You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The input images and target masks should be in the data/imgs and data/masks folders respectively (note that the imgs and masks folder should not contain any sub-folder or any other files, due to the greedy data-loader). For Carvana, images are RGB and masks are black and white.
(unet_test) benjaminschaar@A565-Benjamin-Mac Pytorch-UNet % python train.py
INFO: Using device cpu
INFO: Network:
3 input channels
2 output channels (classes)
Transposed conv upscaling
INFO: Creating dataset with 110 examples
INFO: Scanning mask files to determine unique values
100%|█████████████████████████████████████████| 110/110 [00:32<00:00, 3.35it/s]
INFO: Unique mask values: [[0, 0, 0], [1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4], [5, 5, 5], [6, 6, 6], [8, 8, 8], [10, 10, 10], [12, 12, 12], [14, 14, 14], [15, 15, 15], [17, 17, 17], [19, 19, 19], [21, 21, 21], [22, 22, 22], [24, 24, 24], [25, 25, 25], [27, 27, 27], [29, 29, 29], [30, 30, 30], [32, 32, 32], [33, 33, 33], [35, 35, 35], [36, 36, 36], [38, 38, 38], [39, 39, 39], [40, 40, 40], [42, 42, 42], [43, 43, 43], [45, 45, 45], [46, 46, 46], [47, 47, 47], [49, 49, 49], [50, 50, 50], [51, 51, 51], [53, 53, 53], [54, 54, 54], [55, 55, 55], [56, 56, 56], [58, 58, 58], [59, 59, 59], [60, 60, 60], [61, 61, 61], [63, 63, 63], [64, 64, 64], [65, 65, 65], [66, 66, 66], [68, 68, 68], [69, 69, 69], [70, 70, 70], [71, 71, 71], [72, 72, 72], [73, 73, 73], [75, 75, 75], [76, 76, 76], [77, 77, 77], [78, 78, 78], [79, 79, 79], [80, 80, 80], [82, 82, 82], [83, 83, 83], [84, 84, 84], [85, 85, 85], [86, 86, 86], [87, 87, 87], [88, 88, 88], [89, 89, 89], [90, 90, 90], [92, 92, 92], [93, 93, 93], [94, 94, 94], [95, 95, 95], [96, 96, 96], [97, 97, 97], [98, 98, 98], [99, 99, 99], [100, 100, 100], [101, 101, 101], [102, 102, 102], [103, 103, 103], [104, 104, 104], [105, 105, 105], [106, 106, 106], [107, 107, 107], [108, 108, 108], [110, 110, 110], [111, 111, 111], [112, 112, 112], [113, 113, 113], [114, 114, 114], [115, 115, 115], [116, 116, 116], [117, 117, 117], [118, 118, 118], [119, 119, 119], [120, 120, 120], [121, 121, 121], [122, 122, 122], [123, 123, 123], [124, 124, 124], [125, 125, 125], [126, 126, 126], [127, 127, 127], [128, 128, 128], [129, 129, 129], [130, 130, 130], [131, 131, 131], [132, 132, 132], [133, 133, 133], [134, 134, 134], [135, 135, 135], [136, 136, 136], [137, 137, 137], [138, 138, 138], [139, 139, 139], [140, 140, 140], [141, 141, 141], [142, 142, 142], [143, 143, 143], [144, 144, 144], [145, 145, 145], [146, 146, 146], [147, 147, 147], [148, 148, 148], [149, 149, 149], [150, 150, 150], [151, 151, 151], [152, 152, 152], [153, 153, 153], [154, 154, 154], [155, 155, 155], [156, 156, 156], [157, 157, 157], [158, 158, 158], [159, 159, 159], [160, 160, 160], [161, 161, 161], [162, 162, 162], [163, 163, 163], [164, 164, 164], [165, 165, 165], [166, 166, 166], [167, 167, 167], [168, 168, 168], [169, 169, 169], [170, 170, 170], [171, 171, 171], [172, 172, 172], [173, 173, 173], [174, 174, 174], [175, 175, 175], [176, 176, 176], [177, 177, 177], [178, 178, 178], [179, 179, 179], [180, 180, 180], [181, 181, 181], [182, 182, 182], [183, 183, 183], [184, 184, 184], [185, 185, 185], [186, 186, 186], [187, 187, 187], [188, 188, 188], [189, 189, 189], [190, 190, 190], [191, 191, 191], [192, 192, 192], [193, 