-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathcube_variables.t
60 lines (49 loc) · 2.49 KB
/
cube_variables.t
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Testing parsing and printing of cube variables
$ cat >cube_vars.ny <<EOF
> axiom A:Type
> axiom B:Type
> axiom b:B
> def f : A -> B := x |-> b
> def g (x:A) : B := b
> def fg : Id (A -> B) f g := x0 x1 x2 |-> refl b
> echo (x0 x1 x2 |-> fg x0 x1 x2) : Id (A -> B) f g
> echo (x00 x01 x02 x10 x11 x12 x20 x21 x22 |-> refl fg x00 x01 x02 x10 x11 x12 x20 x21 x22) : Id (Id (A -> B) f g) fg fg
> echo (x |=> fg x.0 x.1 x.2) : Id (A -> B) f g
> echo ((x |=> refl fg x.00 x.01 x.02 x.10 x.11 x.12 x.20 x.21 x.22) : Id (Id (A -> B) f g) fg fg)
> axiom h (x:A) : Id B b b
> def fgh : Id (A -> B) f g := x0 x1 x2 |-> h x0
> echo (x0 x1 x2 |-> fgh x0 x1 x2) : Id (A -> B) f g
> echo (x |=> fgh x.0 x.1 x.2) : Id (A -> B) f g
> echo ((x |=> refl fgh x.00 x.01 x.02 x.10 x.11 x.12 x.20 x.21 x.22) : Id (Id (A -> B) f g) fgh fgh)
> echo ((x |=> refl h x.00 x.01 x.02) : Id (Id (A -> B) f g) fgh fgh)
> axiom a0:A
> axiom a1:A
> axiom a2:Id A a0 a1
> echo refl f a0 a1 a2
$ narya cube_vars.ny
x0 x1 x2 ↦ refl b
: refl Π A A (refl A) (_ ↦ B) (_ ↦ B) (_ ⤇ refl B) f g
x00 x01 x02 x10 x11 x12 x20 x21 x22 ↦ b⁽ᵉᵉ⁾
: Π⁽ᵉᵉ⁾ A A (refl A) A A (refl A) (refl A) (refl A) A⁽ᵉᵉ⁾ (_ ↦ B) (_ ↦ B)
(_ ⤇ refl B) (_ ↦ B) (_ ↦ B) (_ ⤇ refl B) (_ ⤇ refl B) (_ ⤇ refl B)
(_ ⤇ B⁽ᵉᵉ⁾) f f (refl f) g g (refl g) fg fg
x ⤇ refl b
: refl Π A A (refl A) (_ ↦ B) (_ ↦ B) (_ ⤇ refl B) f g
x ⤇ b⁽ᵉᵉ⁾
: Π⁽ᵉᵉ⁾ A A (refl A) A A (refl A) (refl A) (refl A) A⁽ᵉᵉ⁾ (_ ↦ B) (_ ↦ B)
(_ ⤇ refl B) (_ ↦ B) (_ ↦ B) (_ ⤇ refl B) (_ ⤇ refl B) (_ ⤇ refl B)
(_ ⤇ B⁽ᵉᵉ⁾) f f (refl f) g g (refl g) fg fg
x0 x1 x2 ↦ h x0
: refl Π A A (refl A) (_ ↦ B) (_ ↦ B) (_ ⤇ refl B) f g
x ⤇ h x.0
: refl Π A A (refl A) (_ ↦ B) (_ ↦ B) (_ ⤇ refl B) f g
x ⤇ refl h x.00 x.01 x.02
: Π⁽ᵉᵉ⁾ A A (refl A) A A (refl A) (refl A) (refl A) A⁽ᵉᵉ⁾ (_ ↦ B) (_ ↦ B)
(_ ⤇ refl B) (_ ↦ B) (_ ↦ B) (_ ⤇ refl B) (_ ⤇ refl B) (_ ⤇ refl B)
(_ ⤇ B⁽ᵉᵉ⁾) f f (refl f) g g (refl g) fgh fgh
x ⤇ refl h x.00 x.01 x.02
: Π⁽ᵉᵉ⁾ A A (refl A) A A (refl A) (refl A) (refl A) A⁽ᵉᵉ⁾ (_ ↦ B) (_ ↦ B)
(_ ⤇ refl B) (_ ↦ B) (_ ↦ B) (_ ⤇ refl B) (_ ⤇ refl B) (_ ⤇ refl B)
(_ ⤇ B⁽ᵉᵉ⁾) f f (refl f) g g (refl g) fgh fgh
refl b
: refl B b b