-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.jl
228 lines (187 loc) · 5.46 KB
/
utils.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#Laguerre breaks at 16
for i in 12:20
println("n = $i ", all(L_rec(i) .< 1/eps()))
end
# Laguerre Coefficient Calculator
# Credit to [Peter Luschny Apr. 11, 2015](https://oeis.org/A021009)
function l(n,m)
if 0 == n == m
1
elseif m == -1
0
elseif n < m
0
elseif n >= 1
(n+m+1) * l(n-1, m) - l(n-1, m-1)
end
end
LTable(n) = [l(i,j) for i in 0:n,j in 0:n]
horner_L12(x) = @evalpoly x 1.0 -12.0 33.0 -36.666666666666664 20.625 -6.6 1.2833333333333334 -0.15714285714285714 0.012276785714285714 -0.0006062610229276896 1.8187830687830687e-5 -3.0062530062530064e-7
# Hermite Coefficient Calculator
# Credit to [Paul Barry, Aug 28, 2005.](https://oeis.org/search?q=coefficient+triangle+hermite&sort=&language=&go=Search)
function h(n,k)
if iseven(n-k) && (n-k >= 0)
( (-1)^((n-k)/2) * (2^k) * factorial(n)) / (factorial(k) * factorial((n-k)/2))
else
0
end
end
Htable(n) = [h(i,j) for i in 0:n, j in 0:n]
horner_H12(x) = Base.Math.@evalpoly x 665280 0 -7983360 0 13305600 0 -7096320 0 1520640 0 -135168 0 4096
# Legendre Coefficient Calculator
# Credit to Ralf Stephan, Apr. 07. 2016 https://oeis.org/A008556
PTable(n) = [binomial(2*(i-j),i-j) * binomial(i-j,j) for i in 0:n, j in 0:n]
horner_P12(x) = Base.Math.@evalpoly x
# Tshebyshev T First Kind Coefficient Calculator
# Credit to Micahel Somos, Aug. 08, 2011 https://oeis.org/A049310
function T(n,k)
if k < 0 || k > n || (n + k) % 2 == 1
return 0
end
return (-1)^((n+k)/2 +k) * binomial(Int((n+k)/2),k)
end
TTable(n) = Int[u(i,j) for i in 0:n, j in 0:n]
# Tshebyshev U Second Kind Coefficient Calculator
function u(n,m)
if n < m || isodd(n+m)
0
else
((-1)^((n+m)/2+m))*(2^m)*binomial(Int((n+m)/2), m)
end
end
UTable(n) = Int[u(i,j) for i in 0:n, j in 0:n]
# Consider adding the Bell and Bernoulli polynomials
# stirling numbers of the first Kind
s1(m,n) = sum([(-1)^k*binomial(n-1+k,n-m+k)*binomial(2*n-m,n-m-k)*s2(k,n-m-k) for k in 0:n-m])
row_s1(n) = [s1(i,n) for i in 1:n]
# stirling numbers of the second kind
s2(n,k) = (1/factorial(k))*sum([(-1)^i * binomial(k,i) * (k - i)^n for i in 0:k])
row_s2(n) = [s2(n,i) for i in 1:n]
s(n,m) = sum([(-1)^(n-j) * binomial(k,j) * factorial(j*y - 1 + n) / factorial(j*y-1) * y ^ (-k) / factorial(k) for j in 0:k])
function stirlings1(n::Int, k::Int, signed::Bool=false)
if signed == true
return (-1)^(n - k) * stirlings1(n, k)
end
if n < 0
throw(DomainError(n, "n must be nonnegative"))
elseif n == k == 0
return 1
elseif n == 0 || k == 0
return 0
elseif n == k
return 1
elseif k == 1
return factorial(n-1)
elseif k == n - 1
return binomial(n, 2)
elseif k == n - 2
return div((3 * n - 1) * binomial(n, 3), 4)
elseif k == n - 3
return binomial(n, 2) * binomial(n, 4)
end
return (n - 1) * stirlings1(n - 1, k) + stirlings1(n - 1, k - 1)
end
function stirlings2(n::Int, k::Int)
if n < 0
throw(DomainError(n, "n must be nonnegative"))
elseif n == k == 0
return 1
elseif n == 0 || k == 0
return 0
elseif k == n - 1
return binomial(n, 2)
elseif k == 2
return 2^(n-1) - 1
end
return k * stirlings2(n - 1, k) + stirlings2(n - 1, k - 1)
end
# Straight from Julia codebase
macro evalpoly(z, p...)
