|
| 1 | +import { remainder } from '../r1/math' |
| 2 | +import { DBL_EPSILON, EPSILON } from './Interval_constants' |
| 3 | +import type { Angle } from './angle' |
| 4 | + |
| 5 | +/** |
| 6 | + * An Interval represents a closed interval on a unit circle (also known as a 1-dimensional sphere). |
| 7 | + * It is capable of representing the empty interval (containing no points), the full interval (containing all points), and zero-length intervals (containing a single point). |
| 8 | + * |
| 9 | + * Points are represented by the angle they make with the positive x-axis in the range [-π, π]. |
| 10 | + * An interval is represented by its lower and upper bounds (both inclusive, since the interval is closed). |
| 11 | + * The lower bound may be greater than the upper bound, in which case the interval is "inverted" (i.e. it passes through the point (-1, 0)). |
| 12 | + * |
| 13 | + * The point (-1, 0) has two valid representations, π and -π. |
| 14 | + * The normalized representation of this point is π, so that endpoints of normal intervals are in the range (-π, π]. |
| 15 | + * We normalize the latter to the former in intervalFromEndpoints. |
| 16 | + * However, we take advantage of the point -π to construct two special intervals: |
| 17 | + * |
| 18 | + * The full interval is [-π, π] |
| 19 | + * The empty interval is [π, -π]. |
| 20 | + * |
| 21 | + * Treat the exported fields as read-only. |
| 22 | + */ |
| 23 | +export class Interval { |
| 24 | + lo: number |
| 25 | + hi: number |
| 26 | + |
| 27 | + constructor(lo: number, hi: number) { |
| 28 | + this.lo = lo |
| 29 | + this.hi = hi |
| 30 | + } |
| 31 | + |
| 32 | + /** |
| 33 | + * Constructs a new interval from endpoints. |
| 34 | + * Both arguments must be in the range [-π,π]. |
| 35 | + * This function allows inverted intervals to be created. |
| 36 | + * @category Constructors |
| 37 | + */ |
| 38 | + static fromEndpoints(lo: number, hi: number): Interval { |
| 39 | + const i = new Interval(lo, hi) |
| 40 | + if (lo === -Math.PI && hi !== Math.PI) i.lo = Math.PI |
| 41 | + if (hi === -Math.PI && lo !== Math.PI) i.hi = Math.PI |
| 42 | + return i |
| 43 | + } |
| 44 | + |
| 45 | + /** |
| 46 | + * Returns the minimal interval containing the two given points. |
| 47 | + * Both arguments must be in [-π,π]. |
| 48 | + * @category Constructors |
| 49 | + */ |
| 50 | + static fromPointPair(a: number, b: number): Interval { |
| 51 | + if (a === -Math.PI) a = Math.PI |
| 52 | + if (b === -Math.PI) b = Math.PI |
| 53 | + if (Interval.positiveDistance(a, b) <= Math.PI) return new Interval(a, b) |
| 54 | + return new Interval(b, a) |
| 55 | + } |
| 56 | + |
| 57 | + /** |
| 58 | + * Returns an empty interval. |
| 59 | + * @category Constructors |
| 60 | + */ |
| 61 | + static emptyInterval(): Interval { |
| 62 | + return new Interval(Math.PI, -Math.PI) |
| 63 | + } |
| 64 | + |
| 65 | + /** |
| 66 | + * Returns a full interval. |
| 67 | + * @category Constructors |
| 68 | + */ |
| 69 | + static fullInterval(): Interval { |
| 70 | + return new Interval(-Math.PI, Math.PI) |
| 71 | + } |
| 72 | + |
| 73 | + /** |
| 74 | + * Reports whether the interval is valid. |
| 75 | + */ |
| 76 | + isValid(): boolean { |
| 77 | + return ( |
| 78 | + Math.abs(this.lo) <= Math.PI && |
| 79 | + Math.abs(this.hi) <= Math.PI && |
| 80 | + !(this.lo === -Math.PI && this.hi !== Math.PI) && |
| 81 | + !(this.hi === -Math.PI && this.lo !== Math.PI) |
| 82 | + ) |
| 83 | + } |
| 84 | + |
| 85 | + /** |
| 86 | + * Reports whether the interval is full. |
| 87 | + */ |
| 88 | + isFull(): boolean { |
| 89 | + return this.lo === -Math.PI && this.hi === Math.PI |
| 90 | + } |
| 91 | + |
| 92 | + /** |
| 93 | + * Reports whether the interval is empty. |
| 94 | + */ |
| 95 | + isEmpty(): boolean { |
| 96 | + return this.lo === Math.PI && this.hi === -Math.PI |
| 97 | + } |
| 98 | + |
| 99 | + /** |
| 100 | + * Reports whether the interval is inverted; that is, whether lo > hi. |
| 101 | + */ |
| 102 | + isInverted(): boolean { |
| 103 | + return this.lo > this.hi |
| 104 | + } |
| 105 | + |
| 106 | + /** |
| 107 | + * Returns the interval with endpoints swapped. |
| 108 | + */ |
| 109 | + invert(): Interval { |
| 110 | + return new Interval(this.hi, this.lo) |
| 111 | + } |
| 112 | + |
| 113 | + /** |
| 114 | + * Returns the midpoint of the interval. |
| 115 | + * It is undefined for full and empty intervals. |
| 116 | + */ |
| 117 | + center(): number { |
| 118 | + const c = 0.5 * (this.lo + this.hi) |
| 119 | + if (!this.isInverted()) return c |
| 120 | + if (c <= 0) return c + Math.PI |
| 121 | + return c - Math.PI |
| 122 | + } |
| 123 | + |
| 124 | + /** |
| 125 | + * Returns the length of the interval. |
| 126 | + * The length of an empty interval is negative. |
| 127 | + */ |
| 128 | + length(): number { |
| 129 | + let l = this.hi - this.lo |
| 130 | + if (l >= 0) return l |
| 131 | + l += 2 * Math.PI |
| 132 | + if (l > 0) return l |
| 133 | + return -1 |
| 134 | + } |
| 135 | + |
| 136 | + /** |
| 137 | + * Assumes p ∈ (-π,π]. |
| 138 | + */ |
| 139 | + fastContains(p: number): boolean { |
| 140 | + if (this.isInverted()) return (p >= this.lo || p <= this.hi) && !this.isEmpty() |
| 141 | + return p >= this.lo && p <= this.hi |
| 142 | + } |
| 143 | + |
| 144 | + /** |
| 145 | + * Returns true iff the interval contains p. |
| 146 | + * Assumes p ∈ [-π,π]. |
| 147 | + */ |
| 148 | + contains(p: number): boolean { |
| 149 | + if (p === -Math.PI) p = Math.PI |
| 150 | + return this.fastContains(p) |
| 151 | + } |
| 152 | + |
| 153 | + /** |
| 154 | + * Returns true iff the interval contains oi. |
| 155 | + */ |
| 156 | + containsInterval(oi: Interval): boolean { |
| 157 | + if (this.isInverted()) { |
| 158 | + if (oi.isInverted()) return oi.lo >= this.lo && oi.hi <= this.hi |
| 159 | + return (oi.lo >= this.lo || oi.hi <= this.hi) && !this.isEmpty() |
| 160 | + } |
| 161 | + if (oi.isInverted()) return this.isFull() || oi.isEmpty() |
| 162 | + return oi.lo >= this.lo && oi.hi <= this.hi |
| 163 | + } |
| 164 | + |
| 165 | + /** |
| 166 | + * Returns true iff the interior of the interval contains p. |
| 167 | + * Assumes p ∈ [-π,π]. |
| 168 | + */ |
| 169 | + interiorContains(p: number): boolean { |
| 170 | + if (p === -Math.PI) p = Math.PI |
| 171 | + if (this.isInverted()) return p > this.lo || p < this.hi |
| 172 | + return (p > this.lo && p < this.hi) || this.isFull() |
| 173 | + } |
| 174 | + |
| 175 | + /** |
| 176 | + * Returns true iff the interior of the interval contains oi. |
| 177 | + */ |
| 178 | + interiorContainsInterval(oi: Interval): boolean { |
| 179 | + if (this.isInverted()) { |
| 180 | + if (oi.isInverted()) return (oi.lo > this.lo && oi.hi < this.hi) || oi.isEmpty() |
| 181 | + return oi.lo > this.lo || oi.hi < this.hi |
| 182 | + } |
| 183 | + if (oi.isInverted()) return this.isFull() || oi.isEmpty() |
| 184 | + return (oi.lo > this.lo && oi.hi < this.hi) || this.isFull() |
| 185 | + } |
| 186 | + |
| 187 | + /** |
| 188 | + * Returns true iff the interval contains any points in common with oi. |
| 189 | + */ |
| 190 | + intersects(oi: Interval): boolean { |
| 191 | + if (this.isEmpty() || oi.isEmpty()) return false |
| 192 | + if (this.isInverted()) return oi.isInverted() || oi.lo <= this.hi || oi.hi >= this.lo |
| 193 | + if (oi.isInverted()) return oi.lo <= this.hi || oi.hi >= this.lo |
| 194 | + return oi.lo <= this.hi && oi.hi >= this.lo |
| 195 | + } |
| 196 | + |
| 197 | + /** |
| 198 | + * Returns true iff the interior of the interval contains any points in common with oi, including the latter's boundary. |
| 199 | + */ |
| 200 | + interiorIntersects(oi: Interval): boolean { |
| 201 | + if (this.isEmpty() || oi.isEmpty() || this.lo === this.hi) return false |
| 202 | + if (this.isInverted()) return oi.isInverted() || oi.lo < this.hi || oi.hi > this.lo |
| 203 | + if (oi.isInverted()) return oi.lo < this.hi || oi.hi > this.lo |
| 204 | + return (oi.lo < this.hi && oi.hi > this.lo) || this.isFull() |
| 205 | + } |
| 206 | + |
| 207 | + /** |
| 208 | + * Compute distance from a to b in [0,2π], in a numerically stable way. |
| 209 | + */ |
| 210 | + static positiveDistance(a: number, b: number): number { |
| 211 | + const d = b - a |
| 212 | + if (d >= 0) return d |
| 213 | + return b + Math.PI - (a - Math.PI) |
| 214 | + } |
| 215 | + |
| 216 | + /** |
| 217 | + * Returns the smallest interval that contains both the interval and oi. |
| 218 | + */ |
| 219 | + union(oi: Interval): Interval { |
| 220 | + if (oi.isEmpty()) return this |
| 221 | + if (this.fastContains(oi.lo)) { |
| 222 | + if (this.fastContains(oi.hi)) { |
| 223 | + if (this.containsInterval(oi)) return this |
| 224 | + return Interval.fullInterval() |
| 225 | + } |
| 226 | + return new Interval(this.lo, oi.hi) |
| 227 | + } |
| 228 | + if (this.fastContains(oi.hi)) return new Interval(oi.lo, this.hi) |
| 229 | + if (this.isEmpty() || oi.fastContains(this.lo)) return oi |
| 230 | + if (Interval.positiveDistance(oi.hi, this.lo) < Interval.positiveDistance(this.hi, oi.lo)) |
| 231 | + return new Interval(oi.lo, this.hi) |
| 232 | + return new Interval(this.lo, oi.hi) |
| 233 | + } |
| 234 | + |
| 235 | + /** |
| 236 | + * Returns the smallest interval that contains the intersection of the interval and oi. |
| 237 | + */ |
| 238 | + intersection(oi: Interval): Interval { |
| 239 | + if (oi.isEmpty()) return Interval.emptyInterval() |
| 240 | + if (this.fastContains(oi.lo)) { |
| 241 | + if (this.fastContains(oi.hi)) { |
| 242 | + if (oi.length() < this.length()) return oi |
| 243 | + return this |
| 244 | + } |
| 245 | + return new Interval(oi.lo, this.hi) |
| 246 | + } |
| 247 | + if (this.fastContains(oi.hi)) return new Interval(this.lo, oi.hi) |
| 248 | + if (oi.fastContains(this.lo)) return this |
| 249 | + return Interval.emptyInterval() |
| 250 | + } |
| 251 | + |
| 252 | + /** |
| 253 | + * Returns the interval expanded by the minimum amount necessary such |
| 254 | + * that it contains the given point "p" (an angle in the range [-π, π]). |
| 255 | + */ |
| 256 | + addPoint(p: number): Interval { |
| 257 | + if (Math.abs(p) > Math.PI) return this |
| 258 | + if (p === -Math.PI) p = Math.PI |
| 259 | + if (this.fastContains(p)) return this |
| 260 | + if (this.isEmpty()) return new Interval(p, p) |
| 261 | + if (Interval.positiveDistance(p, this.lo) < Interval.positiveDistance(this.hi, p)) return new Interval(p, this.hi) |
| 262 | + return new Interval(this.lo, p) |
| 263 | + } |
| 264 | + |
| 265 | + /** |
| 266 | + * Expanded returns an interval that has been expanded on each side by margin. |
| 267 | + * If margin is negative, then the function shrinks the interval on |
| 268 | + * each side by margin instead. The resulting interval may be empty or |
| 269 | + * full. Any expansion (positive or negative) of a full interval remains |
| 270 | + * full, and any expansion of an empty interval remains empty. |
| 271 | + */ |
| 272 | + expanded(margin: number): Interval { |
| 273 | + if (margin >= 0) { |
| 274 | + if (this.isEmpty()) return this |
| 275 | + if (this.length() + 2 * margin + 2 * DBL_EPSILON >= 2 * Math.PI) return Interval.fullInterval() |
| 276 | + } else { |
| 277 | + if (this.isFull()) return this |
| 278 | + if (this.length() + 2 * margin - 2 * DBL_EPSILON <= 0) return Interval.emptyInterval() |
| 279 | + } |
| 280 | + const result = Interval.fromEndpoints( |
| 281 | + remainder(this.lo - margin, 2 * Math.PI), |
| 282 | + remainder(this.hi + margin, 2 * Math.PI) |
| 283 | + ) |
| 284 | + if (result.lo <= -Math.PI) result.lo = Math.PI |
| 285 | + return result |
| 286 | + } |
| 287 | + |
| 288 | + /** |
| 289 | + * ApproxEqual reports whether this interval can be transformed into the given |
| 290 | + * interval by moving each endpoint by at most ε, without the |
