-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathimage_recognition_client_test
executable file
·55 lines (45 loc) · 2.32 KB
/
image_recognition_client_test
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#!/usr/bin/env python
import os
import argparse
import random
import cv2
from cv_bridge import CvBridge, CvBridgeError
from mas_perception_libs.utils import case_insensitive_glob
from mas_perception_libs.image_recognition_service import RecognizeImageServiceProxy
ALLOWED_FILE_TYPES = ('*.jpg', '*.jpeg', '*.png', '*.bmp')
def main(arguments):
service_proxy = RecognizeImageServiceProxy(arguments.service_name, arguments.model_name,
arguments.preprocess_input_module)
file_list = []
for file_type in ALLOWED_FILE_TYPES:
file_list.extend(case_insensitive_glob(os.path.join(arguments.test_dir, file_type)))
test_file_list = []
if arguments.num_samples > 0:
num_samples = arguments.num_samples
indices = random.sample(range(len(file_list)), num_samples)
for index in indices:
test_file_list.append(file_list[index])
else:
test_file_list = file_list
cv_bridge = CvBridge()
image_messages = []
for filename in test_file_list:
cv_image = cv2.imread(filename)
try:
image_messages.append(cv_bridge.cv2_to_imgmsg(cv_image, "bgr8"))
except CvBridgeError as e:
print('error converting "{0}" to ROS format: {1}'.format(filename, e.message))
results = service_proxy.classify_image_messages(image_messages)
print(results)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Tool to test model with test images using KerasImageClassifier class.'
'Assuming images to be of type jpg')
parser.add_argument('--test-dir', '-t', required=True, help='directory with test images')
parser.add_argument('--service-name', '-s', required=True, help='name of recognition service')
parser.add_argument('--num-samples', '-n', type=int, default=-1, help='number of samples to test, if left blank,'
' take all samples.')
parser.add_argument('--preprocess-input-module', '-p', default=None, help='module containing image preprocessing'
' function.')
parser.add_argument('model_name', help='Keras model to be tested')
args = parser.parse_args()
main(args)