a = :($(esc(p[end])))
b = :($(esc(p[end-1])))
as = []
for i = length(p)-2:-1:1
ai = Symbol("a", i)
push!(as, :($ai = $a))
a = :(muladd(r, $ai, $b))
b = :($(esc(p[i])) - s * $ai) # see issue #15985 on fused mul-subtract
end
ai = :a0
push!(as, :($ai = $a))
C = Expr(:block,
:(x = real(tt)),
:(y = imag(tt)),
:(r = x + x),
:(s = muladd(x, x, y*y)),
as...,
:(muladd($ai, tt, $b)))
R = Expr(:macrocall, Symbol("@horner"), (), :tt, map(esc, p)...)
:(let tt = $(esc(z))
isa(tt, Complex) ? $C : $R
end)
end
#P
d(p, α,n) = binomial(n + α,n)
b(p, α, β, n, m) = (n-m+1)*(α+β+n+m)
c(p, α, m) = 2m*(α + m)
f(p, x) = 1 - x
#Ceven
d(p, α, n) = (-1)^n * (poch(α,n)/factorial(n))
b(p, α, n, m) = 2*(n-m+1)*(α+n+m-1)
c(p, m) = m*(2m-1)
f(p, x) = x^2
#Codd
d(p, α, n) = (-1)^n * (poch(α,n+1)/factorial(n))*2x
b(p, α, β, n, m) = 2*(n-m+1)*(α+β+n+m)
c(p, m) = m*(2m+1)
f(p, x) = x^2
#Teven
d(p, n) = (-1)^n
b(p, n, m) = 2(n-m+1)*(n+m-1)
c(p, m) = m*(2m-1)
f(p, x) = x^2
#Todd
d(p, n, x) = (-1^n)*(2n+1)*x
b(p, n, m) = 2*(n-m+1)*(n+m)
c(p, m) = m*(2m+1)
f(p, x) = x^2
#Ueven
d(p, n) = (-1)^n
b(p, n, m) = 2*(n-m+1)*(n+m)
c(p, m) = m*(2m+1)
f(p, x) = x^2
#Uodd
d(p, n, x) = (-1)^n * 2(n+1)*x
b(p, n, m) = 2*(n-m+1)*(n+m)
c(p, m) = m*(2m + 1)
f(p, x) = x^2
#Peven
d(p, n) = (-1/4)^n * binomial(2n,n)
b(p, n, m) = (n - m + 1) * (2n + 2m -1)
c(p, m) = m*(2m-1)
f(x) = x^2
#Podd
d(p, n, x) = (-1/4)^n * binomial(2n+1,n) * (n+1) * x
b(p, n, m) = (n - m + 1) * (2n + 2m + 1)
c(p, m) = m * (2m + 1)
f(p, x) = x^2
#L
d(p, α, n) = binomial(n + α, n)
b(p, n, m) = (n - m + 1)
c(p, m, α) = m * (α + m)
f(p, x) = x
#Heven
d(p, n) = (-1) ^ n * (factorial(2n)/factorial(n))
b(p, n, m) = 2*(n - m + 1)
c(p, m) = m*(2m - 1)
f(p, x) = x^2
#Hodd
d(p, n, x) = (-1) ^ n * (factorial(2n +1)/factorial(n))*2x
b(p, n, m) = 2*(n - m + 1)
c(p, m) = m * (2m + 1)
f(p, x) = x^2
#interpolate an expression as an expression into another expression.
ex_new = Meta.quot(ex)
quote
still_expression = $(esc(ex_new))
end