Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

train error #489

Open
BenjaminSchaar opened this issue Apr 23, 2024 · 1 comment
Open

train error #489

BenjaminSchaar opened this issue Apr 23, 2024 · 1 comment

Comments

@BenjaminSchaar
Copy link

BenjaminSchaar commented Apr 23, 2024

(unet_test) benjaminschaar@A565-Benjamin-Mac Pytorch-UNet % python train.py
INFO: Using device cpu
INFO: Network:
3 input channels
2 output channels (classes)
Transposed conv upscaling
INFO: Creating dataset with 110 examples
INFO: Scanning mask files to determine unique values
100%|█████████████████████████████████████████| 110/110 [00:32<00:00, 3.35it/s]
INFO: Unique mask values: [[0, 0, 0], [1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4], [5, 5, 5], [6, 6, 6], [8, 8, 8], [10, 10, 10], [12, 12, 12], [14, 14, 14], [15, 15, 15], [17, 17, 17], [19, 19, 19], [21, 21, 21], [22, 22, 22], [24, 24, 24], [25, 25, 25], [27, 27, 27], [29, 29, 29], [30, 30, 30], [32, 32, 32], [33, 33, 33], [35, 35, 35], [36, 36, 36], [38, 38, 38], [39, 39, 39], [40, 40, 40], [42, 42, 42], [43, 43, 43], [45, 45, 45], [46, 46, 46], [47, 47, 47], [49, 49, 49], [50, 50, 50], [51, 51, 51], [53, 53, 53], [54, 54, 54], [55, 55, 55], [56, 56, 56], [58, 58, 58], [59, 59, 59], [60, 60, 60], [61, 61, 61], [63, 63, 63], [64, 64, 64], [65, 65, 65], [66, 66, 66], [68, 68, 68], [69, 69, 69], [70, 70, 70], [71, 71, 71], [72, 72, 72], [73, 73, 73], [75, 75, 75], [76, 76, 76], [77, 77, 77], [78, 78, 78], [79, 79, 79], [80, 80, 80], [82, 82, 82], [83, 83, 83], [84, 84, 84], [85, 85, 85], [86, 86, 86], [87, 87, 87], [88, 88, 88], [89, 89, 89], [90, 90, 90], [92, 92, 92], [93, 93, 93], [94, 94, 94], [95, 95, 95], [96, 96, 96], [97, 97, 97], [98, 98, 98], [99, 99, 99], [100, 100, 100], [101, 101, 101], [102, 102, 102], [103, 103, 103], [104, 104, 104], [105, 105, 105], [106, 106, 106], [107, 107, 107], [108, 108, 108], [110, 110, 110], [111, 111, 111], [112, 112, 112], [113, 113, 113], [114, 114, 114], [115, 115, 115], [116, 116, 116], [117, 117, 117], [118, 118, 118], [119, 119, 119], [120, 120, 120], [121, 121, 121], [122, 122, 122], [123, 123, 123], [124, 124, 124], [125, 125, 125], [126, 126, 126], [127, 127, 127], [128, 128, 128], [129, 129, 129], [130, 130, 130], [131, 131, 131], [132, 132, 132], [133, 133, 133], [134, 134, 134], [135, 135, 135], [136, 136, 136], [137, 137, 137], [138, 138, 138], [139, 139, 139], [140, 140, 140], [141, 141, 141], [142, 142, 142], [143, 143, 143], [144, 144, 144], [145, 145, 145], [146, 146, 146], [147, 147, 147], [148, 148, 148], [149, 149, 149], [150, 150, 150], [151, 151, 151], [152, 152, 152], [153, 153, 153], [154, 154, 154], [155, 155, 155], [156, 156, 156], [157, 157, 157], [158, 158, 158], [159, 159, 159], [160, 160, 160], [161, 161, 161], [162, 162, 162], [163, 163, 163], [164, 164, 164], [165, 165, 165], [166, 166, 166], [167, 167, 167], [168, 168, 168], [169, 169, 169], [170, 170, 170], [171, 171, 171], [172, 172, 172], [173, 173, 173], [174, 174, 174], [175, 175, 175], [176, 176, 176], [177, 177, 177], [178, 178, 178], [179, 179, 179], [180, 180, 180], [181, 181, 181], [182, 182, 182], [183, 183, 183], [184, 184, 184], [185, 185, 185], [186, 186, 186], [187, 187, 187], [188, 188, 188], [189, 189, 189], [190, 190, 190], [191, 191, 191], [192, 192, 192], [193, 193, 193], [194, 194, 194], [195, 195, 195], [196, 196, 196], [197, 197, 197], [198, 198, 198], [199, 199, 199], [200, 200, 200], [201, 201, 201], [202, 202, 202], [203, 203, 203], [204, 204, 204], [205, 205, 205], [206, 206, 206], [207, 207, 207], [208, 208, 208], [209, 209, 209], [210, 210, 210], [211, 211, 211], [212, 212, 212], [213, 213, 213], [214, 214, 214], [215, 215, 215], [216, 216, 216], [217, 217, 217], [218, 218, 218], [219, 219, 219], [220, 220, 220], [221, 221, 221], [222, 222, 222], [223, 223, 223], [224, 224, 224], [225, 225, 225], [226, 226, 226], [227, 227, 227], [228, 228, 228], [229, 229, 229], [230, 230, 230], [231, 231, 231], [232, 232, 232], [233, 233, 233], [234, 234, 234], [235, 235, 235], [236, 236, 236], [237, 237, 237], [238, 238, 238], [239, 239, 239], [240, 240, 240], [241, 241, 241], [242, 242, 242], [243, 243, 243], [244, 244, 244], [245, 245, 245], [246, 246, 246], [247, 247, 247], [248, 248, 248], [249, 249, 249], [250, 250, 250], [251, 251, 251], [252, 252, 252], [253, 253, 253], [254, 254, 254], [255, 255, 255]]
wandb: Currently logged in as: anony-mouse-710100656648280445. Use wandb login --relogin to force relogin
wandb: Tracking run with wandb version 0.16.6
wandb: Run data is saved locally in /Users/benjaminschaar/Documents/GitHub/u_net/Pytorch-UNet/wandb/run-20240423_150007-eq0pkp6k
wandb: Run wandb offline to turn off syncing.
wandb: Syncing run major-star-3
wandb: ⭐️ View project at https://wandb.ai/anony-mouse-710100656648280445/U-Net?apiKey=f4c911e74a581ca7f069408a11e024660ec7b048
wandb: 🚀 View run at https://wandb.ai/anony-mouse-710100656648280445/U-Net/runs/eq0pkp6k?apiKey=f4c911e74a581ca7f069408a11e024660ec7b048
wandb: WARNING Do NOT share these links with anyone. They can be used to claim your runs.
INFO: Starting training:
Epochs: 5
Batch size: 1
Learning rate: 1e-05
Training size: 99
Validation size: 11
Checkpoints: True
Device: cpu
Images scaling: 0.5
Mixed Precision: False

