-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnew_PPO.py
314 lines (273 loc) · 13.1 KB
/
new_PPO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import argparse
import os
import random
import time
from distutils.util import strtobool
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.distributions.normal import Normal
from torch.utils.tensorboard import SummaryWriter
# from wrappers.record_episode_statistics import RecordEpisodeStatistics
from wrappers.frame_stack import FrameStack
from wrappers.normalizeObservation import NormalizeObservation
from wrappers.normalizeRewards import NormalizeReward
from dynamics import *
from MuJoCo_Gym.mujoco_rl import MuJoCoRL
from MuJoCo_Gym.wrappers import GymnasiumWrapper, GymWrapper
def parse_args():
args = {
"exp_name": os.path.basename(__file__).rstrip(".py"),
"learning_rate": 3e-4,
"seed": 1,
"total_timesteps": 2000000,
"torch_deterministic": True,
"cuda": True,
"track": False,
"wandb_project_name": "ppo-implementation-details",
"wandb_entity": None,
"capture_video": False,
"num_envs": 1,
"num_steps": 2048,
"anneal_lr": True,
"gae": True,
"gamma": 0.99,
"gae_lambda": 0.95,
"num_minibatches": 32,
"update_epochs": 10,
"norm_adv": True,
"clip_coef": 0.2,
"clip_vloss": True,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"target_kl": None,
}
args["batch_size"] = int(args["num_envs"] * args["num_steps"])
args["minibatch_size"] = int(args["batch_size"] // args["num_minibatches"])
return args
def make_env(config_dict):
window = 5
env = MuJoCoRL(config_dict=config_dict)
# env = GymWrapper(env, "receiver")
# env = FrameStack(env, 4)
env = NormalizeObservation(env)
env = NormalizeReward(env)
env = GymWrapper(env, "sender")
env = gym.wrappers.RecordEpisodeStatistics(env)
return env
args = parse_args()
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
class Agent(nn.Module):
def __init__(self, envs):
super(Agent, self).__init__()
self.critic = nn.Sequential(
layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)),
nn.Tanh(),
layer_init(nn.Linear(64, 64)),
nn.Tanh(),
layer_init(nn.Linear(64, 1), std=1.0),
)
self.actor_mean = nn.Sequential(
layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)),
nn.Tanh(),
layer_init(nn.Linear(64, 64)),
nn.Tanh(),
layer_init(nn.Linear(64, np.prod(envs.single_action_space.shape)), std=0.01),
)
self.actor_logstd = nn.Parameter(torch.zeros(1, np.prod(envs.single_action_space.shape)))
def get_value(self, x):
return self.critic(x)
def get_action_and_value(self, x, action=None):
action_mean = self.actor_mean(x)
action_logstd = self.actor_logstd.expand_as(action_mean)
action_std = torch.exp(action_logstd)
probs = Normal(action_mean, action_std)
if action is None:
action = probs.sample()
return action, probs.log_prob(action).sum(1), probs.entropy().sum(1), self.critic(x)
if __name__ == "__main__":
args = parse_args()
run_name = f"TEST__{args['exp_name']}__{args['seed']}__{int(time.time())}"
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in args.items()])),
)
# TRY NOT TO MODIFY: seeding
random.seed(args['seed'])
np.random.seed(args['seed'])
torch.manual_seed(args['seed'])
torch.backends.cudnn.deterministic = args['torch_deterministic']
device = torch.device("cuda" if torch.cuda.is_available() and args['cuda'] else "cpu")
xml_files = ["levels/" + file for file in os.listdir("levels/")]
# xml_files = ["levels_obstacles/" + file for file in os.listdir("levels_obstacles/")]
agents = ["sender"]
config_dict = {"xmlPath":xml_files,
"agents":agents,
"rewardFunctions":[collision_reward, target_reward],
"doneFunctions":[target_done, border_done],
"skipFrames":5,
"environmentDynamics":[Image, Reward, Communication, Accuracy],
"freeJoint":True,
"renderMode":False,
"maxSteps":1024,
"agentCameras":True}
# env setup
envs = gym.vector.SyncVectorEnv(
[lambda: make_env(config_dict) for i in range(args['num_envs'])]
)
assert isinstance(envs.single_action_space, gym.spaces.Box), "only continuous action space is supported"
agent = Agent(envs).to(device)
optimizer = optim.Adam(agent.parameters(), lr=args['learning_rate'], eps=1e-5)
# ALGO Logic: Storage setup
obs = torch.zeros((args['num_steps'], args['num_envs']) + envs.single_observation_space.shape).to(device)
actions = torch.zeros((args['num_steps'], args['num_envs']) + envs.single_action_space.shape).to(device)
logprobs = torch.zeros((args['num_steps'], args['num_envs'])).to(device)
rewards = torch.zeros((args['num_steps'], args['num_envs'])).to(device)
dones = torch.zeros((args['num_steps'], args['num_envs'])).to(device)
values = torch.zeros((args['num_steps'], args['num_envs'])).to(device)
# TRY NOT TO MODIFY: start the game
global_step = 0
start_time = time.time()
next_obs = torch.Tensor(envs.reset()).to(device)
next_done = torch.zeros(args['num_envs']).to(device)
num_updates = args['total_timesteps'] // args['batch_size']
for update in range(1, num_updates + 1):