193, 193], [194, 194, 194], [195, 195, 195], [196, 196, 196], [197, 197, 197], [198, 198, 198], [199, 199, 199], [200, 200, 200], [201, 201, 201], [202, 202, 202], [203, 203, 203], [204, 204, 204], [205, 205, 205], [206, 206, 206], [207, 207, 207], [208, 208, 208], [209, 209, 209], [210, 210, 210], [211, 211, 211], [212, 212, 212], [213, 213, 213], [214, 214, 214], [215, 215, 215], [216, 216, 216], [217, 217, 217], [218, 218, 218], [219, 219, 219], [220, 220, 220], [221, 221, 221], [222, 222, 222], [223, 223, 223], [224, 224, 224], [225, 225, 225], [226, 226, 226], [227, 227, 227], [228, 228, 228], [229, 229, 229], [230, 230, 230], [231, 231, 231], [232, 232, 232], [233, 233, 233], [234, 234, 234], [235, 235, 235], [236, 236, 236], [237, 237, 237], [238, 238, 238], [239, 239, 239], [240, 240, 240], [241, 241, 241], [242, 242, 242], [243, 243, 243], [244, 244, 244], [245, 245, 245], [246, 246, 246], [247, 247, 247], [248, 248, 248], [249, 249, 249], [250, 250, 250], [251, 251, 251], [252, 252, 252], [253, 253, 253], [254, 254, 254], [255, 255, 255]]
wandb: Currently logged in as: anony-mouse-710100656648280445. Use
wandb login --relogin
to force reloginwandb: Tracking run with wandb version 0.16.6
wandb: Run data is saved locally in /Users/benjaminschaar/Documents/GitHub/u_net/Pytorch-UNet/wandb/run-20240423_150007-eq0pkp6k
wandb: Run
wandb offline
to turn off syncing.wandb: Syncing run major-star-3
wandb: ⭐️ View project at https://wandb.ai/anony-mouse-710100656648280445/U-Net?apiKey=f4c911e74a581ca7f069408a11e024660ec7b048
wandb: 🚀 View run at https://wandb.ai/anony-mouse-710100656648280445/U-Net/runs/eq0pkp6k?apiKey=f4c911e74a581ca7f069408a11e024660ec7b048
wandb: WARNING Do NOT share these links with anyone. They can be used to claim your runs.
INFO: Starting training:
Epochs: 5
Batch size: 1
Learning rate: 1e-05
Training size: 99
Validation size: 11
Checkpoints: True
Device: cpu
Images scaling: 0.5
Mixed Precision: False
Epoch 1/5: 0%| | 0/99 [00:22<?, ?img/s]
Traceback (most recent call last):
File "train.py", line 213, in
train_model(
File "train.py", line 106, in train_model
loss = criterion(masks_pred, true_masks)
File "/Users/benjaminschaar/anaconda3/envs/unet_test/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/Users/benjaminschaar/anaconda3/envs/unet_test/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "/Users/benjaminschaar/anaconda3/envs/unet_test/lib/python3.8/site-packages/torch/nn/modules/loss.py", line 1179, in forward
return F.cross_entropy(input, target, weight=self.weight,
File "/Users/benjaminschaar/anaconda3/envs/unet_test/lib/python3.8/site-packages/torch/nn/functional.py", line 3059, in cross_entropy
return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing)
IndexError: Target 231 is out of bounds.
wandb: 🚀 View run major-star-3 at: https://wandb.ai/anony-mouse-710100656648280445/U-Net/runs/eq0pkp6k?apiKey=f4c911e74a581ca7f069408a11e024660ec7b048
wandb: ⭐️ View project at: https://wandb.ai/anony-mouse-710100656648280445/U-Net?apiKey=f4c911e74a581ca7f069408a11e024660ec7b048
wandb: Synced 6 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)
wandb: Find logs at: ./wandb/run-20240423_150007-eq0pkp6k/logs
I dont Know why I get this error, i am using my own dataset with rgb masks and images
The text was updated successfully, but these errors were encountered: