-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmkdocs.yml
174 lines (169 loc) · 8.54 KB
/
mkdocs.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
site_name: ai课程参考资料
nav:
- 前言: index.md
- 机器学习基础:
- 机器学习入门:
- 机器学习入门: 201-ml-intro.md
- 基本概念:
- 机器学习简介: 201-ml-basics/201-ml-intro-basics-01.md
- 线性回归: 201-ml-basics/201-ml-intro-basics-02.md
- logitstic回归: 201-ml-basics/201-ml-intro-basics-03.md
- 损失: 201-ml-basics/201-ml-intro-basics-04.md
- 梯度下降: 201-ml-basics/201-ml-intro-basics-05.md
- 正则化/weight decay: 201-ml-basics/201-ml-intro-basics-06.md
- 应用技巧:
- 非均衡数据: 201-ml-basics/201-ml-intro-skills-07.md
- Hard-Example: 201-ml-basics/201-ml-intro-skills-08.md
- Early Stop: 201-ml-basics/201-ml-intro-skills-09.md
- 机器学习基础算法:
- 支持向量机: 202-ml-basics/202-ml-basics-01.md
- 决策树: 202-ml-basics/202-ml-basics-02.md
- 随机森林: 202-ml-basics/202-ml-basics-03.md
- GBDT: 202-ml-basics/202-ml-basics-04.md
- PCA: 202-ml-basics/202-ml-basics-05.md
- 聚类算法: 202-ml-basics/202-ml-basics-06.md
- 吸引力传播: 404.md
- 集成学习: 202-ml-basics/202-ml-basics-07.md
- 优化算法: 202-ml-basics/202-ml-basics-08.md
- 机器学习算法进阶:
- 异常检测: 203-ml-advance/203-ml-advance-03.md
- 最大期望算法: 404.md
- 深度学习入门:
- 深度学习入门: 211-dl-intro.md
- 深度学习基础: 211-dl-intro/211-dl-intro-01.md
- 深度学习历史发展: 211-dl-intro/211-dl-intro-02.md
- 感知器与优化规则: 211-dl-intro/211-dl-intro-03.md
- 异或问题: 211-dl-intro/211-dl-intro-04.md
- 神经网络简介: 211-dl-intro/211-dl-intro-05.md
- 全连接网络: 211-dl-intro/211-dl-intro-06.md
- 深度学习基础算法:
- 深度学习基础算法: 212-dl-basics.md
- 基础算法:
- 神经网络前向传播: 212-dl-basics/212-dl-basics-01.md
- 神经网络拟合数据: 212-dl-basics/212-dl-basics-02.md
- 神经网络反向传播: 212-dl-basics/212-dl-basics-03.md
- 调参:
- 过拟合与欠拟合: 212-dl-basics/212-dl-basics-04.md
- 学习率/lr decay: 212-dl-basics/212-dl-basics-05.md
- 优化算法:动量: 212-dl-basics/212-dl-basics-06.md
- 正则化: 212-dl-basics/212-dl-basics-07.md
- 进一步讨论损失函数: 212-dl-basics/212-dl-basics-08.md
- 进一步讨论激活函数: 212-dl-basics/212-dl-basics-09.md
- 参数的初始化: 212-dl-basics/212-dl-basics-10.md
- batch norm: 212-dl-basics/212-dl-basics-11.md
- dropout: 212-dl-basics/212-dl-basics-12.md
- 蒸馏法/transfer learning: 212-dl-basics/212-dl-basics-13.md
- 深度置信网络: 212-dl-basics/212-dl-basics-14.md
- 自编码器: 212-dl-basics/212-dl-basics-15.md
- 视觉:
- 计算机视觉基础:
- 视觉介绍:
- 动物视觉介绍: 301-cv-basics/301-cv-basics-01.md
- 计算机视觉介绍: 301-cv-basics/301-cv-basics-02.md
- 视觉系统: 301-cv-basics/301-cv-basics-03.md
- 视觉认知: 301-cv-basics/301-cv-basics-04.md
- 数字图像基础:
- 图像信号的数学表示: 301-cv-basics/301-cv-basics-05.md
- 图像的采样和量化: 301-cv-basics/301-cv-basics-06.md
- 像素连通性: 301-cv-basics/301-cv-basics-07.md
- rgb/bgr/lab/yuv/hsv/cmy及换算公式: 301-cv-basics/301-cv-basics-08.md
- 视频压缩与图像显示: 301-cv-basics/301-cv-basics-09.md
- 图像的线性系统理论: 301-cv-basics/301-cv-basics-10.md
- 常用CV算法:
- 图像处理与变换:
- 二维傅立叶变换及其基本性质: 302-cv-algorithms/302-cv-algorithms-01.md
- 快速傅立叶变换: 302-cv-algorithms/302-cv-algorithms-02.md
- 离散小波变换: 302-cv-algorithms/302-cv-algorithms-03.md
- 象素间的连通性: 302-cv-algorithms/302-cv-algorithms-04.md
- 灰度/彩色直方图: 302-cv-algorithms/302-cv-algorithms-05.md
- 图像空域滤波技术: 302-cv-algorithms/302-cv-algorithms-06.md
- 图像频域滤波: 302-cv-algorithms/302-cv-algorithms-07.md
- 多光谱图像处理: 302-cv-algorithms/302-cv-algorithms-08.md
- 颜色特征的图像检索: 302-cv-algorithms/302-cv-algorithms-09.md
- 图像金字塔: 302-cv-algorithms/302-cv-algorithms-10.md
- 二值化/大津算法/开闭操作: 302-cv-algorithms/302-cv-algorithms-11.md
- 边缘检测:sobel/laplance/canny: 302-cv-algorithms/302-cv-algorithms-12.md
- 泛洪填充: 302-cv-algorithms/302-cv-algorithms-13.md
- 视觉几何基础:
- 坐标系与坐标变化: 302-cv-algorithms/302-cv-algorithms-14.md
- 多视角: 302-cv-algorithms/302-cv-algorithms-15.md
- 标定: 302-cv-algorithms/302-cv-algorithms-16.md
- 双目与景深: 302-cv-algorithms/302-cv-algorithms-17.md
- 哈夫变换: 302-cv-algorithms/302-cv-algorithms-18.md
- 姿态与空间重建/多图使用: 302-cv-algorithms/302-cv-algorithms-19.md
- 视觉认知模型:
- 微分算子: 302-cv-algorithms/302-cv-algorithms-20.md
- 阈值分割: 302-cv-algorithms/302-cv-algorithms-21.md
- 区域生长: 302-cv-algorithms/302-cv-algorithms-22.md
- 评价测度: 302-cv-algorithms/302-cv-algorithms-23.md
- 图搜索: 302-cv-algorithms/302-cv-algorithms-24.md
- 动态规划: 302-cv-algorithms/302-cv-algorithms-25.md
- 灰度共生矩阵: 302-cv-algorithms/302-cv-algorithms-26.md
- 基于模型的纹理分析: 302-cv-algorithms/302-cv-algorithms-27.md
- 运动估计简介/跟踪: 302-cv-algorithms/302-cv-algorithms-28.md
- 光流法: 302-cv-algorithms/302-cv-algorithms-29.md
- 识别与高层认知:
- 图像的特征点: 302-cv-algorithms/302-cv-algorithms-30.md
- Harris算法: 302-cv-algorithms/302-cv-algorithms-31.md
- SIFT/SURF算法: 302-cv-algorithms/302-cv-algorithms-32.md
- HOG算子检测: 302-cv-algorithms/302-cv-algorithms-33.md
- 距离: 302-cv-algorithms/302-cv-algorithms-34.md
- 统计分类方法: 302-cv-algorithms/302-cv-algorithms-35.md
- 马尔科夫随机场: 302-cv-algorithms/302-cv-algorithms-36.md
- 条件随机场: 302-cv-algorithms/302-cv-algorithms-37.md
- 模板匹配: 302-cv-algorithms/302-cv-algorithms-38.md
- 目标匹配: 302-cv-algorithms/302-cv-algorithms-39.md
- 特征内容匹配: 302-cv-algorithms/302-cv-algorithms-40.md
- Marr视觉计算理论: 302-cv-algorithms/302-cv-algorithms-41.md
- 应用:
- 多序列的三维重建: 302-cv-algorithms/302-cv-algorithms-42.md
- 数字图书馆藏查询: 302-cv-algorithms/302-cv-algorithms-43.md
- OpenCV:
- opencv简介: 303-cv-opencv/303-cv-opencv-01.md
- 不同操作系统下的OpenCV安装教程: 303-cv-opencv/303-cv-opencv-02.md
- 图片存取与显示: 303-cv-opencv/303-cv-opencv-03.md
- 颜色转换: 303-cv-opencv/303-cv-opencv-04.md
- 各经典算法的api及文档导读: 303-cv-opencv/303-cv-opencv-05.md
- Visual Studio 2019 Community下源码编译OpenCV 3.4.1: 303-cv-opencv/303-cv-opencv-06.md
- 计算机视觉与神经网络:
- 卷积神经网络:
- 卷积计算: 311-cv-nn/311-cv-nn-01.md
- 初始化: 311-cv-nn/311-cv-nn-02.md
- 传统卷积使用: 311-cv-nn/311-cv-nn-03.md
- 卷积神经网络介绍: 311-cv-nn/311-cv-nn-04.md
- 池化: 311-cv-nn/311-cv-nn-05.md
- 特征的使用: 311-cv-nn/311-cv-nn-06.md
- 业务网络设计: 311-cv-nn/311-cv-nn-07.md
- 分类器的概念: 311-cv-nn/311-cv-nn-08.md
- 卷积神经网络案例:
- VGG: 311-cv-nn/311-cv-nn-09.md
- GoogleLeNet: 311-cv-nn/311-cv-nn-10.md
- resnet: 311-cv-nn/311-cv-nn-11.md
- densenet: 311-cv-nn/311-cv-nn-12.md
- nasnet: 311-cv-nn/311-cv-nn-13.md
- se-net: 311-cv-nn/311-cv-nn-14.md
- MobileNet v1/v2: 311-cv-nn/311-cv-nn-15.md
- 已被证明有效的基础模块: 311-cv-nn/311-cv-nn-16.md
- 卷积神经网络应用:
- 分类: 311-cv-nn/311-cv-nn-17.md
- 检测: 311-cv-nn/311-cv-nn-18.md
- 分割: 311-cv-nn/311-cv-nn-19.md
- 人脸: 311-cv-nn/311-cv-nn-20.md
- 各种娱乐项目(style transher/deepdream/nima/gan): 311-cv-nn/311-cv-nn-21.md
- backbone: 311-cv-nn/311-cv-nn-22.md
- 自然语言处理NLP: 321-nlp-intro.md
- 附录:
- 符号约定: notation.md
theme:
readthedocs
markdown_extensions:
- mdx_math
- extra
- tables
- fenced_code
- toc:
permalink: "#"
separator: "_"
extra_javascript:
- mathjaxhelper.js
- https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS_HTML