Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

I am curious about the learning results of SRx2. #24

Open
shkids opened this issue Aug 30, 2024 · 0 comments
Open

I am curious about the learning results of SRx2. #24

shkids opened this issue Aug 30, 2024 · 0 comments

Comments

@shkids
Copy link

shkids commented Aug 30, 2024

Hello, I really appreciate your research.
What I'm curious about is the training score PSNR of DRCT_SRx2.
Are there any experimental results for SRx2 using DIV2K rather than DF2K?

# general settings
name: train_DRCT_SRx2_from_scratch
model_type: DRCTModel
scale: 2
num_gpu: auto
manual_seed: 0

# dataset and data loader settings
datasets:
  train:
    name: DF2K
    type: PairedImageDataset
    dataroot_gt: datasets/DIV2K/DIV2K_train_HR_sub
    dataroot_lq: datasets/DIV2K/DIV2K_train_LR_bicubic/X2_sub
    #meta_info_file: drct/data/meta_info/meta_info_DF2Ksub_GT.txt
    io_backend:
      type: disk

    gt_size: 128
    use_hflip: true
    use_rot: true

    # data loader
    use_shuffle: true
    num_worker_per_gpu: 6
    batch_size_per_gpu: 4
    dataset_enlarge_ratio: 1
    prefetch_mode: ~

  val_1:
    name: Set5
    type: PairedImageDataset
    dataroot_gt: ./datasets/Set5/GTmod2
    dataroot_lq: ./datasets/Set5/LRbicx2
    io_backend:
      type: disk

  val_2:
    name: Set14
    type: PairedImageDataset
    dataroot_gt: ./datasets/Set14/GTmod2
    dataroot_lq: ./datasets/Set14/LRbicx2
    io_backend:
      type: disk

  # val_3:
  #   name: Urban100
  #   type: PairedImageDataset
  #   dataroot_gt: ./datasets/urban100/GTmod2
  #   dataroot_lq: ./datasets/urban100/LRbicx2
  #   io_backend:
  #     type: disk


# network structures
network_g:
  type: DRCT
  upscale: 2
  in_chans: 3
  img_size: 64
  window_size: 16
  compress_ratio: 3
  squeeze_factor: 30
  conv_scale: 0.01
  overlap_ratio: 0.5
  img_range: 1.
  depths: [6, 6, 6, 6, 6, 6]
  embed_dim: 180
  num_heads: [6, 6, 6, 6, 6, 6]
  mlp_ratio: 2
  upsampler: 'pixelshuffle'
  resi_connection: '1conv'

# path
path:
  pretrain_network_g: ~
  strict_load_g: true
  resume_state: ~

# training settings
train:
  ema_decay: 0.999
  optim_g:
    type: Adam
    lr: !!float 2e-4
    weight_decay: 0
    betas: [0.9, 0.99]

  scheduler:
    type: MultiStepLR
    milestones: [250000, 400000, 450000, 475000]
    gamma: 0.5

  total_iter: 500000
  warmup_iter: -1  # no warm up

  # losses
  pixel_opt:
    type: L1Loss
    loss_weight: 1.0
    reduction: mean

# validation settings
val:
  val_freq: !!float 5e3
  save_img: false
  pbar: False

  metrics:
    psnr:
      type: calculate_psnr
      crop_border: 2
      test_y_channel: true
      better: higher  # the higher, the better. Default: higher
    ssim:
      type: calculate_ssim
      crop_border: 2
      test_y_channel: true
      better: higher  # the higher, the better. Default: higher

# logging settings
logger:
  print_freq: 100
  save_checkpoint_freq: !!float 5e3
  use_tb_logger: true
  wandb:
    project: ~
    resume_id: ~

# dist training settings
dist_params:
  backend: nccl
  port: 29500

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant