:\n/***/ (function(module, __unused_webpack_exports, __webpack_require__) {\n\nvar closest = __webpack_require__(828);\n\n/**\n * Delegates event to a selector.\n *\n * @param {Element} element\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @param {Boolean} useCapture\n * @return {Object}\n */\nfunction _delegate(element, selector, type, callback, useCapture) {\n var listenerFn = listener.apply(this, arguments);\n\n element.addEventListener(type, listenerFn, useCapture);\n\n return {\n destroy: function() {\n element.removeEventListener(type, listenerFn, useCapture);\n }\n }\n}\n\n/**\n * Delegates event to a selector.\n *\n * @param {Element|String|Array} [elements]\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @param {Boolean} useCapture\n * @return {Object}\n */\nfunction delegate(elements, selector, type, callback, useCapture) {\n // Handle the regular Element usage\n if (typeof elements.addEventListener === 'function') {\n return _delegate.apply(null, arguments);\n }\n\n // Handle Element-less usage, it defaults to global delegation\n if (typeof type === 'function') {\n // Use `document` as the first parameter, then apply arguments\n // This is a short way to .unshift `arguments` without running into deoptimizations\n return _delegate.bind(null, document).apply(null, arguments);\n }\n\n // Handle Selector-based usage\n if (typeof elements === 'string') {\n elements = document.querySelectorAll(elements);\n }\n\n // Handle Array-like based usage\n return Array.prototype.map.call(elements, function (element) {\n return _delegate(element, selector, type, callback, useCapture);\n });\n}\n\n/**\n * Finds closest match and invokes callback.\n *\n * @param {Element} element\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @return {Function}\n */\nfunction listener(element, selector, type, callback) {\n return function(e) {\n e.delegateTarget = closest(e.target, selector);\n\n if (e.delegateTarget) {\n callback.call(element, e);\n }\n }\n}\n\nmodule.exports = delegate;\n\n\n/***/ }),\n\n/***/ 879:\n/***/ (function(__unused_webpack_module, exports) {\n\n/**\n * Check if argument is a HTML element.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.node = function(value) {\n return value !== undefined\n && value instanceof HTMLElement\n && value.nodeType === 1;\n};\n\n/**\n * Check if argument is a list of HTML elements.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.nodeList = function(value) {\n var type = Object.prototype.toString.call(value);\n\n return value !== undefined\n && (type === '[object NodeList]' || type === '[object HTMLCollection]')\n && ('length' in value)\n && (value.length === 0 || exports.node(value[0]));\n};\n\n/**\n * Check if argument is a string.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.string = function(value) {\n return typeof value === 'string'\n || value instanceof String;\n};\n\n/**\n * Check if argument is a function.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.fn = function(value) {\n var type = Object.prototype.toString.call(value);\n\n return type === '[object Function]';\n};\n\n\n/***/ }),\n\n/***/ 370:\n/***/ (function(module, __unused_webpack_exports, __webpack_require__) {\n\nvar is = __webpack_require__(879);\nvar delegate = __webpack_require__(438);\n\n/**\n * Validates all params and calls the right\n * listener function based on its target type.\n *\n * @param {String|HTMLElement|HTMLCollection|NodeList} target\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listen(target, type, callback) {\n if (!target && !type && !callback) {\n throw new Error('Missing required arguments');\n }\n\n if (!is.string(type)) {\n throw new TypeError('Second argument must be a String');\n }\n\n if (!is.fn(callback)) {\n throw new TypeError('Third argument must be a Function');\n }\n\n if (is.node(target)) {\n return listenNode(target, type, callback);\n }\n else if (is.nodeList(target)) {\n return listenNodeList(target, type, callback);\n }\n else if (is.string(target)) {\n return listenSelector(target, type, callback);\n }\n else {\n throw new TypeError('First argument must be a String, HTMLElement, HTMLCollection, or NodeList');\n }\n}\n\n/**\n * Adds an event listener to a HTML element\n * and returns a remove listener function.\n *\n * @param {HTMLElement} node\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listenNode(node, type, callback) {\n node.addEventListener(type, callback);\n\n return {\n destroy: function() {\n node.removeEventListener(type, callback);\n }\n }\n}\n\n/**\n * Add an event listener to a list of HTML elements\n * and returns a remove listener function.\n *\n * @param {NodeList|HTMLCollection} nodeList\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listenNodeList(nodeList, type, callback) {\n Array.prototype.forEach.call(nodeList, function(node) {\n node.addEventListener(type, callback);\n });\n\n return {\n destroy: function() {\n Array.prototype.forEach.call(nodeList, function(node) {\n node.removeEventListener(type, callback);\n });\n }\n }\n}\n\n/**\n * Add an event listener to a selector\n * and returns a remove listener function.\n *\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listenSelector(selector, type, callback) {\n return delegate(document.body, selector, type, callback);\n}\n\nmodule.exports = listen;\n\n\n/***/ }),\n\n/***/ 817:\n/***/ (function(module) {\n\nfunction select(element) {\n var selectedText;\n\n if (element.nodeName === 'SELECT') {\n element.focus();\n\n selectedText = element.value;\n }\n else if (element.nodeName === 'INPUT' || element.nodeName === 'TEXTAREA') {\n var isReadOnly = element.hasAttribute('readonly');\n\n if (!isReadOnly) {\n element.setAttribute('readonly', '');\n }\n\n element.select();\n element.setSelectionRange(0, element.value.length);\n\n if (!isReadOnly) {\n element.removeAttribute('readonly');\n }\n\n selectedText = element.value;\n }\n else {\n if (element.hasAttribute('contenteditable')) {\n element.focus();\n }\n\n var selection = window.getSelection();\n var range = document.createRange();\n\n range.selectNodeContents(element);\n selection.removeAllRanges();\n selection.addRange(range);\n\n selectedText = selection.toString();\n }\n\n return selectedText;\n}\n\nmodule.exports = select;\n\n\n/***/ }),\n\n/***/ 279:\n/***/ (function(module) {\n\nfunction E () {\n // Keep this empty so it's easier to inherit from\n // (via https://github.com/lipsmack from https://github.com/scottcorgan/tiny-emitter/issues/3)\n}\n\nE.prototype = {\n on: function (name, callback, ctx) {\n var e = this.e || (this.e = {});\n\n (e[name] || (e[name] = [])).push({\n fn: callback,\n ctx: ctx\n });\n\n return this;\n },\n\n once: function (name, callback, ctx) {\n var self = this;\n function listener () {\n self.off(name, listener);\n callback.apply(ctx, arguments);\n };\n\n listener._ = callback\n return this.on(name, listener, ctx);\n },\n\n emit: function (name) {\n var data = [].slice.call(arguments, 1);\n var evtArr = ((this.e || (this.e = {}))[name] || []).slice();\n var i = 0;\n var len = evtArr.length;\n\n for (i; i < len; i++) {\n evtArr[i].fn.apply(evtArr[i].ctx, data);\n }\n\n return this;\n },\n\n off: function (name, callback) {\n var e = this.e || (this.e = {});\n var evts = e[name];\n var liveEvents = [];\n\n if (evts && callback) {\n for (var i = 0, len = evts.length; i < len; i++) {\n if (evts[i].fn !== callback && evts[i].fn._ !== callback)\n liveEvents.push(evts[i]);\n }\n }\n\n // Remove event from queue to prevent memory leak\n // Suggested by https://github.com/lazd\n // Ref: https://github.com/scottcorgan/tiny-emitter/commit/c6ebfaa9bc973b33d110a84a307742b7cf94c953#commitcomment-5024910\n\n (liveEvents.length)\n ? e[name] = liveEvents\n : delete e[name];\n\n return this;\n }\n};\n\nmodule.exports = E;\nmodule.exports.TinyEmitter = E;\n\n\n/***/ })\n\n/******/ \t});\n/************************************************************************/\n/******/ \t// The module cache\n/******/ \tvar __webpack_module_cache__ = {};\n/******/ \t\n/******/ \t// The require function\n/******/ \tfunction __webpack_require__(moduleId) {\n/******/ \t\t// Check if module is in cache\n/******/ \t\tif(__webpack_module_cache__[moduleId]) {\n/******/ \t\t\treturn __webpack_module_cache__[moduleId].exports;\n/******/ \t\t}\n/******/ \t\t// Create a new module (and put it into the cache)\n/******/ \t\tvar module = __webpack_module_cache__[moduleId] = {\n/******/ \t\t\t// no module.id needed\n/******/ \t\t\t// no module.loaded needed\n/******/ \t\t\texports: {}\n/******/ \t\t};\n/******/ \t\n/******/ \t\t// Execute the module function\n/******/ \t\t__webpack_modules__[moduleId](module, module.exports, __webpack_require__);\n/******/ \t\n/******/ \t\t// Return the exports of the module\n/******/ \t\treturn module.exports;\n/******/ \t}\n/******/ \t\n/************************************************************************/\n/******/ \t/* webpack/runtime/compat get default export */\n/******/ \t!function() {\n/******/ \t\t// getDefaultExport function for compatibility with non-harmony modules\n/******/ \t\t__webpack_require__.n = function(module) {\n/******/ \t\t\tvar getter = module && module.__esModule ?\n/******/ \t\t\t\tfunction() { return module['default']; } :\n/******/ \t\t\t\tfunction() { return module; };\n/******/ \t\t\t__webpack_require__.d(getter, { a: getter });\n/******/ \t\t\treturn getter;\n/******/ \t\t};\n/******/ \t}();\n/******/ \t\n/******/ \t/* webpack/runtime/define property getters */\n/******/ \t!function() {\n/******/ \t\t// define getter functions for harmony exports\n/******/ \t\t__webpack_require__.d = function(exports, definition) {\n/******/ \t\t\tfor(var key in definition) {\n/******/ \t\t\t\tif(__webpack_require__.o(definition, key) && !__webpack_require__.o(exports, key)) {\n/******/ \t\t\t\t\tObject.defineProperty(exports, key, { enumerable: true, get: definition[key] });\n/******/ \t\t\t\t}\n/******/ \t\t\t}\n/******/ \t\t};\n/******/ \t}();\n/******/ \t\n/******/ \t/* webpack/runtime/hasOwnProperty shorthand */\n/******/ \t!function() {\n/******/ \t\t__webpack_require__.o = function(obj, prop) { return Object.prototype.hasOwnProperty.call(obj, prop); }\n/******/ \t}();\n/******/ \t\n/************************************************************************/\n/******/ \t// module exports must be returned from runtime so entry inlining is disabled\n/******/ \t// startup\n/******/ \t// Load entry module and return exports\n/******/ \treturn __webpack_require__(686);\n/******/ })()\n.default;\n});", "/*!\n * escape-html\n * Copyright(c) 2012-2013 TJ Holowaychuk\n * Copyright(c) 2015 Andreas Lubbe\n * Copyright(c) 2015 Tiancheng \"Timothy\" Gu\n * MIT Licensed\n */\n\n'use strict';\n\n/**\n * Module variables.\n * @private\n */\n\nvar matchHtmlRegExp = /[\"'&<>]/;\n\n/**\n * Module exports.\n * @public\n */\n\nmodule.exports = escapeHtml;\n\n/**\n * Escape special characters in the given string of html.\n *\n * @param {string} string The string to escape for inserting into HTML\n * @return {string}\n * @public\n */\n\nfunction escapeHtml(string) {\n var str = '' + string;\n var match = matchHtmlRegExp.exec(str);\n\n if (!match) {\n return str;\n }\n\n var escape;\n var html = '';\n var index = 0;\n var lastIndex = 0;\n\n for (index = match.index; index < str.length; index++) {\n switch (str.charCodeAt(index)) {\n case 34: // \"\n escape = '"';\n break;\n case 38: // &\n escape = '&';\n break;\n case 39: // '\n escape = ''';\n break;\n case 60: // <\n escape = '<';\n break;\n case 62: // >\n escape = '>';\n break;\n default:\n continue;\n }\n\n if (lastIndex !== index) {\n html += str.substring(lastIndex, index);\n }\n\n lastIndex = index + 1;\n html += escape;\n }\n\n return lastIndex !== index\n ? html + str.substring(lastIndex, index)\n : html;\n}\n", "/*\n * Copyright (c) 2016-2023 Martin Donath \n *\n * Permission is hereby granted, free of charge, to any person obtaining a copy\n * of this software and associated documentation files (the \"Software\"), to\n * deal in the Software without restriction, including without limitation the\n * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or\n * sell copies of the Software, and to permit persons to whom the Software is\n * furnished to do so, subject to the following conditions:\n *\n * The above copyright notice and this permission notice shall be included in\n * all copies or substantial portions of the Software.\n *\n * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE\n * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING\n * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS\n * IN THE SOFTWARE.\n */\n\nimport \"focus-visible\"\n\nimport {\n EMPTY,\n NEVER,\n Observable,\n Subject,\n defer,\n delay,\n filter,\n map,\n merge,\n mergeWith,\n shareReplay,\n switchMap\n} from \"rxjs\"\n\nimport { configuration, feature } from \"./_\"\nimport {\n at,\n getActiveElement,\n getOptionalElement,\n requestJSON,\n setLocation,\n setToggle,\n watchDocument,\n watchKeyboard,\n watchLocation,\n watchLocationTarget,\n watchMedia,\n watchPrint,\n watchScript,\n watchViewport\n} from \"./browser\"\nimport {\n getComponentElement,\n getComponentElements,\n mountAnnounce,\n mountBackToTop,\n mountConsent,\n mountContent,\n mountDialog,\n mountHeader,\n mountHeaderTitle,\n mountPalette,\n mountProgress,\n mountSearch,\n mountSearchHiglight,\n mountSidebar,\n mountSource,\n mountTableOfContents,\n mountTabs,\n watchHeader,\n watchMain\n} from \"./components\"\nimport {\n SearchIndex,\n setupClipboardJS,\n setupInstantNavigation,\n setupVersionSelector\n} from \"./integrations\"\nimport {\n patchIndeterminate,\n patchScrollfix,\n patchScrolllock\n} from \"./patches\"\nimport \"./polyfills\"\n\n/* ----------------------------------------------------------------------------\n * Functions - @todo refactor\n * ------------------------------------------------------------------------- */\n\n/**\n * Fetch search index\n *\n * @returns Search index observable\n */\nfunction fetchSearchIndex(): Observable {\n if (location.protocol === \"file:\") {\n return watchScript(\n `${new URL(\"search/search_index.js\", config.base)}`\n )\n .pipe(\n // @ts-ignore - @todo fix typings\n map(() => __index),\n shareReplay(1)\n )\n } else {\n return requestJSON(\n new URL(\"search/search_index.json\", config.base)\n )\n }\n}\n\n/* ----------------------------------------------------------------------------\n * Application\n * ------------------------------------------------------------------------- */\n\n/* Yay, JavaScript is available */\ndocument.documentElement.classList.remove(\"no-js\")\ndocument.documentElement.classList.add(\"js\")\n\n/* Set up navigation observables and subjects */\nconst document$ = watchDocument()\nconst location$ = watchLocation()\nconst target$ = watchLocationTarget(location$)\nconst keyboard$ = watchKeyboard()\n\n/* Set up media observables */\nconst viewport$ = watchViewport()\nconst tablet$ = watchMedia(\"(min-width: 960px)\")\nconst screen$ = watchMedia(\"(min-width: 1220px)\")\nconst print$ = watchPrint()\n\n/* Retrieve search index, if search is enabled */\nconst config = configuration()\nconst index$ = document.forms.namedItem(\"search\")\n ? fetchSearchIndex()\n : NEVER\n\n/* Set up Clipboard.js integration */\nconst alert$ = new Subject()\nsetupClipboardJS({ alert$ })\n\n/* Set up progress indicator */\nconst progress$ = new Subject()\n\n/* Set up instant navigation, if enabled */\nif (feature(\"navigation.instant\"))\n setupInstantNavigation({ location$, viewport$, progress$ })\n .subscribe(document$)\n\n/* Set up version selector */\nif (config.version?.provider === \"mike\")\n setupVersionSelector({ document$ })\n\n/* Always close drawer and search on navigation */\nmerge(location$, target$)\n .pipe(\n delay(125)\n )\n .subscribe(() => {\n setToggle(\"drawer\", false)\n setToggle(\"search\", false)\n })\n\n/* Set up global keyboard handlers */\nkeyboard$\n .pipe(\n filter(({ mode }) => mode === \"global\")\n )\n .subscribe(key => {\n switch (key.type) {\n\n /* Go to previous page */\n case \"p\":\n case \",\":\n const prev = getOptionalElement(\"link[rel=prev]\")\n if (typeof prev !== \"undefined\")\n setLocation(prev)\n break\n\n /* Go to next page */\n case \"n\":\n case \".\":\n const next = getOptionalElement(\"link[rel=next]\")\n if (typeof next !== \"undefined\")\n setLocation(next)\n break\n\n /* Expand navigation, see https://bit.ly/3ZjG5io */\n case \"Enter\":\n const active = getActiveElement()\n if (active instanceof HTMLLabelElement)\n active.click()\n }\n })\n\n/* Set up patches */\npatchIndeterminate({ document$, tablet$ })\npatchScrollfix({ document$ })\npatchScrolllock({ viewport$, tablet$ })\n\n/* Set up header and main area observable */\nconst header$ = watchHeader(getComponentElement(\"header\"), { viewport$ })\nconst main$ = document$\n .pipe(\n map(() => getComponentElement(\"main\")),\n switchMap(el => watchMain(el, { viewport$, header$ })),\n shareReplay(1)\n )\n\n/* Set up control component observables */\nconst control$ = merge(\n\n /* Consent */\n ...getComponentElements(\"consent\")\n .map(el => mountConsent(el, { target$ })),\n\n /* Dialog */\n ...getComponentElements(\"dialog\")\n .map(el => mountDialog(el, { alert$ })),\n\n /* Header */\n ...getComponentElements(\"header\")\n .map(el => mountHeader(el, { viewport$, header$, main$ })),\n\n /* Color palette */\n ...getComponentElements(\"palette\")\n .map(el => mountPalette(el)),\n\n /* Progress bar */\n ...getComponentElements(\"progress\")\n .map(el => mountProgress(el, { progress$ })),\n\n /* Search */\n ...getComponentElements(\"search\")\n .map(el => mountSearch(el, { index$, keyboard$ })),\n\n /* Repository information */\n ...getComponentElements(\"source\")\n .map(el => mountSource(el))\n)\n\n/* Set up content component observables */\nconst content$ = defer(() => merge(\n\n /* Announcement bar */\n ...getComponentElements(\"announce\")\n .map(el => mountAnnounce(el)),\n\n /* Content */\n ...getComponentElements(\"content\")\n .map(el => mountContent(el, { viewport$, target$, print$ })),\n\n /* Search highlighting */\n ...getComponentElements(\"content\")\n .map(el => feature(\"search.highlight\")\n ? mountSearchHiglight(el, { index$, location$ })\n : EMPTY\n ),\n\n /* Header title */\n ...getComponentElements(\"header-title\")\n .map(el => mountHeaderTitle(el, { viewport$, header$ })),\n\n /* Sidebar */\n ...getComponentElements(\"sidebar\")\n .map(el => el.getAttribute(\"data-md-type\") === \"navigation\"\n ? at(screen$, () => mountSidebar(el, { viewport$, header$, main$ }))\n : at(tablet$, () => mountSidebar(el, { viewport$, header$, main$ }))\n ),\n\n /* Navigation tabs */\n ...getComponentElements(\"tabs\")\n .map(el => mountTabs(el, { viewport$, header$ })),\n\n /* Table of contents */\n ...getComponentElements(\"toc\")\n .map(el => mountTableOfContents(el, {\n viewport$, header$, main$, target$\n })),\n\n /* Back-to-top button */\n ...getComponentElements(\"top\")\n .map(el => mountBackToTop(el, { viewport$, header$, main$, target$ }))\n))\n\n/* Set up component observables */\nconst component$ = document$\n .pipe(\n switchMap(() => content$),\n mergeWith(control$),\n shareReplay(1)\n )\n\n/* Subscribe to all components */\ncomponent$.subscribe()\n\n/* ----------------------------------------------------------------------------\n * Exports\n * ------------------------------------------------------------------------- */\n\nwindow.document$ = document$ /* Document observable */\nwindow.location$ = location$ /* Location subject */\nwindow.target$ = target$ /* Location target observable */\nwindow.keyboard$ = keyboard$ /* Keyboard observable */\nwindow.viewport$ = viewport$ /* Viewport observable */\nwindow.tablet$ = tablet$ /* Media tablet observable */\nwindow.screen$ = screen$ /* Media screen observable */\nwindow.print$ = print$ /* Media print observable */\nwindow.alert$ = alert$ /* Alert subject */\nwindow.progress$ = progress$ /* Progress indicator subject */\nwindow.component$ = component$ /* Component observable */\n", "/*! *****************************************************************************\r\nCopyright (c) Microsoft Corporation.\r\n\r\nPermission to use, copy, modify, and/or distribute this software for any\r\npurpose with or without fee is hereby granted.\r\n\r\nTHE SOFTWARE IS PROVIDED \"AS IS\" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH\r\nREGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY\r\nAND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,\r\nINDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM\r\nLOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR\r\nOTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR\r\nPERFORMANCE OF THIS SOFTWARE.\r\n***************************************************************************** */\r\n/* global Reflect, Promise */\r\n\r\nvar extendStatics = function(d, b) {\r\n extendStatics = Object.setPrototypeOf ||\r\n ({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) ||\r\n function (d, b) { for (var p in b) if (Object.prototype.hasOwnProperty.call(b, p)) d[p] = b[p]; };\r\n return extendStatics(d, b);\r\n};\r\n\r\nexport function __extends(d, b) {\r\n if (typeof b !== \"function\" && b !== null)\r\n throw new TypeError(\"Class extends value \" + String(b) + \" is not a constructor or null\");\r\n extendStatics(d, b);\r\n function __() { this.constructor = d; }\r\n d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());\r\n}\r\n\r\nexport var __assign = function() {\r\n __assign = Object.assign || function __assign(t) {\r\n for (var s, i = 1, n = arguments.length; i < n; i++) {\r\n s = arguments[i];\r\n for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p)) t[p] = s[p];\r\n }\r\n return t;\r\n }\r\n return __assign.apply(this, arguments);\r\n}\r\n\r\nexport function __rest(s, e) {\r\n var t = {};\r\n for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p) && e.indexOf(p) < 0)\r\n t[p] = s[p];\r\n if (s != null && typeof Object.getOwnPropertySymbols === \"function\")\r\n for (var i = 0, p = Object.getOwnPropertySymbols(s); i < p.length; i++) {\r\n if (e.indexOf(p[i]) < 0 && Object.prototype.propertyIsEnumerable.call(s, p[i]))\r\n t[p[i]] = s[p[i]];\r\n }\r\n return t;\r\n}\r\n\r\nexport function __decorate(decorators, target, key, desc) {\r\n var c = arguments.length, r = c < 3 ? target : desc === null ? desc = Object.getOwnPropertyDescriptor(target, key) : desc, d;\r\n if (typeof Reflect === \"object\" && typeof Reflect.decorate === \"function\") r = Reflect.decorate(decorators, target, key, desc);\r\n else for (var i = decorators.length - 1; i >= 0; i--) if (d = decorators[i]) r = (c < 3 ? d(r) : c > 3 ? d(target, key, r) : d(target, key)) || r;\r\n return c > 3 && r && Object.defineProperty(target, key, r), r;\r\n}\r\n\r\nexport function __param(paramIndex, decorator) {\r\n return function (target, key) { decorator(target, key, paramIndex); }\r\n}\r\n\r\nexport function __metadata(metadataKey, metadataValue) {\r\n if (typeof Reflect === \"object\" && typeof Reflect.metadata === \"function\") return Reflect.metadata(metadataKey, metadataValue);\r\n}\r\n\r\nexport function __awaiter(thisArg, _arguments, P, generator) {\r\n function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); }\r\n return new (P || (P = Promise))(function (resolve, reject) {\r\n function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }\r\n function rejected(value) { try { step(generator[\"throw\"](value)); } catch (e) { reject(e); } }\r\n function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); }\r\n step((generator = generator.apply(thisArg, _arguments || [])).next());\r\n });\r\n}\r\n\r\nexport function __generator(thisArg, body) {\r\n var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;\r\n return g = { next: verb(0), \"throw\": verb(1), \"return\": verb(2) }, typeof Symbol === \"function\" && (g[Symbol.iterator] = function() { return this; }), g;\r\n function verb(n) { return function (v) { return step([n, v]); }; }\r\n function step(op) {\r\n if (f) throw new TypeError(\"Generator is already executing.\");\r\n while (_) try {\r\n if (f = 1, y && (t = op[0] & 2 ? y[\"return\"] : op[0] ? y[\"throw\"] || ((t = y[\"return\"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;\r\n if (y = 0, t) op = [op[0] & 2, t.value];\r\n switch (op[0]) {\r\n case 0: case 1: t = op; break;\r\n case 4: _.label++; return { value: op[1], done: false };\r\n case 5: _.label++; y = op[1]; op = [0]; continue;\r\n case 7: op = _.ops.pop(); _.trys.pop(); continue;\r\n default:\r\n if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }\r\n if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }\r\n if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }\r\n if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }\r\n if (t[2]) _.ops.pop();\r\n _.trys.pop(); continue;\r\n }\r\n op = body.call(thisArg, _);\r\n } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }\r\n if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };\r\n }\r\n}\r\n\r\nexport var __createBinding = Object.create ? (function(o, m, k, k2) {\r\n if (k2 === undefined) k2 = k;\r\n Object.defineProperty(o, k2, { enumerable: true, get: function() { return m[k]; } });\r\n}) : (function(o, m, k, k2) {\r\n if (k2 === undefined) k2 = k;\r\n o[k2] = m[k];\r\n});\r\n\r\nexport function __exportStar(m, o) {\r\n for (var p in m) if (p !== \"default\" && !Object.prototype.hasOwnProperty.call(o, p)) __createBinding(o, m, p);\r\n}\r\n\r\nexport function __values(o) {\r\n var s = typeof Symbol === \"function\" && Symbol.iterator, m = s && o[s], i = 0;\r\n if (m) return m.call(o);\r\n if (o && typeof o.length === \"number\") return {\r\n next: function () {\r\n if (o && i >= o.length) o = void 0;\r\n return { value: o && o[i++], done: !o };\r\n }\r\n };\r\n throw new TypeError(s ? \"Object is not iterable.\" : \"Symbol.iterator is not defined.\");\r\n}\r\n\r\nexport function __read(o, n) {\r\n var m = typeof Symbol === \"function\" && o[Symbol.iterator];\r\n if (!m) return o;\r\n var i = m.call(o), r, ar = [], e;\r\n try {\r\n while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);\r\n }\r\n catch (error) { e = { error: error }; }\r\n finally {\r\n try {\r\n if (r && !r.done && (m = i[\"return\"])) m.call(i);\r\n }\r\n finally { if (e) throw e.error; }\r\n }\r\n return ar;\r\n}\r\n\r\n/** @deprecated */\r\nexport function __spread() {\r\n for (var ar = [], i = 0; i < arguments.length; i++)\r\n ar = ar.concat(__read(arguments[i]));\r\n return ar;\r\n}\r\n\r\n/** @deprecated */\r\nexport function __spreadArrays() {\r\n for (var s = 0, i = 0, il = arguments.length; i < il; i++) s += arguments[i].length;\r\n for (var r = Array(s), k = 0, i = 0; i < il; i++)\r\n for (var a = arguments[i], j = 0, jl = a.length; j < jl; j++, k++)\r\n r[k] = a[j];\r\n return r;\r\n}\r\n\r\nexport function __spreadArray(to, from, pack) {\r\n if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {\r\n if (ar || !(i in from)) {\r\n if (!ar) ar = Array.prototype.slice.call(from, 0, i);\r\n ar[i] = from[i];\r\n }\r\n }\r\n return to.concat(ar || Array.prototype.slice.call(from));\r\n}\r\n\r\nexport function __await(v) {\r\n return this instanceof __await ? (this.v = v, this) : new __await(v);\r\n}\r\n\r\nexport function __asyncGenerator(thisArg, _arguments, generator) {\r\n if (!Symbol.asyncIterator) throw new TypeError(\"Symbol.asyncIterator is not defined.\");\r\n var g = generator.apply(thisArg, _arguments || []), i, q = [];\r\n return i = {}, verb(\"next\"), verb(\"throw\"), verb(\"return\"), i[Symbol.asyncIterator] = function () { return this; }, i;\r\n function verb(n) { if (g[n]) i[n] = function (v) { return new Promise(function (a, b) { q.push([n, v, a, b]) > 1 || resume(n, v); }); }; }\r\n function resume(n, v) { try { step(g[n](v)); } catch (e) { settle(q[0][3], e); } }\r\n function step(r) { r.value instanceof __await ? Promise.resolve(r.value.v).then(fulfill, reject) : settle(q[0][2], r); }\r\n function fulfill(value) { resume(\"next\", value); }\r\n function reject(value) { resume(\"throw\", value); }\r\n function settle(f, v) { if (f(v), q.shift(), q.length) resume(q[0][0], q[0][1]); }\r\n}\r\n\r\nexport function __asyncDelegator(o) {\r\n var i, p;\r\n return i = {}, verb(\"next\"), verb(\"throw\", function (e) { throw e; }), verb(\"return\"), i[Symbol.iterator] = function () { return this; }, i;\r\n function verb(n, f) { i[n] = o[n] ? function (v) { return (p = !p) ? { value: __await(o[n](v)), done: n === \"return\" } : f ? f(v) : v; } : f; }\r\n}\r\n\r\nexport function __asyncValues(o) {\r\n if (!Symbol.asyncIterator) throw new TypeError(\"Symbol.asyncIterator is not defined.\");\r\n var m = o[Symbol.asyncIterator], i;\r\n return m ? m.call(o) : (o = typeof __values === \"function\" ? __values(o) : o[Symbol.iterator](), i = {}, verb(\"next\"), verb(\"throw\"), verb(\"return\"), i[Symbol.asyncIterator] = function () { return this; }, i);\r\n function verb(n) { i[n] = o[n] && function (v) { return new Promise(function (resolve, reject) { v = o[n](v), settle(resolve, reject, v.done, v.value); }); }; }\r\n function settle(resolve, reject, d, v) { Promise.resolve(v).then(function(v) { resolve({ value: v, done: d }); }, reject); }\r\n}\r\n\r\nexport function __makeTemplateObject(cooked, raw) {\r\n if (Object.defineProperty) { Object.defineProperty(cooked, \"raw\", { value: raw }); } else { cooked.raw = raw; }\r\n return cooked;\r\n};\r\n\r\nvar __setModuleDefault = Object.create ? (function(o, v) {\r\n Object.defineProperty(o, \"default\", { enumerable: true, value: v });\r\n}) : function(o, v) {\r\n o[\"default\"] = v;\r\n};\r\n\r\nexport function __importStar(mod) {\r\n if (mod && mod.__esModule) return mod;\r\n var result = {};\r\n if (mod != null) for (var k in mod) if (k !== \"default\" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);\r\n __setModuleDefault(result, mod);\r\n return result;\r\n}\r\n\r\nexport function __importDefault(mod) {\r\n return (mod && mod.__esModule) ? mod : { default: mod };\r\n}\r\n\r\nexport function __classPrivateFieldGet(receiver, state, kind, f) {\r\n if (kind === \"a\" && !f) throw new TypeError(\"Private accessor was defined without a getter\");\r\n if (typeof state === \"function\" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError(\"Cannot read private member from an object whose class did not declare it\");\r\n return kind === \"m\" ? f : kind === \"a\" ? f.call(receiver) : f ? f.value : state.get(receiver);\r\n}\r\n\r\nexport function __classPrivateFieldSet(receiver, state, value, kind, f) {\r\n if (kind === \"m\") throw new TypeError(\"Private method is not writable\");\r\n if (kind === \"a\" && !f) throw new TypeError(\"Private accessor was defined without a setter\");\r\n if (typeof state === \"function\" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError(\"Cannot write private member to an object whose class did not declare it\");\r\n return (kind === \"a\" ? f.call(receiver, value) : f ? f.value = value : state.set(receiver, value)), value;\r\n}\r\n", "/**\n * Returns true if the object is a function.\n * @param value The value to check\n */\nexport function isFunction(value: any): value is (...args: any[]) => any {\n return typeof value === 'function';\n}\n", "/**\n * Used to create Error subclasses until the community moves away from ES5.\n *\n * This is because compiling from TypeScript down to ES5 has issues with subclassing Errors\n * as well as other built-in types: https://github.com/Microsoft/TypeScript/issues/12123\n *\n * @param createImpl A factory function to create the actual constructor implementation. The returned\n * function should be a named function that calls `_super` internally.\n */\nexport function createErrorClass(createImpl: (_super: any) => any): T {\n const _super = (instance: any) => {\n Error.call(instance);\n instance.stack = new Error().stack;\n };\n\n const ctorFunc = createImpl(_super);\n ctorFunc.prototype = Object.create(Error.prototype);\n ctorFunc.prototype.constructor = ctorFunc;\n return ctorFunc;\n}\n", "import { createErrorClass } from './createErrorClass';\n\nexport interface UnsubscriptionError extends Error {\n readonly errors: any[];\n}\n\nexport interface UnsubscriptionErrorCtor {\n /**\n * @deprecated Internal implementation detail. Do not construct error instances.\n * Cannot be tagged as internal: https://github.com/ReactiveX/rxjs/issues/6269\n */\n new (errors: any[]): UnsubscriptionError;\n}\n\n/**\n * An error thrown when one or more errors have occurred during the\n * `unsubscribe` of a {@link Subscription}.\n */\nexport const UnsubscriptionError: UnsubscriptionErrorCtor = createErrorClass(\n (_super) =>\n function UnsubscriptionErrorImpl(this: any, errors: (Error | string)[]) {\n _super(this);\n this.message = errors\n ? `${errors.length} errors occurred during unsubscription:\n${errors.map((err, i) => `${i + 1}) ${err.toString()}`).join('\\n ')}`\n : '';\n this.name = 'UnsubscriptionError';\n this.errors = errors;\n }\n);\n", "/**\n * Removes an item from an array, mutating it.\n * @param arr The array to remove the item from\n * @param item The item to remove\n */\nexport function arrRemove(arr: T[] | undefined | null, item: T) {\n if (arr) {\n const index = arr.indexOf(item);\n 0 <= index && arr.splice(index, 1);\n }\n}\n", "import { isFunction } from './util/isFunction';\nimport { UnsubscriptionError } from './util/UnsubscriptionError';\nimport { SubscriptionLike, TeardownLogic, Unsubscribable } from './types';\nimport { arrRemove } from './util/arrRemove';\n\n/**\n * Represents a disposable resource, such as the execution of an Observable. A\n * Subscription has one important method, `unsubscribe`, that takes no argument\n * and just disposes the resource held by the subscription.\n *\n * Additionally, subscriptions may be grouped together through the `add()`\n * method, which will attach a child Subscription to the current Subscription.\n * When a Subscription is unsubscribed, all its children (and its grandchildren)\n * will be unsubscribed as well.\n *\n * @class Subscription\n */\nexport class Subscription implements SubscriptionLike {\n /** @nocollapse */\n public static EMPTY = (() => {\n const empty = new Subscription();\n empty.closed = true;\n return empty;\n })();\n\n /**\n * A flag to indicate whether this Subscription has already been unsubscribed.\n */\n public closed = false;\n\n private _parentage: Subscription[] | Subscription | null = null;\n\n /**\n * The list of registered finalizers to execute upon unsubscription. Adding and removing from this\n * list occurs in the {@link #add} and {@link #remove} methods.\n */\n private _finalizers: Exclude[] | null = null;\n\n /**\n * @param initialTeardown A function executed first as part of the finalization\n * process that is kicked off when {@link #unsubscribe} is called.\n */\n constructor(private initialTeardown?: () => void) {}\n\n /**\n * Disposes the resources held by the subscription. May, for instance, cancel\n * an ongoing Observable execution or cancel any other type of work that\n * started when the Subscription was created.\n * @return {void}\n */\n unsubscribe(): void {\n let errors: any[] | undefined;\n\n if (!this.closed) {\n this.closed = true;\n\n // Remove this from it's parents.\n const { _parentage } = this;\n if (_parentage) {\n this._parentage = null;\n if (Array.isArray(_parentage)) {\n for (const parent of _parentage) {\n parent.remove(this);\n }\n } else {\n _parentage.remove(this);\n }\n }\n\n const { initialTeardown: initialFinalizer } = this;\n if (isFunction(initialFinalizer)) {\n try {\n initialFinalizer();\n } catch (e) {\n errors = e instanceof UnsubscriptionError ? e.errors : [e];\n }\n }\n\n const { _finalizers } = this;\n if (_finalizers) {\n this._finalizers = null;\n for (const finalizer of _finalizers) {\n try {\n execFinalizer(finalizer);\n } catch (err) {\n errors = errors ?? [];\n if (err instanceof UnsubscriptionError) {\n errors = [...errors, ...err.errors];\n } else {\n errors.push(err);\n }\n }\n }\n }\n\n if (errors) {\n throw new UnsubscriptionError(errors);\n }\n }\n }\n\n /**\n * Adds a finalizer to this subscription, so that finalization will be unsubscribed/called\n * when this subscription is unsubscribed. If this subscription is already {@link #closed},\n * because it has already been unsubscribed, then whatever finalizer is passed to it\n * will automatically be executed (unless the finalizer itself is also a closed subscription).\n *\n * Closed Subscriptions cannot be added as finalizers to any subscription. Adding a closed\n * subscription to a any subscription will result in no operation. (A noop).\n *\n * Adding a subscription to itself, or adding `null` or `undefined` will not perform any\n * operation at all. (A noop).\n *\n * `Subscription` instances that are added to this instance will automatically remove themselves\n * if they are unsubscribed. Functions and {@link Unsubscribable} objects that you wish to remove\n * will need to be removed manually with {@link #remove}\n *\n * @param teardown The finalization logic to add to this subscription.\n */\n add(teardown: TeardownLogic): void {\n // Only add the finalizer if it's not undefined\n // and don't add a subscription to itself.\n if (teardown && teardown !== this) {\n if (this.closed) {\n // If this subscription is already closed,\n // execute whatever finalizer is handed to it automatically.\n execFinalizer(teardown);\n } else {\n if (teardown instanceof Subscription) {\n // We don't add closed subscriptions, and we don't add the same subscription\n // twice. Subscription unsubscribe is idempotent.\n if (teardown.closed || teardown._hasParent(this)) {\n return;\n }\n teardown._addParent(this);\n }\n (this._finalizers = this._finalizers ?? []).push(teardown);\n }\n }\n }\n\n /**\n * Checks to see if a this subscription already has a particular parent.\n * This will signal that this subscription has already been added to the parent in question.\n * @param parent the parent to check for\n */\n private _hasParent(parent: Subscription) {\n const { _parentage } = this;\n return _parentage === parent || (Array.isArray(_parentage) && _parentage.includes(parent));\n }\n\n /**\n * Adds a parent to this subscription so it can be removed from the parent if it\n * unsubscribes on it's own.\n *\n * NOTE: THIS ASSUMES THAT {@link _hasParent} HAS ALREADY BEEN CHECKED.\n * @param parent The parent subscription to add\n */\n private _addParent(parent: Subscription) {\n const { _parentage } = this;\n this._parentage = Array.isArray(_parentage) ? (_parentage.push(parent), _parentage) : _parentage ? [_parentage, parent] : parent;\n }\n\n /**\n * Called on a child when it is removed via {@link #remove}.\n * @param parent The parent to remove\n */\n private _removeParent(parent: Subscription) {\n const { _parentage } = this;\n if (_parentage === parent) {\n this._parentage = null;\n } else if (Array.isArray(_parentage)) {\n arrRemove(_parentage, parent);\n }\n }\n\n /**\n * Removes a finalizer from this subscription that was previously added with the {@link #add} method.\n *\n * Note that `Subscription` instances, when unsubscribed, will automatically remove themselves\n * from every other `Subscription` they have been added to. This means that using the `remove` method\n * is not a common thing and should be used thoughtfully.\n *\n * If you add the same finalizer instance of a function or an unsubscribable object to a `Subscription` instance\n * more than once, you will need to call `remove` the same number of times to remove all instances.\n *\n * All finalizer instances are removed to free up memory upon unsubscription.\n *\n * @param teardown The finalizer to remove from this subscription\n */\n remove(teardown: Exclude): void {\n const { _finalizers } = this;\n _finalizers && arrRemove(_finalizers, teardown);\n\n if (teardown instanceof Subscription) {\n teardown._removeParent(this);\n }\n }\n}\n\nexport const EMPTY_SUBSCRIPTION = Subscription.EMPTY;\n\nexport function isSubscription(value: any): value is Subscription {\n return (\n value instanceof Subscription ||\n (value && 'closed' in value && isFunction(value.remove) && isFunction(value.add) && isFunction(value.unsubscribe))\n );\n}\n\nfunction execFinalizer(finalizer: Unsubscribable | (() => void)) {\n if (isFunction(finalizer)) {\n finalizer();\n } else {\n finalizer.unsubscribe();\n }\n}\n", "import { Subscriber } from './Subscriber';\nimport { ObservableNotification } from './types';\n\n/**\n * The {@link GlobalConfig} object for RxJS. It is used to configure things\n * like how to react on unhandled errors.\n */\nexport const config: GlobalConfig = {\n onUnhandledError: null,\n onStoppedNotification: null,\n Promise: undefined,\n useDeprecatedSynchronousErrorHandling: false,\n useDeprecatedNextContext: false,\n};\n\n/**\n * The global configuration object for RxJS, used to configure things\n * like how to react on unhandled errors. Accessible via {@link config}\n * object.\n */\nexport interface GlobalConfig {\n /**\n * A registration point for unhandled errors from RxJS. These are errors that\n * cannot were not handled by consuming code in the usual subscription path. For\n * example, if you have this configured, and you subscribe to an observable without\n * providing an error handler, errors from that subscription will end up here. This\n * will _always_ be called asynchronously on another job in the runtime. This is because\n * we do not want errors thrown in this user-configured handler to interfere with the\n * behavior of the library.\n */\n onUnhandledError: ((err: any) => void) | null;\n\n /**\n * A registration point for notifications that cannot be sent to subscribers because they\n * have completed, errored or have been explicitly unsubscribed. By default, next, complete\n * and error notifications sent to stopped subscribers are noops. However, sometimes callers\n * might want a different behavior. For example, with sources that attempt to report errors\n * to stopped subscribers, a caller can configure RxJS to throw an unhandled error instead.\n * This will _always_ be called asynchronously on another job in the runtime. This is because\n * we do not want errors thrown in this user-configured handler to interfere with the\n * behavior of the library.\n */\n onStoppedNotification: ((notification: ObservableNotification, subscriber: Subscriber) => void) | null;\n\n /**\n * The promise constructor used by default for {@link Observable#toPromise toPromise} and {@link Observable#forEach forEach}\n * methods.\n *\n * @deprecated As of version 8, RxJS will no longer support this sort of injection of a\n * Promise constructor. If you need a Promise implementation other than native promises,\n * please polyfill/patch Promise as you see appropriate. Will be removed in v8.\n */\n Promise?: PromiseConstructorLike;\n\n /**\n * If true, turns on synchronous error rethrowing, which is a deprecated behavior\n * in v6 and higher. This behavior enables bad patterns like wrapping a subscribe\n * call in a try/catch block. It also enables producer interference, a nasty bug\n * where a multicast can be broken for all observers by a downstream consumer with\n * an unhandled error. DO NOT USE THIS FLAG UNLESS IT'S NEEDED TO BUY TIME\n * FOR MIGRATION REASONS.\n *\n * @deprecated As of version 8, RxJS will no longer support synchronous throwing\n * of unhandled errors. All errors will be thrown on a separate call stack to prevent bad\n * behaviors described above. Will be removed in v8.\n */\n useDeprecatedSynchronousErrorHandling: boolean;\n\n /**\n * If true, enables an as-of-yet undocumented feature from v5: The ability to access\n * `unsubscribe()` via `this` context in `next` functions created in observers passed\n * to `subscribe`.\n *\n * This is being removed because the performance was severely problematic, and it could also cause\n * issues when types other than POJOs are passed to subscribe as subscribers, as they will likely have\n * their `this` context overwritten.\n *\n * @deprecated As of version 8, RxJS will no longer support altering the\n * context of next functions provided as part of an observer to Subscribe. Instead,\n * you will have access to a subscription or a signal or token that will allow you to do things like\n * unsubscribe and test closed status. Will be removed in v8.\n */\n useDeprecatedNextContext: boolean;\n}\n", "import type { TimerHandle } from './timerHandle';\ntype SetTimeoutFunction = (handler: () => void, timeout?: number, ...args: any[]) => TimerHandle;\ntype ClearTimeoutFunction = (handle: TimerHandle) => void;\n\ninterface TimeoutProvider {\n setTimeout: SetTimeoutFunction;\n clearTimeout: ClearTimeoutFunction;\n delegate:\n | {\n setTimeout: SetTimeoutFunction;\n clearTimeout: ClearTimeoutFunction;\n }\n | undefined;\n}\n\nexport const timeoutProvider: TimeoutProvider = {\n // When accessing the delegate, use the variable rather than `this` so that\n // the functions can be called without being bound to the provider.\n setTimeout(handler: () => void, timeout?: number, ...args) {\n const { delegate } = timeoutProvider;\n if (delegate?.setTimeout) {\n return delegate.setTimeout(handler, timeout, ...args);\n }\n return setTimeout(handler, timeout, ...args);\n },\n clearTimeout(handle) {\n const { delegate } = timeoutProvider;\n return (delegate?.clearTimeout || clearTimeout)(handle as any);\n },\n delegate: undefined,\n};\n", "import { config } from '../config';\nimport { timeoutProvider } from '../scheduler/timeoutProvider';\n\n/**\n * Handles an error on another job either with the user-configured {@link onUnhandledError},\n * or by throwing it on that new job so it can be picked up by `window.onerror`, `process.on('error')`, etc.\n *\n * This should be called whenever there is an error that is out-of-band with the subscription\n * or when an error hits a terminal boundary of the subscription and no error handler was provided.\n *\n * @param err the error to report\n */\nexport function reportUnhandledError(err: any) {\n timeoutProvider.setTimeout(() => {\n const { onUnhandledError } = config;\n if (onUnhandledError) {\n // Execute the user-configured error handler.\n onUnhandledError(err);\n } else {\n // Throw so it is picked up by the runtime's uncaught error mechanism.\n throw err;\n }\n });\n}\n", "/* tslint:disable:no-empty */\nexport function noop() { }\n", "import { CompleteNotification, NextNotification, ErrorNotification } from './types';\n\n/**\n * A completion object optimized for memory use and created to be the\n * same \"shape\" as other notifications in v8.\n * @internal\n */\nexport const COMPLETE_NOTIFICATION = (() => createNotification('C', undefined, undefined) as CompleteNotification)();\n\n/**\n * Internal use only. Creates an optimized error notification that is the same \"shape\"\n * as other notifications.\n * @internal\n */\nexport function errorNotification(error: any): ErrorNotification {\n return createNotification('E', undefined, error) as any;\n}\n\n/**\n * Internal use only. Creates an optimized next notification that is the same \"shape\"\n * as other notifications.\n * @internal\n */\nexport function nextNotification(value: T) {\n return createNotification('N', value, undefined) as NextNotification;\n}\n\n/**\n * Ensures that all notifications created internally have the same \"shape\" in v8.\n *\n * TODO: This is only exported to support a crazy legacy test in `groupBy`.\n * @internal\n */\nexport function createNotification(kind: 'N' | 'E' | 'C', value: any, error: any) {\n return {\n kind,\n value,\n error,\n };\n}\n", "import { config } from '../config';\n\nlet context: { errorThrown: boolean; error: any } | null = null;\n\n/**\n * Handles dealing with errors for super-gross mode. Creates a context, in which\n * any synchronously thrown errors will be passed to {@link captureError}. Which\n * will record the error such that it will be rethrown after the call back is complete.\n * TODO: Remove in v8\n * @param cb An immediately executed function.\n */\nexport function errorContext(cb: () => void) {\n if (config.useDeprecatedSynchronousErrorHandling) {\n const isRoot = !context;\n if (isRoot) {\n context = { errorThrown: false, error: null };\n }\n cb();\n if (isRoot) {\n const { errorThrown, error } = context!;\n context = null;\n if (errorThrown) {\n throw error;\n }\n }\n } else {\n // This is the general non-deprecated path for everyone that\n // isn't crazy enough to use super-gross mode (useDeprecatedSynchronousErrorHandling)\n cb();\n }\n}\n\n/**\n * Captures errors only in super-gross mode.\n * @param err the error to capture\n */\nexport function captureError(err: any) {\n if (config.useDeprecatedSynchronousErrorHandling && context) {\n context.errorThrown = true;\n context.error = err;\n }\n}\n", "import { isFunction } from './util/isFunction';\nimport { Observer, ObservableNotification } from './types';\nimport { isSubscription, Subscription } from './Subscription';\nimport { config } from './config';\nimport { reportUnhandledError } from './util/reportUnhandledError';\nimport { noop } from './util/noop';\nimport { nextNotification, errorNotification, COMPLETE_NOTIFICATION } from './NotificationFactories';\nimport { timeoutProvider } from './scheduler/timeoutProvider';\nimport { captureError } from './util/errorContext';\n\n/**\n * Implements the {@link Observer} interface and extends the\n * {@link Subscription} class. While the {@link Observer} is the public API for\n * consuming the values of an {@link Observable}, all Observers get converted to\n * a Subscriber, in order to provide Subscription-like capabilities such as\n * `unsubscribe`. Subscriber is a common type in RxJS, and crucial for\n * implementing operators, but it is rarely used as a public API.\n *\n * @class Subscriber\n */\nexport class Subscriber extends Subscription implements Observer {\n /**\n * A static factory for a Subscriber, given a (potentially partial) definition\n * of an Observer.\n * @param next The `next` callback of an Observer.\n * @param error The `error` callback of an\n * Observer.\n * @param complete The `complete` callback of an\n * Observer.\n * @return A Subscriber wrapping the (partially defined)\n * Observer represented by the given arguments.\n * @nocollapse\n * @deprecated Do not use. Will be removed in v8. There is no replacement for this\n * method, and there is no reason to be creating instances of `Subscriber` directly.\n * If you have a specific use case, please file an issue.\n */\n static create(next?: (x?: T) => void, error?: (e?: any) => void, complete?: () => void): Subscriber {\n return new SafeSubscriber(next, error, complete);\n }\n\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n protected isStopped: boolean = false;\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n protected destination: Subscriber | Observer; // this `any` is the escape hatch to erase extra type param (e.g. R)\n\n /**\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n * There is no reason to directly create an instance of Subscriber. This type is exported for typings reasons.\n */\n constructor(destination?: Subscriber | Observer) {\n super();\n if (destination) {\n this.destination = destination;\n // Automatically chain subscriptions together here.\n // if destination is a Subscription, then it is a Subscriber.\n if (isSubscription(destination)) {\n destination.add(this);\n }\n } else {\n this.destination = EMPTY_OBSERVER;\n }\n }\n\n /**\n * The {@link Observer} callback to receive notifications of type `next` from\n * the Observable, with a value. The Observable may call this method 0 or more\n * times.\n * @param {T} [value] The `next` value.\n * @return {void}\n */\n next(value?: T): void {\n if (this.isStopped) {\n handleStoppedNotification(nextNotification(value), this);\n } else {\n this._next(value!);\n }\n }\n\n /**\n * The {@link Observer} callback to receive notifications of type `error` from\n * the Observable, with an attached `Error`. Notifies the Observer that\n * the Observable has experienced an error condition.\n * @param {any} [err] The `error` exception.\n * @return {void}\n */\n error(err?: any): void {\n if (this.isStopped) {\n handleStoppedNotification(errorNotification(err), this);\n } else {\n this.isStopped = true;\n this._error(err);\n }\n }\n\n /**\n * The {@link Observer} callback to receive a valueless notification of type\n * `complete` from the Observable. Notifies the Observer that the Observable\n * has finished sending push-based notifications.\n * @return {void}\n */\n complete(): void {\n if (this.isStopped) {\n handleStoppedNotification(COMPLETE_NOTIFICATION, this);\n } else {\n this.isStopped = true;\n this._complete();\n }\n }\n\n unsubscribe(): void {\n if (!this.closed) {\n this.isStopped = true;\n super.unsubscribe();\n this.destination = null!;\n }\n }\n\n protected _next(value: T): void {\n this.destination.next(value);\n }\n\n protected _error(err: any): void {\n try {\n this.destination.error(err);\n } finally {\n this.unsubscribe();\n }\n }\n\n protected _complete(): void {\n try {\n this.destination.complete();\n } finally {\n this.unsubscribe();\n }\n }\n}\n\n/**\n * This bind is captured here because we want to be able to have\n * compatibility with monoid libraries that tend to use a method named\n * `bind`. In particular, a library called Monio requires this.\n */\nconst _bind = Function.prototype.bind;\n\nfunction bind any>(fn: Fn, thisArg: any): Fn {\n return _bind.call(fn, thisArg);\n}\n\n/**\n * Internal optimization only, DO NOT EXPOSE.\n * @internal\n */\nclass ConsumerObserver implements Observer {\n constructor(private partialObserver: Partial>) {}\n\n next(value: T): void {\n const { partialObserver } = this;\n if (partialObserver.next) {\n try {\n partialObserver.next(value);\n } catch (error) {\n handleUnhandledError(error);\n }\n }\n }\n\n error(err: any): void {\n const { partialObserver } = this;\n if (partialObserver.error) {\n try {\n partialObserver.error(err);\n } catch (error) {\n handleUnhandledError(error);\n }\n } else {\n handleUnhandledError(err);\n }\n }\n\n complete(): void {\n const { partialObserver } = this;\n if (partialObserver.complete) {\n try {\n partialObserver.complete();\n } catch (error) {\n handleUnhandledError(error);\n }\n }\n }\n}\n\nexport class SafeSubscriber extends Subscriber {\n constructor(\n observerOrNext?: Partial> | ((value: T) => void) | null,\n error?: ((e?: any) => void) | null,\n complete?: (() => void) | null\n ) {\n super();\n\n let partialObserver: Partial>;\n if (isFunction(observerOrNext) || !observerOrNext) {\n // The first argument is a function, not an observer. The next\n // two arguments *could* be observers, or they could be empty.\n partialObserver = {\n next: (observerOrNext ?? undefined) as (((value: T) => void) | undefined),\n error: error ?? undefined,\n complete: complete ?? undefined,\n };\n } else {\n // The first argument is a partial observer.\n let context: any;\n if (this && config.useDeprecatedNextContext) {\n // This is a deprecated path that made `this.unsubscribe()` available in\n // next handler functions passed to subscribe. This only exists behind a flag\n // now, as it is *very* slow.\n context = Object.create(observerOrNext);\n context.unsubscribe = () => this.unsubscribe();\n partialObserver = {\n next: observerOrNext.next && bind(observerOrNext.next, context),\n error: observerOrNext.error && bind(observerOrNext.error, context),\n complete: observerOrNext.complete && bind(observerOrNext.complete, context),\n };\n } else {\n // The \"normal\" path. Just use the partial observer directly.\n partialObserver = observerOrNext;\n }\n }\n\n // Wrap the partial observer to ensure it's a full observer, and\n // make sure proper error handling is accounted for.\n this.destination = new ConsumerObserver(partialObserver);\n }\n}\n\nfunction handleUnhandledError(error: any) {\n if (config.useDeprecatedSynchronousErrorHandling) {\n captureError(error);\n } else {\n // Ideal path, we report this as an unhandled error,\n // which is thrown on a new call stack.\n reportUnhandledError(error);\n }\n}\n\n/**\n * An error handler used when no error handler was supplied\n * to the SafeSubscriber -- meaning no error handler was supplied\n * do the `subscribe` call on our observable.\n * @param err The error to handle\n */\nfunction defaultErrorHandler(err: any) {\n throw err;\n}\n\n/**\n * A handler for notifications that cannot be sent to a stopped subscriber.\n * @param notification The notification being sent\n * @param subscriber The stopped subscriber\n */\nfunction handleStoppedNotification(notification: ObservableNotification, subscriber: Subscriber) {\n const { onStoppedNotification } = config;\n onStoppedNotification && timeoutProvider.setTimeout(() => onStoppedNotification(notification, subscriber));\n}\n\n/**\n * The observer used as a stub for subscriptions where the user did not\n * pass any arguments to `subscribe`. Comes with the default error handling\n * behavior.\n */\nexport const EMPTY_OBSERVER: Readonly> & { closed: true } = {\n closed: true,\n next: noop,\n error: defaultErrorHandler,\n complete: noop,\n};\n", "/**\n * Symbol.observable or a string \"@@observable\". Used for interop\n *\n * @deprecated We will no longer be exporting this symbol in upcoming versions of RxJS.\n * Instead polyfill and use Symbol.observable directly *or* use https://www.npmjs.com/package/symbol-observable\n */\nexport const observable: string | symbol = (() => (typeof Symbol === 'function' && Symbol.observable) || '@@observable')();\n", "/**\n * This function takes one parameter and just returns it. Simply put,\n * this is like `(x: T): T => x`.\n *\n * ## Examples\n *\n * This is useful in some cases when using things like `mergeMap`\n *\n * ```ts\n * import { interval, take, map, range, mergeMap, identity } from 'rxjs';\n *\n * const source$ = interval(1000).pipe(take(5));\n *\n * const result$ = source$.pipe(\n * map(i => range(i)),\n * mergeMap(identity) // same as mergeMap(x => x)\n * );\n *\n * result$.subscribe({\n * next: console.log\n * });\n * ```\n *\n * Or when you want to selectively apply an operator\n *\n * ```ts\n * import { interval, take, identity } from 'rxjs';\n *\n * const shouldLimit = () => Math.random() < 0.5;\n *\n * const source$ = interval(1000);\n *\n * const result$ = source$.pipe(shouldLimit() ? take(5) : identity);\n *\n * result$.subscribe({\n * next: console.log\n * });\n * ```\n *\n * @param x Any value that is returned by this function\n * @returns The value passed as the first parameter to this function\n */\nexport function identity(x: T): T {\n return x;\n}\n", "import { identity } from './identity';\nimport { UnaryFunction } from '../types';\n\nexport function pipe(): typeof identity;\nexport function pipe(fn1: UnaryFunction): UnaryFunction;\nexport function pipe(fn1: UnaryFunction, fn2: UnaryFunction): UnaryFunction;\nexport function pipe(fn1: UnaryFunction, fn2: UnaryFunction, fn3: UnaryFunction): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction,\n fn8: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction,\n fn8: UnaryFunction,\n fn9: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction,\n fn8: UnaryFunction,\n fn9: UnaryFunction,\n ...fns: UnaryFunction[]\n): UnaryFunction;\n\n/**\n * pipe() can be called on one or more functions, each of which can take one argument (\"UnaryFunction\")\n * and uses it to return a value.\n * It returns a function that takes one argument, passes it to the first UnaryFunction, and then\n * passes the result to the next one, passes that result to the next one, and so on. \n */\nexport function pipe(...fns: Array>): UnaryFunction {\n return pipeFromArray(fns);\n}\n\n/** @internal */\nexport function pipeFromArray(fns: Array>): UnaryFunction {\n if (fns.length === 0) {\n return identity as UnaryFunction;\n }\n\n if (fns.length === 1) {\n return fns[0];\n }\n\n return function piped(input: T): R {\n return fns.reduce((prev: any, fn: UnaryFunction) => fn(prev), input as any);\n };\n}\n", "import { Operator } from './Operator';\nimport { SafeSubscriber, Subscriber } from './Subscriber';\nimport { isSubscription, Subscription } from './Subscription';\nimport { TeardownLogic, OperatorFunction, Subscribable, Observer } from './types';\nimport { observable as Symbol_observable } from './symbol/observable';\nimport { pipeFromArray } from './util/pipe';\nimport { config } from './config';\nimport { isFunction } from './util/isFunction';\nimport { errorContext } from './util/errorContext';\n\n/**\n * A representation of any set of values over any amount of time. This is the most basic building block\n * of RxJS.\n *\n * @class Observable\n */\nexport class Observable implements Subscribable {\n /**\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n */\n source: Observable | undefined;\n\n /**\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n */\n operator: Operator | undefined;\n\n /**\n * @constructor\n * @param {Function} subscribe the function that is called when the Observable is\n * initially subscribed to. This function is given a Subscriber, to which new values\n * can be `next`ed, or an `error` method can be called to raise an error, or\n * `complete` can be called to notify of a successful completion.\n */\n constructor(subscribe?: (this: Observable, subscriber: Subscriber) => TeardownLogic) {\n if (subscribe) {\n this._subscribe = subscribe;\n }\n }\n\n // HACK: Since TypeScript inherits static properties too, we have to\n // fight against TypeScript here so Subject can have a different static create signature\n /**\n * Creates a new Observable by calling the Observable constructor\n * @owner Observable\n * @method create\n * @param {Function} subscribe? the subscriber function to be passed to the Observable constructor\n * @return {Observable} a new observable\n * @nocollapse\n * @deprecated Use `new Observable()` instead. Will be removed in v8.\n */\n static create: (...args: any[]) => any = (subscribe?: (subscriber: Subscriber) => TeardownLogic) => {\n return new Observable(subscribe);\n };\n\n /**\n * Creates a new Observable, with this Observable instance as the source, and the passed\n * operator defined as the new observable's operator.\n * @method lift\n * @param operator the operator defining the operation to take on the observable\n * @return a new observable with the Operator applied\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n * If you have implemented an operator using `lift`, it is recommended that you create an\n * operator by simply returning `new Observable()` directly. See \"Creating new operators from\n * scratch\" section here: https://rxjs.dev/guide/operators\n */\n lift(operator?: Operator): Observable {\n const observable = new Observable();\n observable.source = this;\n observable.operator = operator;\n return observable;\n }\n\n subscribe(observerOrNext?: Partial> | ((value: T) => void)): Subscription;\n /** @deprecated Instead of passing separate callback arguments, use an observer argument. Signatures taking separate callback arguments will be removed in v8. Details: https://rxjs.dev/deprecations/subscribe-arguments */\n subscribe(next?: ((value: T) => void) | null, error?: ((error: any) => void) | null, complete?: (() => void) | null): Subscription;\n /**\n * Invokes an execution of an Observable and registers Observer handlers for notifications it will emit.\n *\n * Use it when you have all these Observables, but still nothing is happening.\n *\n * `subscribe` is not a regular operator, but a method that calls Observable's internal `subscribe` function. It\n * might be for example a function that you passed to Observable's constructor, but most of the time it is\n * a library implementation, which defines what will be emitted by an Observable, and when it be will emitted. This means\n * that calling `subscribe` is actually the moment when Observable starts its work, not when it is created, as it is often\n * the thought.\n *\n * Apart from starting the execution of an Observable, this method allows you to listen for values\n * that an Observable emits, as well as for when it completes or errors. You can achieve this in two\n * of the following ways.\n *\n * The first way is creating an object that implements {@link Observer} interface. It should have methods\n * defined by that interface, but note that it should be just a regular JavaScript object, which you can create\n * yourself in any way you want (ES6 class, classic function constructor, object literal etc.). In particular, do\n * not attempt to use any RxJS implementation details to create Observers - you don't need them. Remember also\n * that your object does not have to implement all methods. If you find yourself creating a method that doesn't\n * do anything, you can simply omit it. Note however, if the `error` method is not provided and an error happens,\n * it will be thrown asynchronously. Errors thrown asynchronously cannot be caught using `try`/`catch`. Instead,\n * use the {@link onUnhandledError} configuration option or use a runtime handler (like `window.onerror` or\n * `process.on('error)`) to be notified of unhandled errors. Because of this, it's recommended that you provide\n * an `error` method to avoid missing thrown errors.\n *\n * The second way is to give up on Observer object altogether and simply provide callback functions in place of its methods.\n * This means you can provide three functions as arguments to `subscribe`, where the first function is equivalent\n * of a `next` method, the second of an `error` method and the third of a `complete` method. Just as in case of an Observer,\n * if you do not need to listen for something, you can omit a function by passing `undefined` or `null`,\n * since `subscribe` recognizes these functions by where they were placed in function call. When it comes\n * to the `error` function, as with an Observer, if not provided, errors emitted by an Observable will be thrown asynchronously.\n *\n * You can, however, subscribe with no parameters at all. This may be the case where you're not interested in terminal events\n * and you also handled emissions internally by using operators (e.g. using `tap`).\n *\n * Whichever style of calling `subscribe` you use, in both cases it returns a Subscription object.\n * This object allows you to call `unsubscribe` on it, which in turn will stop the work that an Observable does and will clean\n * up all resources that an Observable used. Note that cancelling a subscription will not call `complete` callback\n * provided to `subscribe` function, which is reserved for a regular completion signal that comes from an Observable.\n *\n * Remember that callbacks provided to `subscribe` are not guaranteed to be called asynchronously.\n * It is an Observable itself that decides when these functions will be called. For example {@link of}\n * by default emits all its values synchronously. Always check documentation for how given Observable\n * will behave when subscribed and if its default behavior can be modified with a `scheduler`.\n *\n * #### Examples\n *\n * Subscribe with an {@link guide/observer Observer}\n *\n * ```ts\n * import { of } from 'rxjs';\n *\n * const sumObserver = {\n * sum: 0,\n * next(value) {\n * console.log('Adding: ' + value);\n * this.sum = this.sum + value;\n * },\n * error() {\n * // We actually could just remove this method,\n * // since we do not really care about errors right now.\n * },\n * complete() {\n * console.log('Sum equals: ' + this.sum);\n * }\n * };\n *\n * of(1, 2, 3) // Synchronously emits 1, 2, 3 and then completes.\n * .subscribe(sumObserver);\n *\n * // Logs:\n * // 'Adding: 1'\n * // 'Adding: 2'\n * // 'Adding: 3'\n * // 'Sum equals: 6'\n * ```\n *\n * Subscribe with functions ({@link deprecations/subscribe-arguments deprecated})\n *\n * ```ts\n * import { of } from 'rxjs'\n *\n * let sum = 0;\n *\n * of(1, 2, 3).subscribe(\n * value => {\n * console.log('Adding: ' + value);\n * sum = sum + value;\n * },\n * undefined,\n * () => console.log('Sum equals: ' + sum)\n * );\n *\n * // Logs:\n * // 'Adding: 1'\n * // 'Adding: 2'\n * // 'Adding: 3'\n * // 'Sum equals: 6'\n * ```\n *\n * Cancel a subscription\n *\n * ```ts\n * import { interval } from 'rxjs';\n *\n * const subscription = interval(1000).subscribe({\n * next(num) {\n * console.log(num)\n * },\n * complete() {\n * // Will not be called, even when cancelling subscription.\n * console.log('completed!');\n * }\n * });\n *\n * setTimeout(() => {\n * subscription.unsubscribe();\n * console.log('unsubscribed!');\n * }, 2500);\n *\n * // Logs:\n * // 0 after 1s\n * // 1 after 2s\n * // 'unsubscribed!' after 2.5s\n * ```\n *\n * @param {Observer|Function} observerOrNext (optional) Either an observer with methods to be called,\n * or the first of three possible handlers, which is the handler for each value emitted from the subscribed\n * Observable.\n * @param {Function} error (optional) A handler for a terminal event resulting from an error. If no error handler is provided,\n * the error will be thrown asynchronously as unhandled.\n * @param {Function} complete (optional) A handler for a terminal event resulting from successful completion.\n * @return {Subscription} a subscription reference to the registered handlers\n * @method subscribe\n */\n subscribe(\n observerOrNext?: Partial> | ((value: T) => void) | null,\n error?: ((error: any) => void) | null,\n complete?: (() => void) | null\n ): Subscription {\n const subscriber = isSubscriber(observerOrNext) ? observerOrNext : new SafeSubscriber(observerOrNext, error, complete);\n\n errorContext(() => {\n const { operator, source } = this;\n subscriber.add(\n operator\n ? // We're dealing with a subscription in the\n // operator chain to one of our lifted operators.\n operator.call(subscriber, source)\n : source\n ? // If `source` has a value, but `operator` does not, something that\n // had intimate knowledge of our API, like our `Subject`, must have\n // set it. We're going to just call `_subscribe` directly.\n this._subscribe(subscriber)\n : // In all other cases, we're likely wrapping a user-provided initializer\n // function, so we need to catch errors and handle them appropriately.\n this._trySubscribe(subscriber)\n );\n });\n\n return subscriber;\n }\n\n /** @internal */\n protected _trySubscribe(sink: Subscriber): TeardownLogic {\n try {\n return this._subscribe(sink);\n } catch (err) {\n // We don't need to return anything in this case,\n // because it's just going to try to `add()` to a subscription\n // above.\n sink.error(err);\n }\n }\n\n /**\n * Used as a NON-CANCELLABLE means of subscribing to an observable, for use with\n * APIs that expect promises, like `async/await`. You cannot unsubscribe from this.\n *\n * **WARNING**: Only use this with observables you *know* will complete. If the source\n * observable does not complete, you will end up with a promise that is hung up, and\n * potentially all of the state of an async function hanging out in memory. To avoid\n * this situation, look into adding something like {@link timeout}, {@link take},\n * {@link takeWhile}, or {@link takeUntil} amongst others.\n *\n * #### Example\n *\n * ```ts\n * import { interval, take } from 'rxjs';\n *\n * const source$ = interval(1000).pipe(take(4));\n *\n * async function getTotal() {\n * let total = 0;\n *\n * await source$.forEach(value => {\n * total += value;\n * console.log('observable -> ' + value);\n * });\n *\n * return total;\n * }\n *\n * getTotal().then(\n * total => console.log('Total: ' + total)\n * );\n *\n * // Expected:\n * // 'observable -> 0'\n * // 'observable -> 1'\n * // 'observable -> 2'\n * // 'observable -> 3'\n * // 'Total: 6'\n * ```\n *\n * @param next a handler for each value emitted by the observable\n * @return a promise that either resolves on observable completion or\n * rejects with the handled error\n */\n forEach(next: (value: T) => void): Promise;\n\n /**\n * @param next a handler for each value emitted by the observable\n * @param promiseCtor a constructor function used to instantiate the Promise\n * @return a promise that either resolves on observable completion or\n * rejects with the handled error\n * @deprecated Passing a Promise constructor will no longer be available\n * in upcoming versions of RxJS. This is because it adds weight to the library, for very\n * little benefit. If you need this functionality, it is recommended that you either\n * polyfill Promise, or you create an adapter to convert the returned native promise\n * to whatever promise implementation you wanted. Will be removed in v8.\n */\n forEach(next: (value: T) => void, promiseCtor: PromiseConstructorLike): Promise;\n\n forEach(next: (value: T) => void, promiseCtor?: PromiseConstructorLike): Promise {\n promiseCtor = getPromiseCtor(promiseCtor);\n\n return new promiseCtor((resolve, reject) => {\n const subscriber = new SafeSubscriber({\n next: (value) => {\n try {\n next(value);\n } catch (err) {\n reject(err);\n subscriber.unsubscribe();\n }\n },\n error: reject,\n complete: resolve,\n });\n this.subscribe(subscriber);\n }) as Promise;\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): TeardownLogic {\n return this.source?.subscribe(subscriber);\n }\n\n /**\n * An interop point defined by the es7-observable spec https://github.com/zenparsing/es-observable\n * @method Symbol.observable\n * @return {Observable} this instance of the observable\n */\n [Symbol_observable]() {\n return this;\n }\n\n /* tslint:disable:max-line-length */\n pipe(): Observable;\n pipe(op1: OperatorFunction): Observable;\n pipe(op1: OperatorFunction, op2: OperatorFunction): Observable;\n pipe(op1: OperatorFunction, op2: OperatorFunction, op3: OperatorFunction): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction,\n op8: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction,\n op8: OperatorFunction,\n op9: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction,\n op8: OperatorFunction,\n op9: OperatorFunction,\n ...operations: OperatorFunction[]\n ): Observable;\n /* tslint:enable:max-line-length */\n\n /**\n * Used to stitch together functional operators into a chain.\n * @method pipe\n * @return {Observable} the Observable result of all of the operators having\n * been called in the order they were passed in.\n *\n * ## Example\n *\n * ```ts\n * import { interval, filter, map, scan } from 'rxjs';\n *\n * interval(1000)\n * .pipe(\n * filter(x => x % 2 === 0),\n * map(x => x + x),\n * scan((acc, x) => acc + x)\n * )\n * .subscribe(x => console.log(x));\n * ```\n */\n pipe(...operations: OperatorFunction[]): Observable {\n return pipeFromArray(operations)(this);\n }\n\n /* tslint:disable:max-line-length */\n /** @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise */\n toPromise(): Promise;\n /** @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise */\n toPromise(PromiseCtor: typeof Promise): Promise;\n /** @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise */\n toPromise(PromiseCtor: PromiseConstructorLike): Promise;\n /* tslint:enable:max-line-length */\n\n /**\n * Subscribe to this Observable and get a Promise resolving on\n * `complete` with the last emission (if any).\n *\n * **WARNING**: Only use this with observables you *know* will complete. If the source\n * observable does not complete, you will end up with a promise that is hung up, and\n * potentially all of the state of an async function hanging out in memory. To avoid\n * this situation, look into adding something like {@link timeout}, {@link take},\n * {@link takeWhile}, or {@link takeUntil} amongst others.\n *\n * @method toPromise\n * @param [promiseCtor] a constructor function used to instantiate\n * the Promise\n * @return A Promise that resolves with the last value emit, or\n * rejects on an error. If there were no emissions, Promise\n * resolves with undefined.\n * @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise\n */\n toPromise(promiseCtor?: PromiseConstructorLike): Promise {\n promiseCtor = getPromiseCtor(promiseCtor);\n\n return new promiseCtor((resolve, reject) => {\n let value: T | undefined;\n this.subscribe(\n (x: T) => (value = x),\n (err: any) => reject(err),\n () => resolve(value)\n );\n }) as Promise;\n }\n}\n\n/**\n * Decides between a passed promise constructor from consuming code,\n * A default configured promise constructor, and the native promise\n * constructor and returns it. If nothing can be found, it will throw\n * an error.\n * @param promiseCtor The optional promise constructor to passed by consuming code\n */\nfunction getPromiseCtor(promiseCtor: PromiseConstructorLike | undefined) {\n return promiseCtor ?? config.Promise ?? Promise;\n}\n\nfunction isObserver(value: any): value is Observer {\n return value && isFunction(value.next) && isFunction(value.error) && isFunction(value.complete);\n}\n\nfunction isSubscriber(value: any): value is Subscriber {\n return (value && value instanceof Subscriber) || (isObserver(value) && isSubscription(value));\n}\n", "import { Observable } from '../Observable';\nimport { Subscriber } from '../Subscriber';\nimport { OperatorFunction } from '../types';\nimport { isFunction } from './isFunction';\n\n/**\n * Used to determine if an object is an Observable with a lift function.\n */\nexport function hasLift(source: any): source is { lift: InstanceType['lift'] } {\n return isFunction(source?.lift);\n}\n\n/**\n * Creates an `OperatorFunction`. Used to define operators throughout the library in a concise way.\n * @param init The logic to connect the liftedSource to the subscriber at the moment of subscription.\n */\nexport function operate(\n init: (liftedSource: Observable, subscriber: Subscriber) => (() => void) | void\n): OperatorFunction {\n return (source: Observable) => {\n if (hasLift(source)) {\n return source.lift(function (this: Subscriber, liftedSource: Observable) {\n try {\n return init(liftedSource, this);\n } catch (err) {\n this.error(err);\n }\n });\n }\n throw new TypeError('Unable to lift unknown Observable type');\n };\n}\n", "import { Subscriber } from '../Subscriber';\n\n/**\n * Creates an instance of an `OperatorSubscriber`.\n * @param destination The downstream subscriber.\n * @param onNext Handles next values, only called if this subscriber is not stopped or closed. Any\n * error that occurs in this function is caught and sent to the `error` method of this subscriber.\n * @param onError Handles errors from the subscription, any errors that occur in this handler are caught\n * and send to the `destination` error handler.\n * @param onComplete Handles completion notification from the subscription. Any errors that occur in\n * this handler are sent to the `destination` error handler.\n * @param onFinalize Additional teardown logic here. This will only be called on teardown if the\n * subscriber itself is not already closed. This is called after all other teardown logic is executed.\n */\nexport function createOperatorSubscriber(\n destination: Subscriber,\n onNext?: (value: T) => void,\n onComplete?: () => void,\n onError?: (err: any) => void,\n onFinalize?: () => void\n): Subscriber {\n return new OperatorSubscriber(destination, onNext, onComplete, onError, onFinalize);\n}\n\n/**\n * A generic helper for allowing operators to be created with a Subscriber and\n * use closures to capture necessary state from the operator function itself.\n */\nexport class OperatorSubscriber extends Subscriber {\n /**\n * Creates an instance of an `OperatorSubscriber`.\n * @param destination The downstream subscriber.\n * @param onNext Handles next values, only called if this subscriber is not stopped or closed. Any\n * error that occurs in this function is caught and sent to the `error` method of this subscriber.\n * @param onError Handles errors from the subscription, any errors that occur in this handler are caught\n * and send to the `destination` error handler.\n * @param onComplete Handles completion notification from the subscription. Any errors that occur in\n * this handler are sent to the `destination` error handler.\n * @param onFinalize Additional finalization logic here. This will only be called on finalization if the\n * subscriber itself is not already closed. This is called after all other finalization logic is executed.\n * @param shouldUnsubscribe An optional check to see if an unsubscribe call should truly unsubscribe.\n * NOTE: This currently **ONLY** exists to support the strange behavior of {@link groupBy}, where unsubscription\n * to the resulting observable does not actually disconnect from the source if there are active subscriptions\n * to any grouped observable. (DO NOT EXPOSE OR USE EXTERNALLY!!!)\n */\n constructor(\n destination: Subscriber,\n onNext?: (value: T) => void,\n onComplete?: () => void,\n onError?: (err: any) => void,\n private onFinalize?: () => void,\n private shouldUnsubscribe?: () => boolean\n ) {\n // It's important - for performance reasons - that all of this class's\n // members are initialized and that they are always initialized in the same\n // order. This will ensure that all OperatorSubscriber instances have the\n // same hidden class in V8. This, in turn, will help keep the number of\n // hidden classes involved in property accesses within the base class as\n // low as possible. If the number of hidden classes involved exceeds four,\n // the property accesses will become megamorphic and performance penalties\n // will be incurred - i.e. inline caches won't be used.\n //\n // The reasons for ensuring all instances have the same hidden class are\n // further discussed in this blog post from Benedikt Meurer:\n // https://benediktmeurer.de/2018/03/23/impact-of-polymorphism-on-component-based-frameworks-like-react/\n super(destination);\n this._next = onNext\n ? function (this: OperatorSubscriber, value: T) {\n try {\n onNext(value);\n } catch (err) {\n destination.error(err);\n }\n }\n : super._next;\n this._error = onError\n ? function (this: OperatorSubscriber, err: any) {\n try {\n onError(err);\n } catch (err) {\n // Send any errors that occur down stream.\n destination.error(err);\n } finally {\n // Ensure finalization.\n this.unsubscribe();\n }\n }\n : super._error;\n this._complete = onComplete\n ? function (this: OperatorSubscriber) {\n try {\n onComplete();\n } catch (err) {\n // Send any errors that occur down stream.\n destination.error(err);\n } finally {\n // Ensure finalization.\n this.unsubscribe();\n }\n }\n : super._complete;\n }\n\n unsubscribe() {\n if (!this.shouldUnsubscribe || this.shouldUnsubscribe()) {\n const { closed } = this;\n super.unsubscribe();\n // Execute additional teardown if we have any and we didn't already do so.\n !closed && this.onFinalize?.();\n }\n }\n}\n", "import { Subscription } from '../Subscription';\n\ninterface AnimationFrameProvider {\n schedule(callback: FrameRequestCallback): Subscription;\n requestAnimationFrame: typeof requestAnimationFrame;\n cancelAnimationFrame: typeof cancelAnimationFrame;\n delegate:\n | {\n requestAnimationFrame: typeof requestAnimationFrame;\n cancelAnimationFrame: typeof cancelAnimationFrame;\n }\n | undefined;\n}\n\nexport const animationFrameProvider: AnimationFrameProvider = {\n // When accessing the delegate, use the variable rather than `this` so that\n // the functions can be called without being bound to the provider.\n schedule(callback) {\n let request = requestAnimationFrame;\n let cancel: typeof cancelAnimationFrame | undefined = cancelAnimationFrame;\n const { delegate } = animationFrameProvider;\n if (delegate) {\n request = delegate.requestAnimationFrame;\n cancel = delegate.cancelAnimationFrame;\n }\n const handle = request((timestamp) => {\n // Clear the cancel function. The request has been fulfilled, so\n // attempting to cancel the request upon unsubscription would be\n // pointless.\n cancel = undefined;\n callback(timestamp);\n });\n return new Subscription(() => cancel?.(handle));\n },\n requestAnimationFrame(...args) {\n const { delegate } = animationFrameProvider;\n return (delegate?.requestAnimationFrame || requestAnimationFrame)(...args);\n },\n cancelAnimationFrame(...args) {\n const { delegate } = animationFrameProvider;\n return (delegate?.cancelAnimationFrame || cancelAnimationFrame)(...args);\n },\n delegate: undefined,\n};\n", "import { createErrorClass } from './createErrorClass';\n\nexport interface ObjectUnsubscribedError extends Error {}\n\nexport interface ObjectUnsubscribedErrorCtor {\n /**\n * @deprecated Internal implementation detail. Do not construct error instances.\n * Cannot be tagged as internal: https://github.com/ReactiveX/rxjs/issues/6269\n */\n new (): ObjectUnsubscribedError;\n}\n\n/**\n * An error thrown when an action is invalid because the object has been\n * unsubscribed.\n *\n * @see {@link Subject}\n * @see {@link BehaviorSubject}\n *\n * @class ObjectUnsubscribedError\n */\nexport const ObjectUnsubscribedError: ObjectUnsubscribedErrorCtor = createErrorClass(\n (_super) =>\n function ObjectUnsubscribedErrorImpl(this: any) {\n _super(this);\n this.name = 'ObjectUnsubscribedError';\n this.message = 'object unsubscribed';\n }\n);\n", "import { Operator } from './Operator';\nimport { Observable } from './Observable';\nimport { Subscriber } from './Subscriber';\nimport { Subscription, EMPTY_SUBSCRIPTION } from './Subscription';\nimport { Observer, SubscriptionLike, TeardownLogic } from './types';\nimport { ObjectUnsubscribedError } from './util/ObjectUnsubscribedError';\nimport { arrRemove } from './util/arrRemove';\nimport { errorContext } from './util/errorContext';\n\n/**\n * A Subject is a special type of Observable that allows values to be\n * multicasted to many Observers. Subjects are like EventEmitters.\n *\n * Every Subject is an Observable and an Observer. You can subscribe to a\n * Subject, and you can call next to feed values as well as error and complete.\n */\nexport class Subject extends Observable implements SubscriptionLike {\n closed = false;\n\n private currentObservers: Observer[] | null = null;\n\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n observers: Observer[] = [];\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n isStopped = false;\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n hasError = false;\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n thrownError: any = null;\n\n /**\n * Creates a \"subject\" by basically gluing an observer to an observable.\n *\n * @nocollapse\n * @deprecated Recommended you do not use. Will be removed at some point in the future. Plans for replacement still under discussion.\n */\n static create: (...args: any[]) => any = (destination: Observer, source: Observable): AnonymousSubject => {\n return new AnonymousSubject(destination, source);\n };\n\n constructor() {\n // NOTE: This must be here to obscure Observable's constructor.\n super();\n }\n\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n lift(operator: Operator): Observable {\n const subject = new AnonymousSubject(this, this);\n subject.operator = operator as any;\n return subject as any;\n }\n\n /** @internal */\n protected _throwIfClosed() {\n if (this.closed) {\n throw new ObjectUnsubscribedError();\n }\n }\n\n next(value: T) {\n errorContext(() => {\n this._throwIfClosed();\n if (!this.isStopped) {\n if (!this.currentObservers) {\n this.currentObservers = Array.from(this.observers);\n }\n for (const observer of this.currentObservers) {\n observer.next(value);\n }\n }\n });\n }\n\n error(err: any) {\n errorContext(() => {\n this._throwIfClosed();\n if (!this.isStopped) {\n this.hasError = this.isStopped = true;\n this.thrownError = err;\n const { observers } = this;\n while (observers.length) {\n observers.shift()!.error(err);\n }\n }\n });\n }\n\n complete() {\n errorContext(() => {\n this._throwIfClosed();\n if (!this.isStopped) {\n this.isStopped = true;\n const { observers } = this;\n while (observers.length) {\n observers.shift()!.complete();\n }\n }\n });\n }\n\n unsubscribe() {\n this.isStopped = this.closed = true;\n this.observers = this.currentObservers = null!;\n }\n\n get observed() {\n return this.observers?.length > 0;\n }\n\n /** @internal */\n protected _trySubscribe(subscriber: Subscriber): TeardownLogic {\n this._throwIfClosed();\n return super._trySubscribe(subscriber);\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): Subscription {\n this._throwIfClosed();\n this._checkFinalizedStatuses(subscriber);\n return this._innerSubscribe(subscriber);\n }\n\n /** @internal */\n protected _innerSubscribe(subscriber: Subscriber) {\n const { hasError, isStopped, observers } = this;\n if (hasError || isStopped) {\n return EMPTY_SUBSCRIPTION;\n }\n this.currentObservers = null;\n observers.push(subscriber);\n return new Subscription(() => {\n this.currentObservers = null;\n arrRemove(observers, subscriber);\n });\n }\n\n /** @internal */\n protected _checkFinalizedStatuses(subscriber: Subscriber) {\n const { hasError, thrownError, isStopped } = this;\n if (hasError) {\n subscriber.error(thrownError);\n } else if (isStopped) {\n subscriber.complete();\n }\n }\n\n /**\n * Creates a new Observable with this Subject as the source. You can do this\n * to create custom Observer-side logic of the Subject and conceal it from\n * code that uses the Observable.\n * @return {Observable} Observable that the Subject casts to\n */\n asObservable(): Observable {\n const observable: any = new Observable();\n observable.source = this;\n return observable;\n }\n}\n\n/**\n * @class AnonymousSubject\n */\nexport class AnonymousSubject extends Subject {\n constructor(\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n public destination?: Observer,\n source?: Observable\n ) {\n super();\n this.source = source;\n }\n\n next(value: T) {\n this.destination?.next?.(value);\n }\n\n error(err: any) {\n this.destination?.error?.(err);\n }\n\n complete() {\n this.destination?.complete?.();\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): Subscription {\n return this.source?.subscribe(subscriber) ?? EMPTY_SUBSCRIPTION;\n }\n}\n", "import { TimestampProvider } from '../types';\n\ninterface DateTimestampProvider extends TimestampProvider {\n delegate: TimestampProvider | undefined;\n}\n\nexport const dateTimestampProvider: DateTimestampProvider = {\n now() {\n // Use the variable rather than `this` so that the function can be called\n // without being bound to the provider.\n return (dateTimestampProvider.delegate || Date).now();\n },\n delegate: undefined,\n};\n", "import { Subject } from './Subject';\nimport { TimestampProvider } from './types';\nimport { Subscriber } from './Subscriber';\nimport { Subscription } from './Subscription';\nimport { dateTimestampProvider } from './scheduler/dateTimestampProvider';\n\n/**\n * A variant of {@link Subject} that \"replays\" old values to new subscribers by emitting them when they first subscribe.\n *\n * `ReplaySubject` has an internal buffer that will store a specified number of values that it has observed. Like `Subject`,\n * `ReplaySubject` \"observes\" values by having them passed to its `next` method. When it observes a value, it will store that\n * value for a time determined by the configuration of the `ReplaySubject`, as passed to its constructor.\n *\n * When a new subscriber subscribes to the `ReplaySubject` instance, it will synchronously emit all values in its buffer in\n * a First-In-First-Out (FIFO) manner. The `ReplaySubject` will also complete, if it has observed completion; and it will\n * error if it has observed an error.\n *\n * There are two main configuration items to be concerned with:\n *\n * 1. `bufferSize` - This will determine how many items are stored in the buffer, defaults to infinite.\n * 2. `windowTime` - The amount of time to hold a value in the buffer before removing it from the buffer.\n *\n * Both configurations may exist simultaneously. So if you would like to buffer a maximum of 3 values, as long as the values\n * are less than 2 seconds old, you could do so with a `new ReplaySubject(3, 2000)`.\n *\n * ### Differences with BehaviorSubject\n *\n * `BehaviorSubject` is similar to `new ReplaySubject(1)`, with a couple of exceptions:\n *\n * 1. `BehaviorSubject` comes \"primed\" with a single value upon construction.\n * 2. `ReplaySubject` will replay values, even after observing an error, where `BehaviorSubject` will not.\n *\n * @see {@link Subject}\n * @see {@link BehaviorSubject}\n * @see {@link shareReplay}\n */\nexport class ReplaySubject extends Subject {\n private _buffer: (T | number)[] = [];\n private _infiniteTimeWindow = true;\n\n /**\n * @param bufferSize The size of the buffer to replay on subscription\n * @param windowTime The amount of time the buffered items will stay buffered\n * @param timestampProvider An object with a `now()` method that provides the current timestamp. This is used to\n * calculate the amount of time something has been buffered.\n */\n constructor(\n private _bufferSize = Infinity,\n private _windowTime = Infinity,\n private _timestampProvider: TimestampProvider = dateTimestampProvider\n ) {\n super();\n this._infiniteTimeWindow = _windowTime === Infinity;\n this._bufferSize = Math.max(1, _bufferSize);\n this._windowTime = Math.max(1, _windowTime);\n }\n\n next(value: T): void {\n const { isStopped, _buffer, _infiniteTimeWindow, _timestampProvider, _windowTime } = this;\n if (!isStopped) {\n _buffer.push(value);\n !_infiniteTimeWindow && _buffer.push(_timestampProvider.now() + _windowTime);\n }\n this._trimBuffer();\n super.next(value);\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): Subscription {\n this._throwIfClosed();\n this._trimBuffer();\n\n const subscription = this._innerSubscribe(subscriber);\n\n const { _infiniteTimeWindow, _buffer } = this;\n // We use a copy here, so reentrant code does not mutate our array while we're\n // emitting it to a new subscriber.\n const copy = _buffer.slice();\n for (let i = 0; i < copy.length && !subscriber.closed; i += _infiniteTimeWindow ? 1 : 2) {\n subscriber.next(copy[i] as T);\n }\n\n this._checkFinalizedStatuses(subscriber);\n\n return subscription;\n }\n\n private _trimBuffer() {\n const { _bufferSize, _timestampProvider, _buffer, _infiniteTimeWindow } = this;\n // If we don't have an infinite buffer size, and we're over the length,\n // use splice to truncate the old buffer values off. Note that we have to\n // double the size for instances where we're not using an infinite time window\n // because we're storing the values and the timestamps in the same array.\n const adjustedBufferSize = (_infiniteTimeWindow ? 1 : 2) * _bufferSize;\n _bufferSize < Infinity && adjustedBufferSize < _buffer.length && _buffer.splice(0, _buffer.length - adjustedBufferSize);\n\n // Now, if we're not in an infinite time window, remove all values where the time is\n // older than what is allowed.\n if (!_infiniteTimeWindow) {\n const now = _timestampProvider.now();\n let last = 0;\n // Search the array for the first timestamp that isn't expired and\n // truncate the buffer up to that point.\n for (let i = 1; i < _buffer.length && (_buffer[i] as number) <= now; i += 2) {\n last = i;\n }\n last && _buffer.splice(0, last + 1);\n }\n }\n}\n", "import { Scheduler } from '../Scheduler';\nimport { Subscription } from '../Subscription';\nimport { SchedulerAction } from '../types';\n\n/**\n * A unit of work to be executed in a `scheduler`. An action is typically\n * created from within a {@link SchedulerLike} and an RxJS user does not need to concern\n * themselves about creating and manipulating an Action.\n *\n * ```ts\n * class Action extends Subscription {\n * new (scheduler: Scheduler, work: (state?: T) => void);\n * schedule(state?: T, delay: number = 0): Subscription;\n * }\n * ```\n *\n * @class Action\n */\nexport class Action extends Subscription {\n constructor(scheduler: Scheduler, work: (this: SchedulerAction, state?: T) => void) {\n super();\n }\n /**\n * Schedules this action on its parent {@link SchedulerLike} for execution. May be passed\n * some context object, `state`. May happen at some point in the future,\n * according to the `delay` parameter, if specified.\n * @param {T} [state] Some contextual data that the `work` function uses when\n * called by the Scheduler.\n * @param {number} [delay] Time to wait before executing the work, where the\n * time unit is implicit and defined by the Scheduler.\n * @return {void}\n */\n public schedule(state?: T, delay: number = 0): Subscription {\n return this;\n }\n}\n", "import type { TimerHandle } from './timerHandle';\ntype SetIntervalFunction = (handler: () => void, timeout?: number, ...args: any[]) => TimerHandle;\ntype ClearIntervalFunction = (handle: TimerHandle) => void;\n\ninterface IntervalProvider {\n setInterval: SetIntervalFunction;\n clearInterval: ClearIntervalFunction;\n delegate:\n | {\n setInterval: SetIntervalFunction;\n clearInterval: ClearIntervalFunction;\n }\n | undefined;\n}\n\nexport const intervalProvider: IntervalProvider = {\n // When accessing the delegate, use the variable rather than `this` so that\n // the functions can be called without being bound to the provider.\n setInterval(handler: () => void, timeout?: number, ...args) {\n const { delegate } = intervalProvider;\n if (delegate?.setInterval) {\n return delegate.setInterval(handler, timeout, ...args);\n }\n return setInterval(handler, timeout, ...args);\n },\n clearInterval(handle) {\n const { delegate } = intervalProvider;\n return (delegate?.clearInterval || clearInterval)(handle as any);\n },\n delegate: undefined,\n};\n", "import { Action } from './Action';\nimport { SchedulerAction } from '../types';\nimport { Subscription } from '../Subscription';\nimport { AsyncScheduler } from './AsyncScheduler';\nimport { intervalProvider } from './intervalProvider';\nimport { arrRemove } from '../util/arrRemove';\nimport { TimerHandle } from './timerHandle';\n\nexport class AsyncAction extends Action {\n public id: TimerHandle | undefined;\n public state?: T;\n // @ts-ignore: Property has no initializer and is not definitely assigned\n public delay: number;\n protected pending: boolean = false;\n\n constructor(protected scheduler: AsyncScheduler, protected work: (this: SchedulerAction, state?: T) => void) {\n super(scheduler, work);\n }\n\n public schedule(state?: T, delay: number = 0): Subscription {\n if (this.closed) {\n return this;\n }\n\n // Always replace the current state with the new state.\n this.state = state;\n\n const id = this.id;\n const scheduler = this.scheduler;\n\n //\n // Important implementation note:\n //\n // Actions only execute once by default, unless rescheduled from within the\n // scheduled callback. This allows us to implement single and repeat\n // actions via the same code path, without adding API surface area, as well\n // as mimic traditional recursion but across asynchronous boundaries.\n //\n // However, JS runtimes and timers distinguish between intervals achieved by\n // serial `setTimeout` calls vs. a single `setInterval` call. An interval of\n // serial `setTimeout` calls can be individually delayed, which delays\n // scheduling the next `setTimeout`, and so on. `setInterval` attempts to\n // guarantee the interval callback will be invoked more precisely to the\n // interval period, regardless of load.\n //\n // Therefore, we use `setInterval` to schedule single and repeat actions.\n // If the action reschedules itself with the same delay, the interval is not\n // canceled. If the action doesn't reschedule, or reschedules with a\n // different delay, the interval will be canceled after scheduled callback\n // execution.\n //\n if (id != null) {\n this.id = this.recycleAsyncId(scheduler, id, delay);\n }\n\n // Set the pending flag indicating that this action has been scheduled, or\n // has recursively rescheduled itself.\n this.pending = true;\n\n this.delay = delay;\n // If this action has already an async Id, don't request a new one.\n this.id = this.id ?? this.requestAsyncId(scheduler, this.id, delay);\n\n return this;\n }\n\n protected requestAsyncId(scheduler: AsyncScheduler, _id?: TimerHandle, delay: number = 0): TimerHandle {\n return intervalProvider.setInterval(scheduler.flush.bind(scheduler, this), delay);\n }\n\n protected recycleAsyncId(_scheduler: AsyncScheduler, id?: TimerHandle, delay: number | null = 0): TimerHandle | undefined {\n // If this action is rescheduled with the same delay time, don't clear the interval id.\n if (delay != null && this.delay === delay && this.pending === false) {\n return id;\n }\n // Otherwise, if the action's delay time is different from the current delay,\n // or the action has been rescheduled before it's executed, clear the interval id\n if (id != null) {\n intervalProvider.clearInterval(id);\n }\n\n return undefined;\n }\n\n /**\n * Immediately executes this action and the `work` it contains.\n * @return {any}\n */\n public execute(state: T, delay: number): any {\n if (this.closed) {\n return new Error('executing a cancelled action');\n }\n\n this.pending = false;\n const error = this._execute(state, delay);\n if (error) {\n return error;\n } else if (this.pending === false && this.id != null) {\n // Dequeue if the action didn't reschedule itself. Don't call\n // unsubscribe(), because the action could reschedule later.\n // For example:\n // ```\n // scheduler.schedule(function doWork(counter) {\n // /* ... I'm a busy worker bee ... */\n // var originalAction = this;\n // /* wait 100ms before rescheduling the action */\n // setTimeout(function () {\n // originalAction.schedule(counter + 1);\n // }, 100);\n // }, 1000);\n // ```\n this.id = this.recycleAsyncId(this.scheduler, this.id, null);\n }\n }\n\n protected _execute(state: T, _delay: number): any {\n let errored: boolean = false;\n let errorValue: any;\n try {\n this.work(state);\n } catch (e) {\n errored = true;\n // HACK: Since code elsewhere is relying on the \"truthiness\" of the\n // return here, we can't have it return \"\" or 0 or false.\n // TODO: Clean this up when we refactor schedulers mid-version-8 or so.\n errorValue = e ? e : new Error('Scheduled action threw falsy error');\n }\n if (errored) {\n this.unsubscribe();\n return errorValue;\n }\n }\n\n unsubscribe() {\n if (!this.closed) {\n const { id, scheduler } = this;\n const { actions } = scheduler;\n\n this.work = this.state = this.scheduler = null!;\n this.pending = false;\n\n arrRemove(actions, this);\n if (id != null) {\n this.id = this.recycleAsyncId(scheduler, id, null);\n }\n\n this.delay = null!;\n super.unsubscribe();\n }\n }\n}\n", "import { Action } from './scheduler/Action';\nimport { Subscription } from './Subscription';\nimport { SchedulerLike, SchedulerAction } from './types';\nimport { dateTimestampProvider } from './scheduler/dateTimestampProvider';\n\n/**\n * An execution context and a data structure to order tasks and schedule their\n * execution. Provides a notion of (potentially virtual) time, through the\n * `now()` getter method.\n *\n * Each unit of work in a Scheduler is called an `Action`.\n *\n * ```ts\n * class Scheduler {\n * now(): number;\n * schedule(work, delay?, state?): Subscription;\n * }\n * ```\n *\n * @class Scheduler\n * @deprecated Scheduler is an internal implementation detail of RxJS, and\n * should not be used directly. Rather, create your own class and implement\n * {@link SchedulerLike}. Will be made internal in v8.\n */\nexport class Scheduler implements SchedulerLike {\n public static now: () => number = dateTimestampProvider.now;\n\n constructor(private schedulerActionCtor: typeof Action, now: () => number = Scheduler.now) {\n this.now = now;\n }\n\n /**\n * A getter method that returns a number representing the current time\n * (at the time this function was called) according to the scheduler's own\n * internal clock.\n * @return {number} A number that represents the current time. May or may not\n * have a relation to wall-clock time. May or may not refer to a time unit\n * (e.g. milliseconds).\n */\n public now: () => number;\n\n /**\n * Schedules a function, `work`, for execution. May happen at some point in\n * the future, according to the `delay` parameter, if specified. May be passed\n * some context object, `state`, which will be passed to the `work` function.\n *\n * The given arguments will be processed an stored as an Action object in a\n * queue of actions.\n *\n * @param {function(state: ?T): ?Subscription} work A function representing a\n * task, or some unit of work to be executed by the Scheduler.\n * @param {number} [delay] Time to wait before executing the work, where the\n * time unit is implicit and defined by the Scheduler itself.\n * @param {T} [state] Some contextual data that the `work` function uses when\n * called by the Scheduler.\n * @return {Subscription} A subscription in order to be able to unsubscribe\n * the scheduled work.\n */\n public schedule(work: (this: SchedulerAction, state?: T) => void, delay: number = 0, state?: T): Subscription {\n return new this.schedulerActionCtor(this, work).schedule(state, delay);\n }\n}\n", "import { Scheduler } from '../Scheduler';\nimport { Action } from './Action';\nimport { AsyncAction } from './AsyncAction';\nimport { TimerHandle } from './timerHandle';\n\nexport class AsyncScheduler extends Scheduler {\n public actions: Array> = [];\n /**\n * A flag to indicate whether the Scheduler is currently executing a batch of\n * queued actions.\n * @type {boolean}\n * @internal\n */\n public _active: boolean = false;\n /**\n * An internal ID used to track the latest asynchronous task such as those\n * coming from `setTimeout`, `setInterval`, `requestAnimationFrame`, and\n * others.\n * @type {any}\n * @internal\n */\n public _scheduled: TimerHandle | undefined;\n\n constructor(SchedulerAction: typeof Action, now: () => number = Scheduler.now) {\n super(SchedulerAction, now);\n }\n\n public flush(action: AsyncAction): void {\n const { actions } = this;\n\n if (this._active) {\n actions.push(action);\n return;\n }\n\n let error: any;\n this._active = true;\n\n do {\n if ((error = action.execute(action.state, action.delay))) {\n break;\n }\n } while ((action = actions.shift()!)); // exhaust the scheduler queue\n\n this._active = false;\n\n if (error) {\n while ((action = actions.shift()!)) {\n action.unsubscribe();\n }\n throw error;\n }\n }\n}\n", "import { AsyncAction } from './AsyncAction';\nimport { AsyncScheduler } from './AsyncScheduler';\n\n/**\n *\n * Async Scheduler\n *\n * Schedule task as if you used setTimeout(task, duration)\n *\n * `async` scheduler schedules tasks asynchronously, by putting them on the JavaScript\n * event loop queue. It is best used to delay tasks in time or to schedule tasks repeating\n * in intervals.\n *\n * If you just want to \"defer\" task, that is to perform it right after currently\n * executing synchronous code ends (commonly achieved by `setTimeout(deferredTask, 0)`),\n * better choice will be the {@link asapScheduler} scheduler.\n *\n * ## Examples\n * Use async scheduler to delay task\n * ```ts\n * import { asyncScheduler } from 'rxjs';\n *\n * const task = () => console.log('it works!');\n *\n * asyncScheduler.schedule(task, 2000);\n *\n * // After 2 seconds logs:\n * // \"it works!\"\n * ```\n *\n * Use async scheduler to repeat task in intervals\n * ```ts\n * import { asyncScheduler } from 'rxjs';\n *\n * function task(state) {\n * console.log(state);\n * this.schedule(state + 1, 1000); // `this` references currently executing Action,\n * // which we reschedule with new state and delay\n * }\n *\n * asyncScheduler.schedule(task, 3000, 0);\n *\n * // Logs:\n * // 0 after 3s\n * // 1 after 4s\n * // 2 after 5s\n * // 3 after 6s\n * ```\n */\n\nexport const asyncScheduler = new AsyncScheduler(AsyncAction);\n\n/**\n * @deprecated Renamed to {@link asyncScheduler}. Will be removed in v8.\n */\nexport const async = asyncScheduler;\n", "import { AsyncAction } from './AsyncAction';\nimport { AnimationFrameScheduler } from './AnimationFrameScheduler';\nimport { SchedulerAction } from '../types';\nimport { animationFrameProvider } from './animationFrameProvider';\nimport { TimerHandle } from './timerHandle';\n\nexport class AnimationFrameAction extends AsyncAction {\n constructor(protected scheduler: AnimationFrameScheduler, protected work: (this: SchedulerAction, state?: T) => void) {\n super(scheduler, work);\n }\n\n protected requestAsyncId(scheduler: AnimationFrameScheduler, id?: TimerHandle, delay: number = 0): TimerHandle {\n // If delay is greater than 0, request as an async action.\n if (delay !== null && delay > 0) {\n return super.requestAsyncId(scheduler, id, delay);\n }\n // Push the action to the end of the scheduler queue.\n scheduler.actions.push(this);\n // If an animation frame has already been requested, don't request another\n // one. If an animation frame hasn't been requested yet, request one. Return\n // the current animation frame request id.\n return scheduler._scheduled || (scheduler._scheduled = animationFrameProvider.requestAnimationFrame(() => scheduler.flush(undefined)));\n }\n\n protected recycleAsyncId(scheduler: AnimationFrameScheduler, id?: TimerHandle, delay: number = 0): TimerHandle | undefined {\n // If delay exists and is greater than 0, or if the delay is null (the\n // action wasn't rescheduled) but was originally scheduled as an async\n // action, then recycle as an async action.\n if (delay != null ? delay > 0 : this.delay > 0) {\n return super.recycleAsyncId(scheduler, id, delay);\n }\n // If the scheduler queue has no remaining actions with the same async id,\n // cancel the requested animation frame and set the scheduled flag to\n // undefined so the next AnimationFrameAction will request its own.\n const { actions } = scheduler;\n if (id != null && actions[actions.length - 1]?.id !== id) {\n animationFrameProvider.cancelAnimationFrame(id as number);\n scheduler._scheduled = undefined;\n }\n // Return undefined so the action knows to request a new async id if it's rescheduled.\n return undefined;\n }\n}\n", "import { AsyncAction } from './AsyncAction';\nimport { AsyncScheduler } from './AsyncScheduler';\n\nexport class AnimationFrameScheduler extends AsyncScheduler {\n public flush(action?: AsyncAction): void {\n this._active = true;\n // The async id that effects a call to flush is stored in _scheduled.\n // Before executing an action, it's necessary to check the action's async\n // id to determine whether it's supposed to be executed in the current\n // flush.\n // Previous implementations of this method used a count to determine this,\n // but that was unsound, as actions that are unsubscribed - i.e. cancelled -\n // are removed from the actions array and that can shift actions that are\n // scheduled to be executed in a subsequent flush into positions at which\n // they are executed within the current flush.\n const flushId = this._scheduled;\n this._scheduled = undefined;\n\n const { actions } = this;\n let error: any;\n action = action || actions.shift()!;\n\n do {\n if ((error = action.execute(action.state, action.delay))) {\n break;\n }\n } while ((action = actions[0]) && action.id === flushId && actions.shift());\n\n this._active = false;\n\n if (error) {\n while ((action = actions[0]) && action.id === flushId && actions.shift()) {\n action.unsubscribe();\n }\n throw error;\n }\n }\n}\n", "import { AnimationFrameAction } from './AnimationFrameAction';\nimport { AnimationFrameScheduler } from './AnimationFrameScheduler';\n\n/**\n *\n * Animation Frame Scheduler\n *\n * Perform task when `window.requestAnimationFrame` would fire\n *\n * When `animationFrame` scheduler is used with delay, it will fall back to {@link asyncScheduler} scheduler\n * behaviour.\n *\n * Without delay, `animationFrame` scheduler can be used to create smooth browser animations.\n * It makes sure scheduled task will happen just before next browser content repaint,\n * thus performing animations as efficiently as possible.\n *\n * ## Example\n * Schedule div height animation\n * ```ts\n * // html:
\n * import { animationFrameScheduler } from 'rxjs';\n *\n * const div = document.querySelector('div');\n *\n * animationFrameScheduler.schedule(function(height) {\n * div.style.height = height + \"px\";\n *\n * this.schedule(height + 1); // `this` references currently executing Action,\n * // which we reschedule with new state\n * }, 0, 0);\n *\n * // You will see a div element growing in height\n * ```\n */\n\nexport const animationFrameScheduler = new AnimationFrameScheduler(AnimationFrameAction);\n\n/**\n * @deprecated Renamed to {@link animationFrameScheduler}. Will be removed in v8.\n */\nexport const animationFrame = animationFrameScheduler;\n", "import { Observable } from '../Observable';\nimport { SchedulerLike } from '../types';\n\n/**\n * A simple Observable that emits no items to the Observer and immediately\n * emits a complete notification.\n *\n * Just emits 'complete', and nothing else.\n *\n * ![](empty.png)\n *\n * A simple Observable that only emits the complete notification. It can be used\n * for composing with other Observables, such as in a {@link mergeMap}.\n *\n * ## Examples\n *\n * Log complete notification\n *\n * ```ts\n * import { EMPTY } from 'rxjs';\n *\n * EMPTY.subscribe({\n * next: () => console.log('Next'),\n * complete: () => console.log('Complete!')\n * });\n *\n * // Outputs\n * // Complete!\n * ```\n *\n * Emit the number 7, then complete\n *\n * ```ts\n * import { EMPTY, startWith } from 'rxjs';\n *\n * const result = EMPTY.pipe(startWith(7));\n * result.subscribe(x => console.log(x));\n *\n * // Outputs\n * // 7\n * ```\n *\n * Map and flatten only odd numbers to the sequence `'a'`, `'b'`, `'c'`\n *\n * ```ts\n * import { interval, mergeMap, of, EMPTY } from 'rxjs';\n *\n * const interval$ = interval(1000);\n * const result = interval$.pipe(\n * mergeMap(x => x % 2 === 1 ? of('a', 'b', 'c') : EMPTY),\n * );\n * result.subscribe(x => console.log(x));\n *\n * // Results in the following to the console:\n * // x is equal to the count on the interval, e.g. (0, 1, 2, 3, ...)\n * // x will occur every 1000ms\n * // if x % 2 is equal to 1, print a, b, c (each on its own)\n * // if x % 2 is not equal to 1, nothing will be output\n * ```\n *\n * @see {@link Observable}\n * @see {@link NEVER}\n * @see {@link of}\n * @see {@link throwError}\n */\nexport const EMPTY = new Observable((subscriber) => subscriber.complete());\n\n/**\n * @param scheduler A {@link SchedulerLike} to use for scheduling\n * the emission of the complete notification.\n * @deprecated Replaced with the {@link EMPTY} constant or {@link scheduled} (e.g. `scheduled([], scheduler)`). Will be removed in v8.\n */\nexport function empty(scheduler?: SchedulerLike) {\n return scheduler ? emptyScheduled(scheduler) : EMPTY;\n}\n\nfunction emptyScheduled(scheduler: SchedulerLike) {\n return new Observable((subscriber) => scheduler.schedule(() => subscriber.complete()));\n}\n", "import { SchedulerLike } from '../types';\nimport { isFunction } from './isFunction';\n\nexport function isScheduler(value: any): value is SchedulerLike {\n return value && isFunction(value.schedule);\n}\n", "import { SchedulerLike } from '../types';\nimport { isFunction } from './isFunction';\nimport { isScheduler } from './isScheduler';\n\nfunction last(arr: T[]): T | undefined {\n return arr[arr.length - 1];\n}\n\nexport function popResultSelector(args: any[]): ((...args: unknown[]) => unknown) | undefined {\n return isFunction(last(args)) ? args.pop() : undefined;\n}\n\nexport function popScheduler(args: any[]): SchedulerLike | undefined {\n return isScheduler(last(args)) ? args.pop() : undefined;\n}\n\nexport function popNumber(args: any[], defaultValue: number): number {\n return typeof last(args) === 'number' ? args.pop()! : defaultValue;\n}\n", "export const isArrayLike = ((x: any): x is ArrayLike => x && typeof x.length === 'number' && typeof x !== 'function');", "import { isFunction } from \"./isFunction\";\n\n/**\n * Tests to see if the object is \"thennable\".\n * @param value the object to test\n */\nexport function isPromise(value: any): value is PromiseLike {\n return isFunction(value?.then);\n}\n", "import { InteropObservable } from '../types';\nimport { observable as Symbol_observable } from '../symbol/observable';\nimport { isFunction } from './isFunction';\n\n/** Identifies an input as being Observable (but not necessary an Rx Observable) */\nexport function isInteropObservable(input: any): input is InteropObservable {\n return isFunction(input[Symbol_observable]);\n}\n", "import { isFunction } from './isFunction';\n\nexport function isAsyncIterable(obj: any): obj is AsyncIterable {\n return Symbol.asyncIterator && isFunction(obj?.[Symbol.asyncIterator]);\n}\n", "/**\n * Creates the TypeError to throw if an invalid object is passed to `from` or `scheduled`.\n * @param input The object that was passed.\n */\nexport function createInvalidObservableTypeError(input: any) {\n // TODO: We should create error codes that can be looked up, so this can be less verbose.\n return new TypeError(\n `You provided ${\n input !== null && typeof input === 'object' ? 'an invalid object' : `'${input}'`\n } where a stream was expected. You can provide an Observable, Promise, ReadableStream, Array, AsyncIterable, or Iterable.`\n );\n}\n", "export function getSymbolIterator(): symbol {\n if (typeof Symbol !== 'function' || !Symbol.iterator) {\n return '@@iterator' as any;\n }\n\n return Symbol.iterator;\n}\n\nexport const iterator = getSymbolIterator();\n", "import { iterator as Symbol_iterator } from '../symbol/iterator';\nimport { isFunction } from './isFunction';\n\n/** Identifies an input as being an Iterable */\nexport function isIterable(input: any): input is Iterable {\n return isFunction(input?.[Symbol_iterator]);\n}\n", "import { ReadableStreamLike } from '../types';\nimport { isFunction } from './isFunction';\n\nexport async function* readableStreamLikeToAsyncGenerator(readableStream: ReadableStreamLike): AsyncGenerator {\n const reader = readableStream.getReader();\n try {\n while (true) {\n const { value, done } = await reader.read();\n if (done) {\n return;\n }\n yield value!;\n }\n } finally {\n reader.releaseLock();\n }\n}\n\nexport function isReadableStreamLike(obj: any): obj is ReadableStreamLike {\n // We don't want to use instanceof checks because they would return\n // false for instances from another Realm, like an