# Annealing the rate if instructed to do so.
if args['anneal_lr']:
frac = 1.0 - (update - 1.0) / num_updates
lrnow = frac * args['learning_rate']
optimizer.param_groups[0]["lr"] = lrnow
for step in range(0, args['num_steps']):
global_step += 1 * args['num_envs']
obs[step] = next_obs
dones[step] = next_done
# ALGO LOGIC: action logic
with torch.no_grad():
action, logprob, _, value = agent.get_action_and_value(next_obs)
values[step] = value.flatten()
actions[step] = action
logprobs[step] = logprob
# TRY NOT TO MODIFY: execute the game and log data.
next_obs, reward, done, info = envs.step(action.cpu().numpy())
rewards[step] = torch.tensor(reward).to(device).view(-1)
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device)
for item in info:
if "episode" in item.keys():
print(f"global_step={global_step}, episodic_return={item['episode']['r']}")
writer.add_scalar("charts/episodic_return", item["episode"]["r"], global_step)
writer.add_scalar("charts/episodic_length", item["episode"]["l"], global_step)
break
# bootstrap value if not done
with torch.no_grad():
next_value = agent.get_value(next_obs).reshape(1, -1)
if args['gae']:
advantages = torch.zeros_like(rewards).to(device)
lastgaelam = 0
for t in reversed(range(args['num_steps'])):
if t == args['num_steps'] - 1:
nextnonterminal = 1.0 - next_done
nextvalues = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
nextvalues = values[t + 1]
delta = rewards[t] + args['gamma'] * nextvalues * nextnonterminal - values[t]
advantages[t] = lastgaelam = delta + args['gamma'] * args['gae_lambda'] * nextnonterminal * lastgaelam
returns = advantages + values
else:
returns = torch.zeros_like(rewards).to(device)
for t in reversed(range(args['num_steps'])):
if t == args['num_steps'] - 1:
nextnonterminal = 1.0 - next_done
next_return = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
next_return = returns[t + 1]
returns[t] = rewards[t] + args['gamma'] * nextnonterminal * next_return
advantages = returns - values
# flatten the batch
b_obs = obs.reshape((-1,) + envs.single_observation_space.shape)
b_logprobs = logprobs.reshape(-1)
b_actions = actions.reshape((-1,) + envs.single_action_space.shape)
b_advantages = advantages.reshape(-1)
b_returns = returns.reshape(-1)
b_values = values.reshape(-1)
# Optimizing the policy and value network
b_inds = np.arange(args['batch_size'])
clipfracs = []
for epoch in range(args['update_epochs']):
np.random.shuffle(b_inds)
for start in range(0, args['batch_size'], args['minibatch_size']):
end = start + args['minibatch_size']
mb_inds = b_inds[start:end]
_, newlogprob, entropy, newvalue = agent.get_action_and_value(b_obs[mb_inds], b_actions[mb_inds])
logratio = newlogprob - b_logprobs[mb_inds]
ratio = logratio.exp()
with torch.no_grad():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [((ratio - 1.0).abs() > args['clip_coef']).float().mean().item()]
mb_advantages = b_advantages[mb_inds]
if args['norm_adv']:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
# Policy loss
pg_loss1 = -mb_advantages * ratio
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args['clip_coef'], 1 + args['clip_coef'])
pg_loss = torch.max(pg_loss1, pg_loss2).mean()
# Value loss
newvalue = newvalue.view(-1)
if args['clip_vloss']:
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
v_clipped = b_values[mb_inds] + torch.clamp(
newvalue - b_values[mb_inds],
-args['clip_coef'],
args['clip_coef'],
)
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
entropy_loss = entropy.mean()
loss = pg_loss - args['ent_coef'] * entropy_loss + v_loss * args['vf_coef']
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(agent.parameters(), args['max_grad_norm'])
optimizer.step()
if args['target_kl'] is not None:
if approx_kl > args['target_kl']:
break
y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()
var_y = np.var(y_true)
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
send_accuracies = []
for env in envs.envs:
env_dynamic = env.env.environment.env.env.environment_dynamics[3]
if isinstance(env_dynamic, Accuracy):
send_accuracies.append(env_dynamic.sendAccuracies)
send_accuracies = [item for sublist in send_accuracies for item in sublist]
if len(send_accuracies) > 0 and len(send_accuracies) > 16000:
episode_sendAccuracies = sum(send_accuracies[-16000:]) / 16000
else:
episode_sendAccuracies = 0
# TRY NOT TO MODIFY: record rewards for plotting purposes
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step)
writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step)
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
writer.add_scalar("charts/send_accuracies", episode_sendAccuracies, global_step)
writer.add_scalar("losses/explained_variance", explained_var, global_step)
print("SPS:", int(global_step / (time.time() - start_time)))
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
envs.close()
writer.close()