-
Notifications
You must be signed in to change notification settings - Fork 694
/
model.py
449 lines (362 loc) · 16 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
# ------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
# ------------------------------------------------------------------------------------------
import logging
import math
import os
from collections import OrderedDict
import copy
import math
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
import torch.nn.functional as F
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from torch.nn.parameter import Parameter
import loralib as lora
def gelu(x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
def gelu_fast(x):
return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 * (1.0 + 0.044715 * x * x)))
def gelu_new(x):
""" Implementation of the gelu activation function currently in Google Bert repo (identical to OpenAI GPT).
Also see https://arxiv.org/abs/1606.08415
"""
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
def swish(x):
return x * torch.sigmoid(x)
def _gelu_python(x):
""" Original Implementation of the gelu activation function in Google Bert repo when initially created.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
This is now written in C in torch.nn.functional
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root)."""
super(LayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class Conv1D(nn.Module):
def __init__(self, nf, nx):
super(Conv1D, self).__init__()
self.nf = nf
w = torch.empty(nx, nf)
nn.init.normal_(w, std=0.02)
self.weight = Parameter(w)
self.bias = Parameter(torch.zeros(nf))
def forward(self, x):
size_out = x.size()[:-1] + (self.nf,)
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
x = x.view(*size_out)
return x
class Attention(nn.Module):
def __init__(self, nx, n_ctx, config, scale=False):
super(Attention, self).__init__()
n_state = nx # in Attention: n_state=768 (nx=n_embd)
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
assert n_state % config.n_head == 0
self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
self.n_head = config.n_head
self.split_size = n_state
self.scale = scale
self.c_attn = lora.MergedLinear(
nx, n_state * 3,
r=config.lora_attn_dim,
lora_alpha=config.lora_attn_alpha,
lora_dropout=config.lora_dropout,
enable_lora=[True, False, True],
fan_in_fan_out=True,
merge_weights=False
)
self.c_proj = Conv1D(n_state, nx)
self.config = config
def _attn(self, q, k, v, len_kv=None):
w = torch.matmul(q, k)
if self.scale:
w = w / math.sqrt(v.size(-1))
nd, ns = w.size(-2), w.size(-1)
b = self.bias[:, :, ns-nd:ns, :ns]
w = w * b - 1e10 * (1 - b)
# q : (batch, head, q_seq_length, head_features)
# k : (batch, head, head_features, kv_seq_length)
# w : (batch, head, q_seq_length, kv_seq_length)
# v : (batch, head, kv_seq_length, head_features)
if len_kv is not None:
_len = torch.arange(k.size(-1), device=k.device)
_input_msk = _len[None, :] >= (len_kv)[:, None]
w = w.masked_fill(_input_msk.unsqueeze(1).unsqueeze(2), -1.0e10)
w = nn.Softmax(dim=-1)(w)
return torch.matmul(w, v)
def merge_heads(self, x):
x = x.permute(0, 2, 1, 3).contiguous()
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
def split_heads(self, x, k=False):
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
if k:
return x.permute(0, 2, 3, 1).contiguous() # (batch, head, head_features, seq_length)
else:
return x.permute(0, 2, 1, 3).contiguous() # (batch, head, seq_length, head_features)
def forward(self, x, history=None, layer_past=None, len_past=None):
hidden_states = x
x = self.c_attn(x)
query, key, value = x.split(self.split_size, dim=2)
query = self.split_heads(query)
key = self.split_heads(key, k=True)
value = self.split_heads(value)
#_input_msk = None
len_kv = None
if layer_past is not None:
# key : (batch, head, head_features, seq_length)
# value : (batch, head, seq_length, head_features)
# layer_past, key : (batch, head, seq_length, head_features)
if len_past is None:
past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] # transpose back cf below
key = torch.cat((past_key, key), dim=-1)
value = torch.cat((past_value, value), dim=-2)
else:
key_seq = key.shape[-1]
assert key_seq == 1
_batch = torch.arange(0, key.shape[0], dtype=torch.long, device=key.device)
past_key, past_value = layer_past[0], layer_past[1]
past_key[_batch,:,len_past,:] = key.squeeze(-1)
past_value[_batch,:,len_past,:] = value.squeeze(-2)
key = past_key.transpose(-2, -1)
value = past_value
len_kv = len_past + 1
present = torch.stack((key.transpose(-2, -1), value)) # transpose to have same shapes for stacking
a = self._attn(query, key, value, len_kv = len_kv)
a = self.merge_heads(a)
a = self.c_proj(a)
return a, present
class MLP(nn.Module):
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
super(MLP, self).__init__()
nx = config.n_embd
self.c_fc = Conv1D(n_state, nx)
self.c_proj = Conv1D(nx, n_state)
self.act = gelu
def forward(self, x):
h = self.act(self.c_fc(x))
h2 = self.c_proj(h)
return h2
class Block(nn.Module):
def __init__(self, n_ctx, config, scale=False):
super(Block, self).__init__()
nx = config.n_embd
self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
self.attn = Attention(nx, n_ctx, config, scale)
self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
self.mlp = MLP(4 * nx, config)
def forward(self, x, layer_past=None, len_past=None):
a, present = self.attn(self.ln_1(x), layer_past=layer_past, len_past=len_past)
x = x + a
m = self.mlp(self.ln_2(x))
x = x + m
return x, present
class GPT2Model(nn.Module):
def __init__(self, config):
super(GPT2Model, self).__init__()
self.n_layer = config.n_layer
self.n_embd = config.n_embd
self.n_vocab = config.vocab_size
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
self.wpe = nn.Embedding(config.n_positions, config.n_embd)
block = Block(config.n_ctx, config, scale=True)
self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.config = config
def forward(
self,
input_ids,
position_ids=None,
token_type_ids=None,
past=None,
len_past=None
):
if past is None:
past_length = 0
past = [None] * len(self.h)
elif len_past is None:
# equal size for past. []
past_length = past[0][0].size(-2)
if position_ids is None and len_past is None:
position_ids = torch.arange(
past_length, input_ids.size(-1) + past_length,
dtype=torch.long, device=input_ids.device
)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
elif len_past is not None:
position_ids = (len_past).unsqueeze(1) #.long()
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_ids.size(-1))
position_ids = position_ids.view(-1, position_ids.size(-1))
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
token_type_embeds = self.wte(token_type_ids)
else:
token_type_embeds = 0
hidden_states = inputs_embeds + position_embeds + token_type_embeds
presents = []
for block, layer_past in zip(self.h, past):
hidden_states, present = block(hidden_states, layer_past = layer_past, len_past=len_past)
presents.append(present)
hidden_states = self.ln_f(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
return hidden_states.view(*output_shape), presents
class GPT2LMHead(nn.Module):
def __init__(self, model_embeddings_weights, config):
super(GPT2LMHead, self).__init__()
self.n_embd = config.n_embd
self.set_embeddings_weights(model_embeddings_weights)
def set_embeddings_weights(self, model_embeddings_weights):
embed_shape = model_embeddings_weights.shape
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
self.decoder.weight = model_embeddings_weights # Tied weights
def forward(self, hidden_state):
# Truncated Language modeling logits (we remove the last token)
# h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
lm_logits = self.decoder(hidden_state)
return lm_logits
class GPT2Config(object):
def __init__(
self,
vocab_size_or_config_json_file=50257,
n_positions=1024,
n_ctx=1024,
n_embd=768,
n_layer=12,
n_head=12,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
lora_attn_dim=0,
lora_attn_alpha=128,
lora_dropout=0.0,
lora_r_dropout=0.0,
fix_dropout=0.0,
):
self.vocab_size = vocab_size_or_config_json_file
self.n_ctx = n_ctx
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.lora_attn_dim = lora_attn_dim
self.lora_attn_alpha = lora_attn_alpha
self.lora_dropout = lora_dropout
self.lora_r_dropout = lora_r_dropout
self.fix_dropout = fix_dropout
class GPT2LMModel(nn.Module):
def __init__(self, config):
super(GPT2LMModel, self).__init__()
self.transformer = GPT2Model(config)
self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)
self.apply(self._init_weights)
def set_tied(self):
""" Make sure we are sharing the embeddings"""
self.lm_head.set_embeddings_weights(self.transformer.wte.weight)
def forward(
self,
input_ids,
lm_labels=None,
lm_mask=None,
past=None,
len_past=None,
label_smooth=0.0,
is_report_accuracy=False
):
_batch, _len = input_ids.shape
hidden_states, presents = self.transformer(input_ids, past=past, len_past=len_past)
# batch, seq, vocab
lm_logits = self.lm_head(hidden_states)
if lm_labels is not None:
if is_report_accuracy:
_pred_token = torch.argmax(lm_logits, dim=-1)
_hit = (_pred_token == lm_labels) * lm_mask
_t1_acc = torch.zeros(_batch, dtype=torch.float, device=input_ids.device)
_all_acc = torch.zeros(_batch, dtype=torch.float, device=input_ids.device)
for _b in range(0, _batch):
for _i in range(0, _len):
if lm_mask[_b, _i] >= 1.0:
if _hit[_b, _i] > 0:
_t1_acc[_b] = 1.0
break
_is_succ = True
for _i in range(0, _len):
if lm_mask[_b, _i] >= 1.0:
if _hit[_b, _i] <= 0:
_is_succ = False
break
if _is_succ:
_all_acc[_b] = 1.0
#_t1_acc = _t1_acc * 1.0 / _batch
#_all_acc = _all_acc * 1.0 / _batch
if label_smooth > 0.0001:
logprobs = torch.nn.functional.log_softmax(lm_logits.view(-1, lm_logits.size(-1)), dim=-1)
nll_loss = -logprobs.gather(dim=-1, index=lm_labels.view(-1).unsqueeze(1))
nll_loss = nll_loss.squeeze(1)
smooth_loss = -logprobs.mean(dim=-1)
loss = (1.0 - label_smooth) * nll_loss + label_smooth * smooth_loss
loss = loss.view(_batch, _len)
else:
loss_fct = nn.CrossEntropyLoss(ignore_index=-1, reduce=False)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1)).view(_batch, _len)
if lm_mask is None:
lm_mask = torch.ones(loss.shape, dtype=loss.dtype, device=loss.device)
loss = loss * lm_mask
loss = loss.sum() / (lm_mask.sum() + 0.0001)
if is_report_accuracy:
return lm_logits, loss, _t1_acc, _all_acc
else:
return lm_logits, loss
return lm_logits, presents
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def load_weight(self, state_dict):
if 'model_state_dict' in state_dict:
state_dict = state_dict['model_state_dict']
state_dict_tmp = copy.deepcopy(state_dict)
old_keys = []
new_keys = []
for key in state_dict_tmp:
new_key = None
if key.endswith(".g"):
new_key = key[:-2] + ".weight"
elif key.endswith(".b"):
new_key = key[:-2] + ".bias"
elif key.endswith(".w"):
new_key = key[:-2] + ".weight"
if key.startswith("module.transformer."):
new_key = key[len("module.transformer."):]
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
for n, p in self.transformer.named_parameters():
if n not in state_dict:
state_dict[n] = p
self.transformer.load_state_dict(state_dict, strict=False)
self.set_tied()