Epoch 1/5: 0%| | 0/99 [00:22<?, ?img/s]
Traceback (most recent call last):
File "train.py", line 213, in
train_model(
File "train.py", line 106, in train_model
loss = criterion(masks_pred, true_masks)
File "/Users/benjaminschaar/anaconda3/envs/unet_test/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/Users/benjaminschaar/anaconda3/envs/unet_test/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "/Users/benjaminschaar/anaconda3/envs/unet_test/lib/python3.8/site-packages/torch/nn/modules/loss.py", line 1179, in forward
return F.cross_entropy(input, target, weight=self.weight,
File "/Users/benjaminschaar/anaconda3/envs/unet_test/lib/python3.8/site-packages/torch/nn/functional.py", line 3059, in cross_entropy
return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing)
IndexError: Target 231 is out of bounds.
wandb: 🚀 View run major-star-3 at: https://wandb.ai/anony-mouse-710100656648280445/U-Net/runs/eq0pkp6k?apiKey=f4c911e74a581ca7f069408a11e024660ec7b048
wandb: ⭐️ View project at: https://wandb.ai/anony-mouse-710100656648280445/U-Net?apiKey=f4c911e74a581ca7f069408a11e024660ec7b048
wandb: Synced 6 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)
wandb: Find logs at: ./wandb/run-20240423_150007-eq0pkp6k/logs

I dont Know why I get this error, i am using my own dataset with rgb masks and images

@bayueyaoshao
Copy link

The input images and target masks should be in the data/imgs and data/masks folders respectively (note that the imgs and masks folder should not contain any sub-folder or any other files, due to the greedy data-loader). For Carvana, images are RGB and masks are black and white.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants