-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathcompress_training.py
134 lines (131 loc) · 4.39 KB
/
compress_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import numpy as np
import torch
from itertools import product
from torchvision.datasets import MNIST, FashionMNIST
from utils.MNIST import get_dl as get_MNIST
from utils.Add10 import Add10Dataset, get_dl as get_Add10
from utils.Airfoil import AirfoilDataset, get_dl as get_Airfoil
from utils.Poker import PokerDataset, get_dl as get_Poker, weights as poker_weights
from utils.misc import PreloadedDataloader
from models.MultiLayerDynamicPerceptron import MultiLayerDynamicPerceptron
from models.DynamicCNN import DynamicCNN
from uuid import uuid4
from sys import argv
from algorithms.block_sparse_training_dynamic import compress_train, grow
LAMBDAS = 10.0**-np.arange(1, 7)
DECAYS = [1.0]
LAYERS = [int(argv[-2]) if len(argv) > 2 else 1]
SIZES_PER_LAYER = {
1: 10000,
2: 6000,
3: 4000,
4: 2500
}
SIZES_PER_LAYER_CNN = {
1: 100,
2: 75,
3: 65,
4: 25
}
ITERATIONS = range(5)
DATASETS = {
'MNIST': {
'features_in': 28*28,
'features_out': 10,
'get_train_dl': lambda: get_MNIST(MNIST),
'get_test_dl': lambda: get_MNIST(MNIST, False),
'mode': 'classification',
'lambda_shift': 1,
'reference': 0.984
},
'FashionMNIST': {
'features_in': 28*28,
'features_out': 10,
'get_train_dl': lambda: get_MNIST(FashionMNIST),
'get_test_dl': lambda: get_MNIST(FashionMNIST, False),
'mode': 'classification',
'lambda_shift': 1
},
'Add10': {
'features_in': 10,
'features_out': 1,
'get_train_dl': lambda: get_Add10(Add10Dataset()),
'get_test_dl': lambda: get_Add10(Add10Dataset(train=False), train=False),
'mode': 'regression',
'lambda_shift': 1e4
},
'Airfoil': {
'features_in': 5,
'features_out': 1,
'get_train_dl': lambda: get_Airfoil(AirfoilDataset()),
'get_test_dl': lambda: get_Airfoil(AirfoilDataset(train=False), train=False),
'mode': 'regression',
'lambda_shift': 1e4,
'reference': 12.34
},
'Poker': {
'features_in': 85,
'features_out': 10,
'get_train_dl': lambda: get_Poker(PokerDataset()),
'get_test_dl': lambda: get_Poker(PokerDataset(train=False), train=False),
'weights': poker_weights,
'mode': 'classification',
'lambda_shift': 0.1
},
'CNNMNIST': {
'features_in': (1, 28, 28),
'features_out': 10,
'get_train_dl': lambda: get_MNIST(MNIST, True),
'get_test_dl': lambda: get_MNIST(MNIST, False),
'mode': 'classification',
'lambda_shift': 1e-1,
'reference': 0.9905,
'time': 15
},
}
if __name__ == "__main__":
DS = 'MNIST'
if argv[-1] in DATASETS.keys():
DS = argv[-1]
print(DS)
train_set, val_set = PreloadedDataloader(DATASETS[DS]['get_train_dl']()).split(0.9)
test_set = PreloadedDataloader(DATASETS[DS]['get_test_dl']())
path_template = "./experiments/%s/%s.experiment"
LAMBDAS *= DATASETS[DS]['lambda_shift']
param_generator = list(product(LAMBDAS, DECAYS, LAYERS, ITERATIONS))
print(len(param_generator))
for params in param_generator:
lamb, lamb_deca, layers, _ = params
f_in = DATASETS[DS]['features_in']
f_out = DATASETS[DS]['features_out']
if hasattr(f_in, '__len__'): # This is a tuple, so a picture => CNN
initial_size = SIZES_PER_LAYER_CNN[layers]
else:
initial_size = SIZES_PER_LAYER[layers]
print(params, initial_size)
id = uuid4()
filename = path_template % (DS, id)
if hasattr(f_in, '__len__'): # This is a tuple, so a picture => CNN
model = DynamicCNN(
layers,
in_features=f_in,
out_features=f_out,
conv_initial_size=initial_size
)
else:
model = MultiLayerDynamicPerceptron(
layers,
in_features=f_in,
out_features=f_out,
initial_size=initial_size
)
model = model.cuda()
grow(model)
time = DATASETS[DS].get('time', 5)
stats = compress_train(model, train_set, val_set,
test_set, lamb, lamb_deca, 0, time, mode = DATASETS[DS]['mode'],
weight=DATASETS[DS].get('weights', None)
)
logs = stats.logs
summary = (params, logs)
torch.save(summary, open(filename, 'wb'))