| 291 | + * endpoints crossing (which would invert the interval). Empty and full |
| 292 | + * intervals are considered to start at an arbitrary point on the unit circle, |
| 293 | + * so any interval with (length <= 2*ε) matches the empty interval, and |
| 294 | + * any interval with (length >= 2*π - 2*ε) matches the full interval. |
| 295 | + */ |
| 296 | + approxEqual(other: Interval): boolean { |
| 297 | + if (this.isEmpty()) return other.length() <= 2 * EPSILON |
| 298 | + if (other.isEmpty()) return this.length() <= 2 * EPSILON |
| 299 | + if (this.isFull()) return other.length() >= 2 * (Math.PI - EPSILON) |
| 300 | + if (other.isFull()) return this.length() >= 2 * (Math.PI - EPSILON) |
| 301 | + return ( |
| 302 | + Math.abs(remainder(other.lo - this.lo, 2 * Math.PI)) <= EPSILON && |
| 303 | + Math.abs(remainder(other.hi - this.hi, 2 * Math.PI)) <= EPSILON && |
| 304 | + Math.abs(this.length() - other.length()) <= 2 * EPSILON |
| 305 | + ) |
| 306 | + } |
| 307 | + |
| 308 | + toString(): string { |
| 309 | + return `[${this.lo.toFixed(7)}, ${this.hi.toFixed(7)}]` |
| 310 | + } |
| 311 | + |
| 312 | + /** |
| 313 | + * Complement returns the complement of the interior of the interval. An interval and |
| 314 | + * its complement have the same boundary but do not share any interior |
| 315 | + * values. The complement operator is not a bijection, since the complement |
| 316 | + * of a singleton interval (containing a single value) is the same as the |
| 317 | + * complement of an empty interval. |
| 318 | + */ |
| 319 | + complement(): Interval { |
| 320 | + if (this.lo === this.hi) return Interval.fullInterval() |
| 321 | + return new Interval(this.hi, this.lo) |
| 322 | + } |
| 323 | + |
| 324 | + /** |
| 325 | + * ComplementCenter returns the midpoint of the complement of the interval. For full and empty |
| 326 | + * intervals, the result is arbitrary. For a singleton interval (containing a |
| 327 | + * single point), the result is its antipodal point on S1. |
| 328 | + */ |
| 329 | + complementCenter(): number { |
| 330 | + if (this.lo !== this.hi) return this.complement().center() |
| 331 | + if (this.hi <= 0) return this.hi + Math.PI |
| 332 | + return this.hi - Math.PI |
| 333 | + } |
| 334 | + |
| 335 | + /** |
| 336 | + * DirectedHausdorffDistance returns the Hausdorff distance to the given interval. |
| 337 | + * For two intervals i and y, this distance is defined by |
| 338 | + * |
| 339 | + * h(i, y) = max_{p in i} min_{q in y} d(p, q), |
| 340 | + * |
| 341 | + * where d(.,.) is measured along S1. |
| 342 | + */ |
| 343 | + directedHausdorffDistance(y: Interval): Angle { |
| 344 | + if (y.containsInterval(this)) return 0 |
| 345 | + if (y.isEmpty()) return Math.PI |
| 346 | + const yComplementCenter = y.complementCenter() |
| 347 | + if (this.contains(yComplementCenter)) return Interval.positiveDistance(y.hi, yComplementCenter) |
| 348 | + |
| 349 | + let hiHi = 0.0 |
| 350 | + if (Interval.fromEndpoints(y.hi, yComplementCenter).contains(this.hi)) { |
| 351 | + hiHi = Interval.positiveDistance(y.hi, this.hi) |
| 352 | + } |
| 353 | + |
| 354 | + let loLo = 0.0 |
| 355 | + if (Interval.fromEndpoints(yComplementCenter, y.lo).contains(this.lo)) { |
| 356 | + loLo = Interval.positiveDistance(this.lo, y.lo) |
| 357 | + } |
| 358 | + |
| 359 | + return Math.max(hiHi, loLo) |
| 360 | + } |
| 361 | + |
| 362 | + /** |
| 363 | + * Project returns the closest point in the interval to the given point p. |
| 364 | + * The interval must be non-empty. |
| 365 | + */ |
| 366 | + project(p: number): number { |
| 367 | + if (p === -Math.PI) p = Math.PI |
| 368 | + if (this.fastContains(p)) return p |
| 369 | + const dlo = Interval.positiveDistance(p, this.lo) |
| 370 | + const dhi = Interval.positiveDistance(this.hi, p) |
| 371 | + if (dlo < dhi) return this.lo |
| 372 | + return this.hi |
| 373 | + } |
| 374 | +} |
0 commit comments